436 lines
13 KiB
C
436 lines
13 KiB
C
/* slaed0.f -- translated by f2c (version 20061008).
|
|
You must link the resulting object file with libf2c:
|
|
on Microsoft Windows system, link with libf2c.lib;
|
|
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
|
|
or, if you install libf2c.a in a standard place, with -lf2c -lm
|
|
-- in that order, at the end of the command line, as in
|
|
cc *.o -lf2c -lm
|
|
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
|
|
|
|
http://www.netlib.org/f2c/libf2c.zip
|
|
*/
|
|
|
|
#include "clapack.h"
|
|
|
|
|
|
/* Table of constant values */
|
|
|
|
static integer c__9 = 9;
|
|
static integer c__0 = 0;
|
|
static integer c__2 = 2;
|
|
static real c_b23 = 1.f;
|
|
static real c_b24 = 0.f;
|
|
static integer c__1 = 1;
|
|
|
|
/* Subroutine */ int slaed0_(integer *icompq, integer *qsiz, integer *n, real
|
|
*d__, real *e, real *q, integer *ldq, real *qstore, integer *ldqs,
|
|
real *work, integer *iwork, integer *info)
|
|
{
|
|
/* System generated locals */
|
|
integer q_dim1, q_offset, qstore_dim1, qstore_offset, i__1, i__2;
|
|
real r__1;
|
|
|
|
/* Builtin functions */
|
|
double log(doublereal);
|
|
integer pow_ii(integer *, integer *);
|
|
|
|
/* Local variables */
|
|
integer i__, j, k, iq, lgn, msd2, smm1, spm1, spm2;
|
|
real temp;
|
|
integer curr;
|
|
extern /* Subroutine */ int sgemm_(char *, char *, integer *, integer *,
|
|
integer *, real *, real *, integer *, real *, integer *, real *,
|
|
real *, integer *);
|
|
integer iperm, indxq, iwrem;
|
|
extern /* Subroutine */ int scopy_(integer *, real *, integer *, real *,
|
|
integer *);
|
|
integer iqptr, tlvls;
|
|
extern /* Subroutine */ int slaed1_(integer *, real *, real *, integer *,
|
|
integer *, real *, integer *, real *, integer *, integer *),
|
|
slaed7_(integer *, integer *, integer *, integer *, integer *,
|
|
integer *, real *, real *, integer *, integer *, real *, integer *
|
|
, real *, integer *, integer *, integer *, integer *, integer *,
|
|
real *, real *, integer *, integer *);
|
|
integer igivcl;
|
|
extern /* Subroutine */ int xerbla_(char *, integer *);
|
|
extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
|
|
integer *, integer *);
|
|
integer igivnm, submat;
|
|
extern /* Subroutine */ int slacpy_(char *, integer *, integer *, real *,
|
|
integer *, real *, integer *);
|
|
integer curprb, subpbs, igivpt, curlvl, matsiz, iprmpt, smlsiz;
|
|
extern /* Subroutine */ int ssteqr_(char *, integer *, real *, real *,
|
|
real *, integer *, real *, integer *);
|
|
|
|
|
|
/* -- LAPACK routine (version 3.2) -- */
|
|
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
|
|
/* November 2006 */
|
|
|
|
/* .. Scalar Arguments .. */
|
|
/* .. */
|
|
/* .. Array Arguments .. */
|
|
/* .. */
|
|
|
|
/* Purpose */
|
|
/* ======= */
|
|
|
|
/* SLAED0 computes all eigenvalues and corresponding eigenvectors of a */
|
|
/* symmetric tridiagonal matrix using the divide and conquer method. */
|
|
|
|
/* Arguments */
|
|
/* ========= */
|
|
|
|
/* ICOMPQ (input) INTEGER */
|
|
/* = 0: Compute eigenvalues only. */
|
|
/* = 1: Compute eigenvectors of original dense symmetric matrix */
|
|
/* also. On entry, Q contains the orthogonal matrix used */
|
|
/* to reduce the original matrix to tridiagonal form. */
