108 lines
		
	
	
		
			3.4 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
			
		
		
	
	
			108 lines
		
	
	
		
			3.4 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
#!/usr/bin/env python
 | 
						|
 | 
						|
'''
 | 
						|
Planar augmented reality
 | 
						|
==================
 | 
						|
 | 
						|
This sample shows an example of augmented reality overlay over a planar object
 | 
						|
tracked by PlaneTracker from plane_tracker.py. solvePnP funciton is used to
 | 
						|
estimate the tracked object location in 3d space.
 | 
						|
 | 
						|
video: http://www.youtube.com/watch?v=pzVbhxx6aog
 | 
						|
 | 
						|
Usage
 | 
						|
-----
 | 
						|
plane_ar.py [<video source>]
 | 
						|
 | 
						|
Keys:
 | 
						|
   SPACE  -  pause video
 | 
						|
   c      -  clear targets
 | 
						|
 | 
						|
Select a textured planar object to track by drawing a box with a mouse.
 | 
						|
Use 'focal' slider to adjust to camera focal length for proper video augmentation.
 | 
						|
'''
 | 
						|
 | 
						|
import numpy as np
 | 
						|
import cv2
 | 
						|
import video
 | 
						|
import common
 | 
						|
from plane_tracker import PlaneTracker
 | 
						|
 | 
						|
 | 
						|
ar_verts = np.float32([[0, 0, 0], [0, 1, 0], [1, 1, 0], [1, 0, 0],
 | 
						|
                       [0, 0, 1], [0, 1, 1], [1, 1, 1], [1, 0, 1],
 | 
						|
                       [0, 0.5, 2], [1, 0.5, 2]])
 | 
						|
ar_edges = [(0, 1), (1, 2), (2, 3), (3, 0),
 | 
						|
            (4, 5), (5, 6), (6, 7), (7, 4),
 | 
						|
            (0, 4), (1, 5), (2, 6), (3, 7),
 | 
						|
            (4, 8), (5, 8), (6, 9), (7, 9), (8, 9)]
 | 
						|
 | 
						|
class App:
 | 
						|
    def __init__(self, src):
 | 
						|
        self.cap = video.create_capture(src)
 | 
						|
        self.frame = None
 | 
						|
        self.paused = False
 | 
						|
        self.tracker = PlaneTracker()
 | 
						|
 | 
						|
        cv2.namedWindow('plane')
 | 
						|
        cv2.createTrackbar('focal', 'plane', 25, 50, common.nothing)
 | 
						|
        self.rect_sel = common.RectSelector('plane', self.on_rect)
 | 
						|
 | 
						|
    def on_rect(self, rect):
 | 
						|
        self.tracker.add_target(self.frame, rect)
 | 
						|
 | 
						|
    def run(self):
 | 
						|
        while True:
 | 
						|
            playing = not self.paused and not self.rect_sel.dragging
 | 
						|
            if playing or self.frame is None:
 | 
						|
                ret, frame = self.cap.read()
 | 
						|
                if not ret:
 | 
						|
                    break
 | 
						|
                self.frame = frame.copy()
 | 
						|
 | 
						|
            vis = self.frame.copy()
 | 
						|
            if playing:
 | 
						|
                tracked = self.tracker.track(self.frame)
 | 
						|
                for tr in tracked:
 | 
						|
                    cv2.polylines(vis, [np.int32(tr.quad)], True, (255, 255, 255), 2)
 | 
						|
                    for (x, y) in np.int32(tr.p1):
 | 
						|
                        cv2.circle(vis, (x, y), 2, (255, 255, 255))
 | 
						|
                    self.draw_overlay(vis, tr)
 | 
						|
 | 
						|
            self.rect_sel.draw(vis)
 | 
						|
            cv2.imshow('plane', vis)
 | 
						|
            ch = cv2.waitKey(1)
 | 
						|
            if ch == ord(' '):
 | 
						|
                self.paused = not self.paused
 | 
						|
            if ch == ord('c'):
 | 
						|
                self.tracker.clear()
 | 
						|
            if ch == 27:
 | 
						|
                break
 | 
						|
 | 
						|
    def draw_overlay(self, vis, tracked):
 | 
						|
        x0, y0, x1, y1 = tracked.target.rect
 | 
						|
        quad_3d = np.float32([[x0, y0, 0], [x1, y0, 0], [x1, y1, 0], [x0, y1, 0]])
 | 
						|
        fx = 0.5 + cv2.getTrackbarPos('focal', 'plane') / 50.0
 | 
						|
        h, w = vis.shape[:2]
 | 
						|
        K = np.float64([[fx*w, 0, 0.5*(w-1)],
 | 
						|
                        [0, fx*w, 0.5*(h-1)],
 | 
						|
                        [0.0,0.0,      1.0]])
 | 
						|
        dist_coef = np.zeros(4)
 | 
						|
        ret, rvec, tvec = cv2.solvePnP(quad_3d, tracked.quad, K, dist_coef)
 | 
						|
        verts = ar_verts * [(x1-x0), (y1-y0), -(x1-x0)*0.3] + (x0, y0, 0)
 | 
						|
        verts = cv2.projectPoints(verts, rvec, tvec, K, dist_coef)[0].reshape(-1, 2)
 | 
						|
        for i, j in ar_edges:
 | 
						|
            (x0, y0), (x1, y1) = verts[i], verts[j]
 | 
						|
            cv2.line(vis, (int(x0), int(y0)), (int(x1), int(y1)), (255, 255, 0), 2)
 | 
						|
 | 
						|
 | 
						|
if __name__ == '__main__':
 | 
						|
    print __doc__
 | 
						|
 | 
						|
    import sys
 | 
						|
    try:
 | 
						|
        video_src = sys.argv[1]
 | 
						|
    except:
 | 
						|
        video_src = 0
 | 
						|
    App(video_src).run()
 |