130 lines
		
	
	
		
			5.0 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			130 lines
		
	
	
		
			5.0 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//  demo.cpp
 | 
						|
//
 | 
						|
//	Here is an example on how to use the descriptor presented in the following paper:
 | 
						|
//	A. Alahi, R. Ortiz, and P. Vandergheynst. FREAK: Fast Retina Keypoint. In IEEE Conference on Computer Vision and Pattern Recognition, 2012.
 | 
						|
//  CVPR 2012 Open Source Award winner
 | 
						|
//
 | 
						|
//	Copyright (C) 2011-2012  Signal processing laboratory 2, EPFL,
 | 
						|
//	Kirell Benzi (kirell.benzi@epfl.ch),
 | 
						|
//	Raphael Ortiz (raphael.ortiz@a3.epfl.ch),
 | 
						|
//	Alexandre Alahi (alexandre.alahi@epfl.ch)
 | 
						|
//	and Pierre Vandergheynst (pierre.vandergheynst@epfl.ch)
 | 
						|
//
 | 
						|
//  Redistribution and use in source and binary forms, with or without modification,
 | 
						|
//  are permitted provided that the following conditions are met:
 | 
						|
//
 | 
						|
//   * Redistribution's of source code must retain the above copyright notice,
 | 
						|
//     this list of conditions and the following disclaimer.
 | 
						|
//
 | 
						|
//   * Redistribution's in binary form must reproduce the above copyright notice,
 | 
						|
//     this list of conditions and the following disclaimer in the documentation
 | 
						|
//     and/or other materials provided with the distribution.
 | 
						|
//
 | 
						|
//   * The name of the copyright holders may not be used to endorse or promote products
 | 
						|
//     derived from this software without specific prior written permission.
 | 
						|
//
 | 
						|
//  This software is provided by the copyright holders and contributors "as is" and
 | 
						|
//  any express or implied warranties, including, but not limited to, the implied
 | 
						|
//  warranties of merchantability and fitness for a particular purpose are disclaimed.
 | 
						|
//  In no event shall the Intel Corporation or contributors be liable for any direct,
 | 
						|
//  indirect, incidental, special, exemplary, or consequential damages
 | 
						|
//  (including, but not limited to, procurement of substitute goods or services;
 | 
						|
//  loss of use, data, or profits; or business interruption) however caused
 | 
						|
//  and on any theory of liability, whether in contract, strict liability,
 | 
						|
//  or tort (including negligence or otherwise) arising in any way out of
 | 
						|
//  the use of this software, even if advised of the possibility of such damage.
 | 
						|
 | 
						|
#include <iostream>
 | 
						|
#include <string>
 | 
						|
#include <vector>
 | 
						|
 | 
						|
#include <opencv2/core.hpp>
 | 
						|
#include "opencv2/core/utility.hpp"
 | 
						|
#include <opencv2/highgui.hpp>
 | 
						|
#include <opencv2/features2d.hpp>
 | 
						|
#include <opencv2/nonfree.hpp>
 | 
						|
#include <opencv2/legacy.hpp>
 | 
						|
 | 
						|
using namespace cv;
 | 
						|
 | 
						|
static void help( char** argv )
 | 
						|
{
 | 
						|
    std::cout << "\nUsage: " << argv[0] << " [path/to/image1] [path/to/image2] \n"
 | 
						|
              << "This is an example on how to use the keypoint descriptor presented in the following paper: \n"
 | 
						|
              << "A. Alahi, R. Ortiz, and P. Vandergheynst. FREAK: Fast Retina Keypoint. \n"
 | 
						|
              << "In IEEE Conference on Computer Vision and Pattern Recognition, 2012. CVPR 2012 Open Source Award winner \n"
 | 
						|
              << std::endl;
 | 
						|
}
 | 
						|
 | 
						|
int main( int argc, char** argv ) {
 | 
						|
    // check http://opencv.itseez.com/doc/tutorials/features2d/table_of_content_features2d/table_of_content_features2d.html
 | 
						|
    // for OpenCV general detection/matching framework details
 | 
						|
 | 
						|
    if( argc != 3 ) {
 | 
						|
        help(argv);
 | 
						|
        return -1;
 | 
						|
    }
 | 
						|
 | 
						|
    // Load images
 | 
						|
    Mat imgA = imread(argv[1], IMREAD_GRAYSCALE );
 | 
						|
    if( !imgA.data ) {
 | 
						|
        std::cout<< " --(!) Error reading image " << argv[1] << std::endl;
 | 
						|
        return -1;
 | 
						|
    }
 | 
						|
 | 
						|
    Mat imgB = imread(argv[2], IMREAD_GRAYSCALE );
 | 
						|
    if( !imgA.data ) {
 | 
						|
        std::cout << " --(!) Error reading image " << argv[2] << std::endl;
 | 
						|
        return -1;
 | 
						|
    }
 | 
						|
 | 
						|
    std::vector<KeyPoint> keypointsA, keypointsB;
 | 
						|
    Mat descriptorsA, descriptorsB;
 | 
						|
    std::vector<DMatch> matches;
 | 
						|
 | 
						|
    // DETECTION
 | 
						|
    // Any openCV detector such as
 | 
						|
    SurfFeatureDetector detector(2000,4);
 | 
						|
 | 
						|
    // DESCRIPTOR
 | 
						|
    // Our proposed FREAK descriptor
 | 
						|
    // (roation invariance, scale invariance, pattern radius corresponding to SMALLEST_KP_SIZE,
 | 
						|
    // number of octaves, optional vector containing the selected pairs)
 | 
						|
    // FREAK extractor(true, true, 22, 4, std::vector<int>());
 | 
						|
    FREAK extractor;
 | 
						|
 | 
						|
    // MATCHER
 | 
						|
    // The standard Hamming distance can be used such as
 | 
						|
    // BruteForceMatcher<Hamming> matcher;
 | 
						|
    // or the proposed cascade of hamming distance using SSSE3
 | 
						|
    BruteForceMatcher<Hamming> matcher;
 | 
						|
 | 
						|
    // detect
 | 
						|
    double t = (double)getTickCount();
 | 
						|
    detector.detect( imgA, keypointsA );
 | 
						|
    detector.detect( imgB, keypointsB );
 | 
						|
    t = ((double)getTickCount() - t)/getTickFrequency();
 | 
						|
    std::cout << "detection time [s]: " << t/1.0 << std::endl;
 | 
						|
 | 
						|
    // extract
 | 
						|
    t = (double)getTickCount();
 | 
						|
    extractor.compute( imgA, keypointsA, descriptorsA );
 | 
						|
    extractor.compute( imgB, keypointsB, descriptorsB );
 | 
						|
    t = ((double)getTickCount() - t)/getTickFrequency();
 | 
						|
    std::cout << "extraction time [s]: " << t << std::endl;
 | 
						|
 | 
						|
    // match
 | 
						|
    t = (double)getTickCount();
 | 
						|
    matcher.match(descriptorsA, descriptorsB, matches);
 | 
						|
    t = ((double)getTickCount() - t)/getTickFrequency();
 | 
						|
    std::cout << "matching time [s]: " << t << std::endl;
 | 
						|
 | 
						|
    // Draw matches
 | 
						|
    Mat imgMatch;
 | 
						|
    drawMatches(imgA, keypointsA, imgB, keypointsB, matches, imgMatch);
 | 
						|
 | 
						|
    namedWindow("matches", WINDOW_KEEPRATIO);
 | 
						|
    imshow("matches", imgMatch);
 | 
						|
    waitKey(0);
 | 
						|
}
 |