313 lines
7.4 KiB
C
313 lines
7.4 KiB
C
/* sgemv.f -- translated by f2c (version 20061008).
|
|
You must link the resulting object file with libf2c:
|
|
on Microsoft Windows system, link with libf2c.lib;
|
|
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
|
|
or, if you install libf2c.a in a standard place, with -lf2c -lm
|
|
-- in that order, at the end of the command line, as in
|
|
cc *.o -lf2c -lm
|
|
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
|
|
|
|
http://www.netlib.org/f2c/libf2c.zip
|
|
*/
|
|
|
|
#include "clapack.h"
|
|
|
|
|
|
/* Subroutine */ int sgemv_(char *trans, integer *m, integer *n, real *alpha,
|
|
real *a, integer *lda, real *x, integer *incx, real *beta, real *y,
|
|
integer *incy)
|
|
{
|
|
/* System generated locals */
|
|
integer a_dim1, a_offset, i__1, i__2;
|
|
|
|
/* Local variables */
|
|
integer i__, j, ix, iy, jx, jy, kx, ky, info;
|
|
real temp;
|
|
integer lenx, leny;
|
|
extern logical lsame_(char *, char *);
|
|
extern /* Subroutine */ int xerbla_(char *, integer *);
|
|
|
|
/* .. Scalar Arguments .. */
|
|
/* .. */
|
|
/* .. Array Arguments .. */
|
|
/* .. */
|
|
|
|
/* Purpose */
|
|
/* ======= */
|
|
|
|
/* SGEMV performs one of the matrix-vector operations */
|
|
|
|
/* y := alpha*A*x + beta*y, or y := alpha*A'*x + beta*y, */
|
|
|
|
/* where alpha and beta are scalars, x and y are vectors and A is an */
|
|
/* m by n matrix. */
|
|
|
|
/* Arguments */
|
|
/* ========== */
|
|
|
|
/* TRANS - CHARACTER*1. */
|
|
/* On entry, TRANS specifies the operation to be performed as */
|
|
/* follows: */
|
|
|
|
/* TRANS = 'N' or 'n' y := alpha*A*x + beta*y. */
|
|
|
|
/* TRANS = 'T' or 't' y := alpha*A'*x + beta*y. */
|
|
|
|
/* TRANS = 'C' or 'c' y := alpha*A'*x + beta*y. */
|
|
|
|
/* Unchanged on exit. */
|
|
|
|
/* M - INTEGER. */
|
|
/* On entry, M specifies the number of rows of the matrix A. */
|
|
/* M must be at least zero. */
|
|
/* Unchanged on exit. */
|
|
|
|
/* N - INTEGER. */
|
|
/* On entry, N specifies the number of columns of the matrix A. */
|
|
/* N must be at least zero. */
|
|
/* Unchanged on exit. */
|
|
|
|
/* ALPHA - REAL . */
|
|
/* On entry, ALPHA specifies the scalar alpha. */
|
|
/* Unchanged on exit. */
|
|
|
|
/* A - REAL array of DIMENSION ( LDA, n ). */
|
|
/* Before entry, the leading m by n part of the array A must */
|
|
/* contain the matrix of coefficients. */
|
|
/* Unchanged on exit. */
|
|
|
|
/* LDA - INTEGER. */
|
|
/* On entry, LDA specifies the first dimension of A as declared */
|
|
/* in the calling (sub) program. LDA must be at least */
|
|
/* max( 1, m ). */
|
|
/* Unchanged on exit. */
|
|
|
|
/* X - REAL array of DIMENSION at least */
|
|
/* ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n' */
|
|
/* and at least */
|
|
/* ( 1 + ( m - 1 )*abs( INCX ) ) otherwise. */
|
|
/* Before entry, the incremented array X must contain the */
|
|
/* vector x. */
|
|
/* Unchanged on exit. */
|
|
|
|
/* INCX - INTEGER. */
|
|
/* On entry, INCX specifies the increment for the elements of */
|
|
/* X. INCX must not be zero. */
|
|
/* Unchanged on exit. */
|
|
|
|
/* BETA - REAL . */
|
|
/* On entry, BETA specifies the scalar beta. When BETA is */
|
|
/* supplied as zero then Y need not be set on input. */
|
|
/* Unchanged on exit. */
|
|
|
|
/* Y - REAL array of DIMENSION at least */
|
|
/* ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n' */
|
|
/* and at least */
|
|
/* ( 1 + ( n - 1 )*abs( INCY ) ) otherwise. */
|
|
/* Before entry with BETA non-zero, the incremented array Y */
|
|
/* must contain the vector y. On exit, Y is overwritten by the */
|
|
/* updated vector y. */
|
|
|
|
/* INCY - INTEGER. */
|
|
/* On entry, INCY specifies the increment for the elements of */
|
|
/* Y. INCY must not be zero. */
|
|
/* Unchanged on exit. */
|
|
|
|
|
|
/* Level 2 Blas routine. */
|
|
|
|