|
|
/* = 2: Compute eigenvalues and eigenvectors of tridiagonal */
|
|
/* matrix. */
|
|
|
|
/* QSIZ (input) INTEGER */
|
|
/* The dimension of the orthogonal matrix used to reduce */
|
|
/* the full matrix to tridiagonal form. QSIZ >= N if ICOMPQ = 1. */
|
|
|
|
/* N (input) INTEGER */
|
|
/* The dimension of the symmetric tridiagonal matrix. N >= 0. */
|
|
|
|
/* D (input/output) REAL array, dimension (N) */
|
|
/* On entry, the main diagonal of the tridiagonal matrix. */
|
|
/* On exit, its eigenvalues. */
|
|
|
|
/* E (input) REAL array, dimension (N-1) */
|
|
/* The off-diagonal elements of the tridiagonal matrix. */
|
|
/* On exit, E has been destroyed. */
|
|
|
|
/* Q (input/output) REAL array, dimension (LDQ, N) */
|
|
/* On entry, Q must contain an N-by-N orthogonal matrix. */
|
|
/* If ICOMPQ = 0 Q is not referenced. */
|
|
/* If ICOMPQ = 1 On entry, Q is a subset of the columns of the */
|
|
/* orthogonal matrix used to reduce the full */
|
|
/* matrix to tridiagonal form corresponding to */
|
|
/* the subset of the full matrix which is being */
|
|
/* decomposed at this time. */
|
|
/* If ICOMPQ = 2 On entry, Q will be the identity matrix. */
|
|
/* On exit, Q contains the eigenvectors of the */
|
|
/* tridiagonal matrix. */
|
|
|
|
/* LDQ (input) INTEGER */
|
|
/* The leading dimension of the array Q. If eigenvectors are */
|
|
/* desired, then LDQ >= max(1,N). In any case, LDQ >= 1. */
|
|
|
|
/* QSTORE (workspace) REAL array, dimension (LDQS, N) */
|
|
/* Referenced only when ICOMPQ = 1. Used to store parts of */
|
|
/* the eigenvector matrix when the updating matrix multiplies */
|
|
/* take place. */
|
|
|
|
/* LDQS (input) INTEGER */
|
|
/* The leading dimension of the array QSTORE. If ICOMPQ = 1, */
|
|
/* then LDQS >= max(1,N). In any case, LDQS >= 1. */
|
|
|
|
/* WORK (workspace) REAL array, */
|
|
/* If ICOMPQ = 0 or 1, the dimension of WORK must be at least */
|
|
/* 1 + 3*N + 2*N*lg N + 2*N**2 */
|
|
/* ( lg( N ) = smallest integer k */
|
|
/* such that 2^k >= N ) */
|
|
/* If ICOMPQ = 2, the dimension of WORK must be at least */
|
|
/* 4*N + N**2. */
|
|
|
|
/* IWORK (workspace) INTEGER array, */
|
|
/* If ICOMPQ = 0 or 1, the dimension of IWORK must be at least */
|
|
/* 6 + 6*N + 5*N*lg N. */
|
|
/* ( lg( N ) = smallest integer k */
|
|
/* such that 2^k >= N ) */
|
|
/* If ICOMPQ = 2, the dimension of IWORK must be at least */
|
|
/* 3 + 5*N. */
|
|
|
|
/* INFO (output) INTEGER */
|
|
/* = 0: successful exit. */
|
|
/* < 0: if INFO = -i, the i-th argument had an illegal value. */
|
|
/* > 0: The algorithm failed to compute an eigenvalue while */
|
|
/* working on the submatrix lying in rows and columns */
|
|
/* INFO/(N+1) through mod(INFO,N+1). */
|
|
|
|
/* Further Details */
|
|
/* =============== */
|
|
|
|
/* Based on contributions by */
|
|
/* Jeff Rutter, Computer Science Division, University of California */
|
|
/* at Berkeley, USA */
|
|
|
|
/* ===================================================================== */
|
|
|
|
/* .. Parameters .. */
|
|
/* .. */
|
|
/* .. Local Scalars .. */
|
|
/* .. */
|
|
/* .. External Subroutines .. */
|
|
/* .. */
|
|
/* .. External Functions .. */
|
|
/* .. */
|
|
/* .. Intrinsic Functions .. */
|
|
/* .. */
|
|
