158 lines
		
	
	
		
			3.6 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			158 lines
		
	
	
		
			3.6 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
/* This sample demonstrates the way you can perform independed tasks
 | 
						|
   on the different GPUs */
 | 
						|
 | 
						|
// Disable some warnings which are caused with CUDA headers
 | 
						|
#if defined(_MSC_VER)
 | 
						|
#pragma warning(disable: 4201 4408 4100)
 | 
						|
#endif
 | 
						|
 | 
						|
#include <iostream>
 | 
						|
#include "cvconfig.h"
 | 
						|
#include "opencv2/core/core.hpp"
 | 
						|
#include "opencv2/gpu/gpu.hpp"
 | 
						|
 | 
						|
#ifdef HAVE_TBB
 | 
						|
#  include "tbb/tbb_stddef.h"
 | 
						|
#  if TBB_VERSION_MAJOR*100 + TBB_VERSION_MINOR >= 202
 | 
						|
#    include "tbb/tbb.h"
 | 
						|
#    include "tbb/task.h"
 | 
						|
#    undef min
 | 
						|
#    undef max
 | 
						|
#  else
 | 
						|
#    undef HAVE_TBB
 | 
						|
#  endif
 | 
						|
#endif
 | 
						|
 | 
						|
#if !defined(HAVE_CUDA) || !defined(HAVE_TBB)
 | 
						|
 | 
						|
int main()
 | 
						|
{
 | 
						|
#if !defined(HAVE_CUDA)
 | 
						|
    std::cout << "CUDA support is required (CMake key 'WITH_CUDA' must be true).\n";
 | 
						|
#endif
 | 
						|
 | 
						|
#if !defined(HAVE_TBB)
 | 
						|
    std::cout << "TBB support is required (CMake key 'WITH_TBB' must be true).\n";
 | 
						|
#endif
 | 
						|
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
#else
 | 
						|
 | 
						|
#include <cuda.h>
 | 
						|
#include <cuda_runtime.h>
 | 
						|
 | 
						|
using namespace std;
 | 
						|
using namespace cv;
 | 
						|
using namespace cv::gpu;
 | 
						|
 | 
						|
struct Worker { void operator()(int device_id) const; };
 | 
						|
void destroyContexts();
 | 
						|
 | 
						|
#define safeCall(expr) safeCall_(expr, #expr, __FILE__, __LINE__)
 | 
						|
inline void safeCall_(int code, const char* expr, const char* file, int line)
 | 
						|
{
 | 
						|
    if (code != CUDA_SUCCESS)
 | 
						|
    {
 | 
						|
        std::cout << "CUDA driver API error: code " << code << ", expr " << expr
 | 
						|
            << ", file " << file << ", line " << line << endl;
 | 
						|
        destroyContexts();
 | 
						|
        exit(-1);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
// Each GPU is associated with its own context
 | 
						|
CUcontext contexts[2];
 | 
						|
 | 
						|
int main()
 | 
						|
{
 | 
						|
    int num_devices = getCudaEnabledDeviceCount();
 | 
						|
    if (num_devices < 2)
 | 
						|
    {
 | 
						|
        std::cout << "Two or more GPUs are required\n";
 | 
						|
        return -1;
 | 
						|
    }
 | 
						|
 | 
						|
    for (int i = 0; i < num_devices; ++i)
 | 
						|
    {
 | 
						|
        cv::gpu::printShortCudaDeviceInfo(i);
 | 
						|
 | 
						|
        DeviceInfo dev_info(i);
 | 
						|
        if (!dev_info.isCompatible())
 | 
						|
        {
 | 
						|
            std::cout << "GPU module isn't built for GPU #" << i << " ("
 | 
						|
                 << dev_info.name() << ", CC " << dev_info.majorVersion()
 | 
						|
                 << dev_info.minorVersion() << "\n";
 | 
						|
            return -1;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    // Init CUDA Driver API
 | 
						|
    safeCall(cuInit(0));
 | 
						|
 | 
						|
    // Create context for GPU #0
 | 
						|
    CUdevice device;
 | 
						|
    safeCall(cuDeviceGet(&device, 0));
 | 
						|
    safeCall(cuCtxCreate(&contexts[0], 0, device));
 | 
						|
 | 
						|
    CUcontext prev_context;
 | 
						|
    safeCall(cuCtxPopCurrent(&prev_context));
 | 
						|
 | 
						|
    // Create context for GPU #1
 | 
						|
    safeCall(cuDeviceGet(&device, 1));
 | 
						|
    safeCall(cuCtxCreate(&contexts[1], 0, device));
 | 
						|
 | 
						|
    safeCall(cuCtxPopCurrent(&prev_context));
 | 
						|
 | 
						|
    // Execute calculation in two threads using two GPUs
 | 
						|
    int devices[] = {0, 1};
 | 
						|
    tbb::parallel_do(devices, devices + 2, Worker());
 | 
						|
 | 
						|
    destroyContexts();
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void Worker::operator()(int device_id) const
 | 
						|
{
 | 
						|
    // Set the proper context
 | 
						|
    safeCall(cuCtxPushCurrent(contexts[device_id]));
 | 
						|
 | 
						|
    Mat src(1000, 1000, CV_32F);
 | 
						|
    Mat dst;
 | 
						|
 | 
						|
    RNG rng(0);
 | 
						|
    rng.fill(src, RNG::UNIFORM, 0, 1);
 | 
						|
 | 
						|
    // CPU works
 | 
						|
    transpose(src, dst);
 | 
						|
 | 
						|
    // GPU works
 | 
						|
    GpuMat d_src(src);
 | 
						|
    GpuMat d_dst;
 | 
						|
    transpose(d_src, d_dst);
 | 
						|
 | 
						|
    // Check results
 | 
						|
    bool passed = norm(dst - Mat(d_dst), NORM_INF) < 1e-3;
 | 
						|
    std::cout << "GPU #" << device_id << " (" << DeviceInfo().name() << "): "
 | 
						|
        << (passed ? "passed" : "FAILED") << endl;
 | 
						|
 | 
						|
    // Deallocate data here, otherwise deallocation will be performed
 | 
						|
    // after context is extracted from the stack
 | 
						|
    d_src.release();
 | 
						|
    d_dst.release();
 | 
						|
 | 
						|
    CUcontext prev_context;
 | 
						|
    safeCall(cuCtxPopCurrent(&prev_context));
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void destroyContexts()
 | 
						|
{
 | 
						|
    safeCall(cuCtxDestroy(contexts[0]));
 | 
						|
    safeCall(cuCtxDestroy(contexts[1]));
 | 
						|
}
 | 
						|
 | 
						|
#endif
 |