/* -- Written on 22-October-1986. */
|
|
/* Jack Dongarra, Argonne National Lab. */
|
|
/* Jeremy Du Croz, Nag Central Office. */
|
|
/* Sven Hammarling, Nag Central Office. */
|
|
/* Richard Hanson, Sandia National Labs. */
|
|
|
|
|
|
/* .. Parameters .. */
|
|
/* .. */
|
|
/* .. Local Scalars .. */
|
|
/* .. */
|
|
/* .. External Functions .. */
|
|
/* .. */
|
|
/* .. External Subroutines .. */
|
|
/* .. */
|
|
/* .. Intrinsic Functions .. */
|
|
/* .. */
|
|
|
|
/* Test the input parameters. */
|
|
|
|
/* Parameter adjustments */
|
|
a_dim1 = *lda;
|
|
a_offset = 1 + a_dim1;
|
|
a -= a_offset;
|
|
--x;
|
|
--y;
|
|
|
|
/* Function Body */
|
|
info = 0;
|
|
if (! lsame_(trans, "N") && ! lsame_(trans, "T") && ! lsame_(trans, "C")
|
|
) {
|
|
info = 1;
|
|
} else if (*m < 0) {
|
|
info = 2;
|
|
} else if (*n < 0) {
|
|
info = 3;
|
|
} else if (*lda < max(1,*m)) {
|
|
info = 6;
|
|
} else if (*incx == 0) {
|
|
info = 8;
|
|
} else if (*incy == 0) {
|
|
info = 11;
|
|
}
|
|
if (info != 0) {
|
|
xerbla_("SGEMV ", &info);
|
|
return 0;
|
|
}
|
|
|
|
/* Quick return if possible. */
|
|
|
|
if (*m == 0 || *n == 0 || *alpha == 0.f && *beta == 1.f) {
|
|
return 0;
|
|
}
|
|
|
|
/* Set LENX and LENY, the lengths of the vectors x and y, and set */
|
|
/* up the start points in X and Y. */
|
|
|
|
if (lsame_(trans, "N")) {
|
|
lenx = *n;
|
|
leny = *m;
|
|
} else {
|
|
lenx = *m;
|
|
leny = *n;
|
|
}
|
|
if (*incx > 0) {
|
|
kx = 1;
|
|
} else {
|
|
kx = 1 - (lenx - 1) * *incx;
|
|
}
|
|
if (*incy > 0) {
|
|
ky = 1;
|
|
} else {
|
|
ky = 1 - (leny - 1) * *incy;
|
|
}
|
|
|
|
/* Start the operations. In this version the elements of A are */
|
|
/* accessed sequentially with one pass through A. */
|
|
|
|
/* First form y := beta*y. */
|
|
|
|
if (*beta != 1.f) {
|
|
if (*incy == 1) {
|
|
if (*beta == 0.f) {
|
|
i__1 = leny;
|
|
for (i__ = 1; i__ <= i__1; ++i__) {
|
|
y[i__] = 0.f;
|
|
/* L10: */
|
|
}
|
|
} else {
|
|
i__1 = leny;
|
|
for (i__ = 1; i__ <= i__1; ++i__) {
|
|
y[i__] = *beta * y[i__];
|
|
/* L20: */
|
|
}
|
|
}
|
|
} else {
|
|
iy = ky;
|
|
if (*beta == 0.f) {
|
|
i__1 = leny;
|
|
for (i__ = 1; i__ <= i__1; ++i__) {
|
|
y[iy] = 0.f;
|
|
iy += *incy;
|
|
/* L30: */
|
|
}
|
|
} else {
|
|
i__1 = leny;
|
|
for (i__ = 1; i__ <= i__1; ++i__) {
|
|
y[iy] = *beta * y[iy];
|
|
iy += *incy;
|
|
/* L40: */
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if (*alpha == 0.f) {
|
|
return 0;
|
|
}
|
|
if (lsame_(trans, "N")) {
|
|
|
|
/* Form y := alpha*A*x + y. */
|
|
|
|
jx = kx;
|
|
if (*incy == 1) {
|
|
i__1 = *n;
|
|
for (j = 1; j <= i__1; ++j) {
|
|
if (x[jx] != 0.f) {
|
|
temp = *alpha * x[jx];
|
|
i__2 = *m;
|
|
for (i__ = 1; i__ <= i__2; ++i__) {
|
|
y[i__] += temp * a[i__ + j * a_dim1];
|
|
/* L50: */
|
|
}
|
|
}
|
|
jx += *incx;
|
|
/* L60: */
|
|
}
|
|
} else {
|
|
i__1 = *n;
|
|
for (j = 1; j <= i__1; ++j) {
|
|
if (x[jx] != 0.f) {
|
|
temp = *alpha * x[jx];
|
|
iy = ky;
|
|
i__2 = *m;
|
|
for (i__ = 1; i__ <= i__2; ++i__) {
|
|
y[iy] += temp * a[i__ + j * a_dim1];
|
|
iy += *incy;
|
|
/* L70: */
|
|
}
|
|
}
|
|
jx += *incx;
|
|
/* L80: */
|
|
}
|
|
}
|
|
} else {
|
|
|
|
/* Form y := alpha*A'*x + y. */
|
|
|
|
jy = ky;
|
|
if (*incx == 1) {
|
|
i__1 = *n;
|
|
for (j = 1; j <= i__1; ++j) {
|
|
temp = 0.f;
|
|
i__2 = *m;
|
|
for (i__ = 1; i__ <= i__2; ++i__) {
|
|
temp += a[i__ + j * a_dim1] * x[i__];
|
|
/* L90: */
|
|
}
|
|
y[jy] += *alpha * temp;
|
|
jy += *incy;
|
|
/* L100: */
|
|
}
|
|
} else {
|
|
i__1 = *n;
|
|
for (j = 1; j <= i__1; ++j) {
|
|
temp = 0.f;
|
|
ix = kx;
|
|
i__2 = *m;
|
|
for (i__ = 1; i__ <= i__2; ++i__) {
|
|
temp += a[i__ + j * a_dim1] * x[ix];
|
|
ix += *incx;
|
|
/* L110: */
|
|
}
|
|
y[jy] += *alpha * temp;
|
|
jy += *incy;
|
|
/* L120: */
|
|
}
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
|
|
/* End of SGEMV . */
|
|
|
|
} /* sgemv_ */
|