/* .. Executable Statements .. */
|
|
|
|
/* Test the input parameters. */
|
|
|
|
/* Parameter adjustments */
|
|
--d__;
|
|
--e;
|
|
q_dim1 = *ldq;
|
|
q_offset = 1 + q_dim1;
|
|
q -= q_offset;
|
|
qstore_dim1 = *ldqs;
|
|
qstore_offset = 1 + qstore_dim1;
|
|
qstore -= qstore_offset;
|
|
--work;
|
|
--iwork;
|
|
|
|
/* Function Body */
|
|
*info = 0;
|
|
|
|
if (*icompq < 0 || *icompq > 2) {
|
|
*info = -1;
|
|
} else if (*icompq == 1 && *qsiz < max(0,*n)) {
|
|
*info = -2;
|
|
} else if (*n < 0) {
|
|
*info = -3;
|
|
} else if (*ldq < max(1,*n)) {
|
|
*info = -7;
|
|
} else if (*ldqs < max(1,*n)) {
|
|
*info = -9;
|
|
}
|
|
if (*info != 0) {
|
|
i__1 = -(*info);
|
|
xerbla_("SLAED0", &i__1);
|
|
return 0;
|
|
}
|
|
|
|
/* Quick return if possible */
|
|
|
|
if (*n == 0) {
|
|
return 0;
|
|
}
|
|
|
|
smlsiz = ilaenv_(&c__9, "SLAED0", " ", &c__0, &c__0, &c__0, &c__0);
|
|
|
|
/* Determine the size and placement of the submatrices, and save in */
|
|
/* the leading elements of IWORK. */
|
|
|
|
iwork[1] = *n;
|
|
subpbs = 1;
|
|
tlvls = 0;
|
|
L10:
|
|
if (iwork[subpbs] > smlsiz) {
|
|
for (j = subpbs; j >= 1; --j) {
|
|
iwork[j * 2] = (iwork[j] + 1) / 2;
|
|
iwork[(j << 1) - 1] = iwork[j] / 2;
|
|
/* L20: */
|
|
}
|
|
++tlvls;
|
|
subpbs <<= 1;
|
|
goto L10;
|
|
}
|
|
i__1 = subpbs;
|
|
for (j = 2; j <= i__1; ++j) {
|
|
iwork[j] += iwork[j - 1];
|
|
/* L30: */
|
|
}
|
|
|
|
/* Divide the matrix into SUBPBS submatrices of size at most SMLSIZ+1 */
|
|
/* using rank-1 modifications (cuts). */
|
|
|
|
spm1 = subpbs - 1;
|
|
i__1 = spm1;
|
|
for (i__ = 1; i__ <= i__1; ++i__) {
|
|
submat = iwork[i__] + 1;
|
|
smm1 = submat - 1;
|
|
d__[smm1] -= (r__1 = e[smm1], dabs(r__1));
|
|
d__[submat] -= (r__1 = e[smm1], dabs(r__1));
|
|
/* L40: */
|
|
}
|
|
|
|
indxq = (*n << 2) + 3;
|
|
if (*icompq != 2) {
|
|
|
|
/* Set up workspaces for eigenvalues only/accumulate new vectors */
|
|
/* routine */
|
|
|
|
temp = log((real) (*n)) / log(2.f);
|
|
lgn = (integer) temp;
|
|
if (pow_ii(&c__2, &lgn) < *n) {
|
|
++lgn;
|
|
}
|
|
if (pow_ii(&c__2, &lgn) < *n) {
|
|
++lgn;
|
|
}
|
|
iprmpt = indxq + *n + 1;
|
|
iperm = iprmpt + *n * lgn;
|
|
iqptr = iperm + *n * lgn;
|
|
igivpt = iqptr + *n + 2;
|
|
igivcl = igivpt + *n * lgn;
|
|
|
|
igivnm = 1;
|
|
iq = igivnm + (*n << 1) * lgn;
|
|
/* Computing 2nd power */
|
|
i__1 = *n;
|
|
iwrem = iq + i__1 * i__1 + 1;
|
|
|
|
/* Initialize pointers */
|
|
|
|
i__1 = subpbs;
|
|
for (i__ = 0; i__ <= i__1; ++i__) {
|
|
iwork[iprmpt + i__] = 1;
|
|
iwork[igivpt + i__] = 1;
|
|
/* L50: */
|
|
}
|
|
iwork[iqptr] = 1;
|
|
}
|
|
|
|
/* Solve each submatrix eigenproblem at the bottom of the divide and */
|
|
/* conquer tree. */
|
|
|
|
curr = 0;
|
|
i__1 = spm1;
|
|
for (i__ = 0; i__ <= i__1; ++i__) {
|
|
if (i__ == 0) {
|
|
submat = 1;
|
|
matsiz = iwork[1];
|
|
} else {
|
|
submat = iwork[i__] + 1;
|
|
matsiz = iwork[i__ + 1] - iwork[i__];
|
|
}
|
|
if (*icompq == 2) {
|
|
ssteqr_("I", &matsiz, &d__[submat], &e[submat], &q[submat +
|
|
submat * q_dim1], ldq, &work[1], info);
|
|
if (*info != 0) {
|
|
goto L130;
|
|
}
|
|
} else {
|
|
ssteqr_("I", &matsiz, &d__[submat], &e[submat], &work[iq - 1 +
|
|
iwork[iqptr + curr]], &matsiz, &work[1], info);
|
|
if (*info != 0) {
|
|
goto L130;
|
|
}
|
|
