173 lines
		
	
	
		
			6.1 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			173 lines
		
	
	
		
			6.1 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
/*M///////////////////////////////////////////////////////////////////////////////////////
 | 
						|
//
 | 
						|
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
 | 
						|
//
 | 
						|
//  By downloading, copying, installing or using the software you agree to this license.
 | 
						|
//  If you do not agree to this license, do not download, install,
 | 
						|
//  copy or use the software.
 | 
						|
//
 | 
						|
//
 | 
						|
//                           License Agreement
 | 
						|
//                For Open Source Computer Vision Library
 | 
						|
//
 | 
						|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
 | 
						|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
 | 
						|
// Third party copyrights are property of their respective owners.
 | 
						|
//
 | 
						|
// Redistribution and use in source and binary forms, with or without modification,
 | 
						|
// are permitted provided that the following conditions are met:
 | 
						|
//
 | 
						|
//   * Redistribution's of source code must retain the above copyright notice,
 | 
						|
//     this list of conditions and the following disclaimer.
 | 
						|
//
 | 
						|
//   * Redistribution's in binary form must reproduce the above copyright notice,
 | 
						|
//     this list of conditions and the following disclaimer in the documentation
 | 
						|
//     and/or other materials provided with the distribution.
 | 
						|
//
 | 
						|
//   * The name of the copyright holders may not be used to endorse or promote products
 | 
						|
//     derived from this software without specific prior written permission.
 | 
						|
//
 | 
						|
// This software is provided by the copyright holders and contributors "as is" and
 | 
						|
// any express or implied warranties, including, but not limited to, the implied
 | 
						|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
 | 
						|
// In no event shall the Intel Corporation or contributors be liable for any direct,
 | 
						|
// indirect, incidental, special, exemplary, or consequential damages
 | 
						|
// (including, but not limited to, procurement of substitute goods or services;
 | 
						|
// loss of use, data, or profits; or business interruption) however caused
 | 
						|
// and on any theory of liability, whether in contract, strict liability,
 | 
						|
// or tort (including negligence or otherwise) arising in any way out of
 | 
						|
// the use of this software, even if advised of the possibility of such damage.
 | 
						|
//
 | 
						|
//M*/
 | 
						|
 | 
						|
#include "test_precomp.hpp"
 | 
						|
 | 
						|
#include <string>
 | 
						|
#include <iostream>
 | 
						|
 | 
						|
using namespace std;
 | 
						|
using namespace cv;
 | 
						|
 | 
						|
class CV_GrabcutTest : public cvtest::BaseTest
 | 
						|
{
 | 
						|
public:
 | 
						|
    CV_GrabcutTest();
 | 
						|
    ~CV_GrabcutTest();
 | 
						|
protected:
 | 
						|
    bool verify(const Mat& mask, const Mat& exp);
 | 
						|
    void run(int);
 | 
						|
};
 | 
						|
 | 
						|
CV_GrabcutTest::CV_GrabcutTest() {}
 | 
						|
CV_GrabcutTest::~CV_GrabcutTest() {}
 | 
						|
 | 
						|
bool CV_GrabcutTest::verify(const Mat& mask, const Mat& exp)
 | 
						|
{
 | 
						|
    const float maxDiffRatio = 0.005f;
 | 
						|
    int expArea = countNonZero( exp );
 | 
						|
    int nonIntersectArea = countNonZero( mask != exp );
 | 
						|
 | 
						|
    float curRatio = (float)nonIntersectArea / (float)expArea;
 | 
						|
    ts->printf( cvtest::TS::LOG, "nonIntersectArea/expArea = %f\n", curRatio );
 | 
						|
    return curRatio < maxDiffRatio;
 | 
						|
}
 | 
						|
 | 
						|
void CV_GrabcutTest::run( int /* start_from */)
 | 
						|
{
 | 
						|
    cvtest::DefaultRngAuto defRng;
 | 
						|
 | 
						|
    Mat img = imread(string(ts->get_data_path()) + "shared/airplane.png");
 | 
						|
    Mat mask_prob = imread(string(ts->get_data_path()) + "grabcut/mask_prob.png", 0);
