102 lines
		
	
	
		
			3.4 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
			
		
		
	
	
			102 lines
		
	
	
		
			3.4 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
#!/usr/bin/python
 | 
						|
"""
 | 
						|
This program is demonstration for face and object detection using haar-like features.
 | 
						|
The program finds faces in a camera image or video stream and displays a red box around them.
 | 
						|
 | 
						|
Original C implementation by:  ?
 | 
						|
Python implementation by: Roman Stanchak, James Bowman
 | 
						|
"""
 | 
						|
import sys
 | 
						|
import cv2.cv as cv
 | 
						|
from optparse import OptionParser
 | 
						|
 | 
						|
# Parameters for haar detection
 | 
						|
# From the API:
 | 
						|
# The default parameters (scale_factor=2, min_neighbors=3, flags=0) are tuned
 | 
						|
# for accurate yet slow object detection. For a faster operation on real video
 | 
						|
# images the settings are:
 | 
						|
# scale_factor=1.2, min_neighbors=2, flags=CV_HAAR_DO_CANNY_PRUNING,
 | 
						|
# min_size=<minimum possible face size
 | 
						|
 | 
						|
min_size = (20, 20)
 | 
						|
image_scale = 2
 | 
						|
haar_scale = 1.2
 | 
						|
min_neighbors = 2
 | 
						|
haar_flags = 0
 | 
						|
 | 
						|
def detect_and_draw(img, cascade):
 | 
						|
    # allocate temporary images
 | 
						|
    gray = cv.CreateImage((img.width,img.height), 8, 1)
 | 
						|
    small_img = cv.CreateImage((cv.Round(img.width / image_scale),
 | 
						|
                   cv.Round (img.height / image_scale)), 8, 1)
 | 
						|
 | 
						|
    # convert color input image to grayscale
 | 
						|
    cv.CvtColor(img, gray, cv.CV_BGR2GRAY)
 | 
						|
 | 
						|
    # scale input image for faster processing
 | 
						|
    cv.Resize(gray, small_img, cv.CV_INTER_LINEAR)
 | 
						|
 | 
						|
    cv.EqualizeHist(small_img, small_img)
 | 
						|
 | 
						|
    if(cascade):
 | 
						|
        t = cv.GetTickCount()
 | 
						|
        faces = cv.HaarDetectObjects(small_img, cascade, cv.CreateMemStorage(0),
 | 
						|
                                     haar_scale, min_neighbors, haar_flags, min_size)
 | 
						|
        t = cv.GetTickCount() - t
 | 
						|
        print "detection time = %gms" % (t/(cv.GetTickFrequency()*1000.))
 | 
						|
        if faces:
 | 
						|
            for ((x, y, w, h), n) in faces:
 | 
						|
                # the input to cv.HaarDetectObjects was resized, so scale the
 | 
						|
                # bounding box of each face and convert it to two CvPoints
 | 
						|
                pt1 = (int(x * image_scale), int(y * image_scale))
 | 
						|
                pt2 = (int((x + w) * image_scale), int((y + h) * image_scale))
 | 
						|
                cv.Rectangle(img, pt1, pt2, cv.RGB(255, 0, 0), 3, 8, 0)
 | 
						|
 | 
						|
    cv.ShowImage("result", img)
 | 
						|
 | 
						|
if __name__ == '__main__':
 | 
						|
 | 
						|
    parser = OptionParser(usage = "usage: %prog [options] [filename|camera_index]")
 | 
						|
    parser.add_option("-c", "--cascade", action="store", dest="cascade", type="str", help="Haar cascade file, default %default", default = "../data/haarcascades/haarcascade_frontalface_alt.xml")
 | 
						|
    (options, args) = parser.parse_args()
 | 
						|
 | 
						|
    cascade = cv.Load(options.cascade)
 | 
						|
 | 
						|
    if len(args) != 1:
 | 
						|
        parser.print_help()
 | 
						|
        sys.exit(1)
 | 
						|
 | 
						|
    input_name = args[0]
 | 
						|
    if input_name.isdigit():
 | 
						|
        capture = cv.CreateCameraCapture(int(input_name))
 | 
						|
    else:
 | 
						|
        capture = None
 | 
						|
 | 
						|
    cv.NamedWindow("result", 1)
 | 
						|
 | 
						|
    if capture:
 | 
						|
        frame_copy = None
 | 
						|
        while True:
 | 
						|
            frame = cv.QueryFrame(capture)
 | 
						|
            if not frame:
 | 
						|
                cv.WaitKey(0)
 | 
						|
                break
 | 
						|
            if not frame_copy:
 | 
						|
                frame_copy = cv.CreateImage((frame.width,frame.height),
 | 
						|
                                            cv.IPL_DEPTH_8U, frame.nChannels)
 | 
						|
            if frame.origin == cv.IPL_ORIGIN_TL:
 | 
						|
                cv.Copy(frame, frame_copy)
 | 
						|
            else:
 | 
						|
                cv.Flip(frame, frame_copy, 0)
 | 
						|
 | 
						|
            detect_and_draw(frame_copy, cascade)
 | 
						|
 | 
						|
            if cv.WaitKey(10) >= 0:
 | 
						|
                break
 | 
						|
    else:
 | 
						|
        image = cv.LoadImage(input_name, 1)
 | 
						|
        detect_and_draw(image, cascade)
 | 
						|
        cv.WaitKey(0)
 | 
						|
 | 
						|
    cv.DestroyWindow("result")
 |