if (*icompq == 1) {
|
|
sgemm_("N", "N", qsiz, &matsiz, &matsiz, &c_b23, &q[submat *
|
|
q_dim1 + 1], ldq, &work[iq - 1 + iwork[iqptr + curr]],
|
|
&matsiz, &c_b24, &qstore[submat * qstore_dim1 + 1],
|
|
ldqs);
|
|
}
|
|
/* Computing 2nd power */
|
|
i__2 = matsiz;
|
|
iwork[iqptr + curr + 1] = iwork[iqptr + curr] + i__2 * i__2;
|
|
++curr;
|
|
}
|
|
k = 1;
|
|
i__2 = iwork[i__ + 1];
|
|
for (j = submat; j <= i__2; ++j) {
|
|
iwork[indxq + j] = k;
|
|
++k;
|
|
/* L60: */
|
|
}
|
|
/* L70: */
|
|
}
|
|
|
|
/* Successively merge eigensystems of adjacent submatrices */
|
|
/* into eigensystem for the corresponding larger matrix. */
|
|
|
|
/* while ( SUBPBS > 1 ) */
|
|
|
|
curlvl = 1;
|
|
L80:
|
|
if (subpbs > 1) {
|
|
spm2 = subpbs - 2;
|
|
i__1 = spm2;
|
|
for (i__ = 0; i__ <= i__1; i__ += 2) {
|
|
if (i__ == 0) {
|
|
submat = 1;
|
|
matsiz = iwork[2];
|
|
msd2 = iwork[1];
|
|
curprb = 0;
|
|
} else {
|
|
submat = iwork[i__] + 1;
|
|
matsiz = iwork[i__ + 2] - iwork[i__];
|
|
msd2 = matsiz / 2;
|
|
++curprb;
|
|
}
|
|
|
|
/* Merge lower order eigensystems (of size MSD2 and MATSIZ - MSD2) */
|
|
/* into an eigensystem of size MATSIZ. */
|
|
/* SLAED1 is used only for the full eigensystem of a tridiagonal */
|
|
/* matrix. */
|
|
/* SLAED7 handles the cases in which eigenvalues only or eigenvalues */
|
|
/* and eigenvectors of a full symmetric matrix (which was reduced to */
|
|
/* tridiagonal form) are desired. */
|
|
|
|
if (*icompq == 2) {
|
|
slaed1_(&matsiz, &d__[submat], &q[submat + submat * q_dim1],
|
|
ldq, &iwork[indxq + submat], &e[submat + msd2 - 1], &
|
|
msd2, &work[1], &iwork[subpbs + 1], info);
|
|
} else {
|
|
slaed7_(icompq, &matsiz, qsiz, &tlvls, &curlvl, &curprb, &d__[
|
|
submat], &qstore[submat * qstore_dim1 + 1], ldqs, &
|
|
iwork[indxq + submat], &e[submat + msd2 - 1], &msd2, &
|
|
work[iq], &iwork[iqptr], &iwork[iprmpt], &iwork[iperm]
|
|
, &iwork[igivpt], &iwork[igivcl], &work[igivnm], &
|
|
work[iwrem], &iwork[subpbs + 1], info);
|
|
}
|
|
if (*info != 0) {
|
|
goto L130;
|
|
}
|
|
iwork[i__ / 2 + 1] = iwork[i__ + 2];
|
|
/* L90: */
|
|
}
|
|
subpbs /= 2;
|
|
++curlvl;
|
|
goto L80;
|
|
}
|
|
|
|
/* end while */
|
|
|
|
/* Re-merge the eigenvalues/vectors which were deflated at the final */
|
|
/* merge step. */
|
|
|
|
if (*icompq == 1) {
|
|
i__1 = *n;
|
|
for (i__ = 1; i__ <= i__1; ++i__) {
|
|
j = iwork[indxq + i__];
|
|
work[i__] = d__[j];
|
|
scopy_(qsiz, &qstore[j * qstore_dim1 + 1], &c__1, &q[i__ * q_dim1
|
|
+ 1], &c__1);
|
|
/* L100: */
|
|
}
|
|
scopy_(n, &work[1], &c__1, &d__[1], &c__1);
|
|
} else if (*icompq == 2) {
|
|
i__1 = *n;
|
|
for (i__ = 1; i__ <= i__1; ++i__) {
|
|
j = iwork[indxq + i__];
|
|
work[i__] = d__[j];
|
|
scopy_(n, &q[j * q_dim1 + 1], &c__1, &work[*n * i__ + 1], &c__1);
|
|
/* L110: */
|
|
}
|
|
scopy_(n, &work[1], &c__1, &d__[1], &c__1);
|
|
slacpy_("A", n, n, &work[*n + 1], n, &q[q_offset], ldq);
|
|
} else {
|
|
i__1 = *n;
|
|
for (i__ = 1; i__ <= i__1; ++i__) {
|
|
j = iwork[indxq + i__];
|
|
work[i__] = d__[j];
|
|
/* L120: */
|
|
}
|
|
scopy_(n, &work[1], &c__1, &d__[1], &c__1);
|
|
}
|
|
goto L140;
|
|
|
|
L130:
|
|
*info = submat * (*n + 1) + submat + matsiz - 1;
|
|
|
|
L140:
|
|
return 0;
|
|
|
|
/* End of SLAED0 */
|
|
|
|
} /* slaed0_ */
|