 | 
						|
    Mat exp_mask1 = imread(string(ts->get_data_path()) + "grabcut/exp_mask1.png", 0);
 | 
						|
    Mat exp_mask2 = imread(string(ts->get_data_path()) + "grabcut/exp_mask2.png", 0);
 | 
						|
 | 
						|
    if (img.empty() || (!mask_prob.empty() && img.size() != mask_prob.size()) ||
 | 
						|
                       (!exp_mask1.empty() && img.size() != exp_mask1.size()) ||
 | 
						|
                       (!exp_mask2.empty() && img.size() != exp_mask2.size()) )
 | 
						|
    {
 | 
						|
         ts->set_failed_test_info(cvtest::TS::FAIL_MISSING_TEST_DATA);
 | 
						|
         return;
 | 
						|
    }
 | 
						|
 | 
						|
    Rect rect(Point(24, 126), Point(483, 294));
 | 
						|
    Mat exp_bgdModel, exp_fgdModel;
 | 
						|
 | 
						|
    Mat mask;
 | 
						|
    mask = Scalar(0);
 | 
						|
    Mat bgdModel, fgdModel;
 | 
						|
    grabCut( img, mask, rect, bgdModel, fgdModel, 0, GC_INIT_WITH_RECT );
 | 
						|
    grabCut( img, mask, rect, bgdModel, fgdModel, 2, GC_EVAL );
 | 
						|
 | 
						|
    // Multiply images by 255 for more visuality of test data.
 | 
						|
    if( mask_prob.empty() )
 | 
						|
    {
 | 
						|
        mask.copyTo( mask_prob );
 | 
						|
        imwrite(string(ts->get_data_path()) + "grabcut/mask_prob.png", mask_prob);
 | 
						|
    }
 | 
						|
    if( exp_mask1.empty() )
 | 
						|
    {
 | 
						|
        exp_mask1 = (mask & 1) * 255;
 | 
						|
        imwrite(string(ts->get_data_path()) + "grabcut/exp_mask1.png", exp_mask1);
 | 
						|
    }
 | 
						|
 | 
						|
    if (!verify((mask & 1) * 255, exp_mask1))
 | 
						|
    {
 | 
						|
        ts->set_failed_test_info(cvtest::TS::FAIL_MISMATCH);
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    mask = mask_prob;
 | 
						|
    bgdModel.release();
 | 
						|
    fgdModel.release();
 | 
						|
    rect = Rect();
 | 
						|
    grabCut( img, mask, rect, bgdModel, fgdModel, 0, GC_INIT_WITH_MASK );
 | 
						|
    grabCut( img, mask, rect, bgdModel, fgdModel, 1, GC_EVAL );
 | 
						|
 | 
						|
    if( exp_mask2.empty() )
 | 
						|
    {
 | 
						|
        exp_mask2 = (mask & 1) * 255;
 | 
						|
        imwrite(string(ts->get_data_path()) + "grabcut/exp_mask2.png", exp_mask2);
 | 
						|
    }
 | 
						|
 | 
						|
    if (!verify((mask & 1) * 255, exp_mask2))
 | 
						|
    {
 | 
						|
        ts->set_failed_test_info(cvtest::TS::FAIL_MISMATCH);
 | 
						|
        return;
 | 
						|
    }
 | 
						|
    ts->set_failed_test_info(cvtest::TS::OK);
 | 
						|
}
 | 
						|
 | 
						|
TEST(Imgproc_GrabCut, regression) { CV_GrabcutTest test; test.safe_run(); }
 | 
						|
 | 
						|
TEST(Imgproc_GrabCut, repeatability)
 | 
						|
{
 | 
						|
    cvtest::TS& ts = *cvtest::TS::ptr();
 | 
						|
 | 
						|
    Mat image_1 = imread(string(ts.get_data_path()) + "grabcut/image1652.ppm", IMREAD_COLOR);
 | 
						|
    Mat mask_1 = imread(string(ts.get_data_path()) + "grabcut/mask1652.ppm", IMREAD_GRAYSCALE);
 | 
						|
    Rect roi_1(0, 0, 150, 150);
 | 
						|
 | 
						|
    Mat image_2 = image_1.clone();
 | 
						|
    Mat mask_2 = mask_1.clone();
 | 
						|
    Rect roi_2 = roi_1;
 | 
						|
 | 
						|
    Mat image_3 = image_1.clone();
 | 
						|
    Mat mask_3 = mask_1.clone();
 | 
						|
    Rect roi_3 = roi_1;
 | 
						|
 | 
						|
    Mat bgdModel_1, fgdModel_1;
 | 
						|
    Mat bgdModel_2, fgdModel_2;
 | 
						|
    Mat bgdModel_3, fgdModel_3;
 | 
						|
 | 
						|
    theRNG().state = 12378213;
 | 
						|
    grabCut(image_1, mask_1, roi_1, bgdModel_1, fgdModel_1, 1, GC_INIT_WITH_MASK);
 | 
						|
    theRNG().state = 12378213;
 | 
						|
    grabCut(image_2, mask_2, roi_2, bgdModel_2, fgdModel_2, 1, GC_INIT_WITH_MASK);
 | 
						|
    theRNG().state = 12378213;
 | 
						|
    grabCut(image_3, mask_3, roi_3, bgdModel_3, fgdModel_3, 1, GC_INIT_WITH_MASK);
 | 
						|
 | 
						|
    EXPECT_EQ(0, countNonZero(mask_1 != mask_2));
 | 
						|
    EXPECT_EQ(0, countNonZero(mask_1 != mask_3));
 | 
						|
    EXPECT_EQ(0, countNonZero(mask_2 != mask_3));
 | 
						|
}
 |