374 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			374 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /* This is sample from the OpenCV book. The copyright notice is below */
 | |
| 
 | |
| /* *************** License:**************************
 | |
|    Oct. 3, 2008
 | |
|    Right to use this code in any way you want without warranty, support or any guarantee of it working.
 | |
| 
 | |
|    BOOK: It would be nice if you cited it:
 | |
|    Learning OpenCV: Computer Vision with the OpenCV Library
 | |
|      by Gary Bradski and Adrian Kaehler
 | |
|      Published by O'Reilly Media, October 3, 2008
 | |
| 
 | |
|    AVAILABLE AT:
 | |
|      http://www.amazon.com/Learning-OpenCV-Computer-Vision-Library/dp/0596516134
 | |
|      Or: http://oreilly.com/catalog/9780596516130/
 | |
|      ISBN-10: 0596516134 or: ISBN-13: 978-0596516130
 | |
| 
 | |
|    OPENCV WEBSITES:
 | |
|      Homepage:      http://opencv.org
 | |
|      Online docs:   http://docs.opencv.org
 | |
|      Q&A forum:     http://answers.opencv.org
 | |
|      Issue tracker: http://code.opencv.org
 | |
|      GitHub:        https://github.com/Itseez/opencv/
 | |
|    ************************************************** */
 | |
| 
 | |
| #include "opencv2/calib3d/calib3d.hpp"
 | |
| #include "opencv2/imgcodecs.hpp"
 | |
| #include "opencv2/highgui/highgui.hpp"
 | |
| #include "opencv2/imgproc/imgproc.hpp"
 | |
| 
 | |
| #include <vector>
 | |
| #include <string>
 | |
| #include <algorithm>
 | |
| #include <iostream>
 | |
| #include <iterator>
 | |
| #include <stdio.h>
 | |
| #include <stdlib.h>
 | |
| #include <ctype.h>
 | |
| 
 | |
| using namespace cv;
 | |
| using namespace std;
 | |
| 
 | |
| static int print_help()
 | |
| {
 | |
|     cout <<
 | |
|             " Given a list of chessboard images, the number of corners (nx, ny)\n"
 | |
|             " on the chessboards, and a flag: useCalibrated for \n"
 | |
|             "   calibrated (0) or\n"
 | |
|             "   uncalibrated \n"
 | |
|             "     (1: use cvStereoCalibrate(), 2: compute fundamental\n"
 | |
|             "         matrix separately) stereo. \n"
 | |
|             " Calibrate the cameras and display the\n"
 | |
|             " rectified results along with the computed disparity images.   \n" << endl;
 | |
|     cout << "Usage:\n ./stereo_calib -w=<board_width default=9> -h=<board_height default=6> -s=<square_size default=1.0> <image list XML/YML file default=../data/stereo_calib.xml>\n" << endl;
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| static void
 | |
| StereoCalib(const vector<string>& imagelist, Size boardSize, float squareSize, bool displayCorners = false, bool useCalibrated=true, bool showRectified=true)
 | |
| {
 | |
|     if( imagelist.size() % 2 != 0 )
 | |
|     {
 | |
|         cout << "Error: the image list contains odd (non-even) number of elements\n";
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     const int maxScale = 2;
 | |
|     // ARRAY AND VECTOR STORAGE:
 | |
| 
 | |
|     vector<vector<Point2f> > imagePoints[2];
 | |
|     vector<vector<Point3f> > objectPoints;
 | |
|     Size imageSize;
 | |
| 
 | |
|     int i, j, k, nimages = (int)imagelist.size()/2;
 | |
| 
 | |
|     imagePoints[0].resize(nimages);
 | |
|     imagePoints[1].resize(nimages);
 | |
|     vector<string> goodImageList;
 | |
| 
 | |
|     for( i = j = 0; i < nimages; i++ )
 | |
|     {
 | |
|         for( k = 0; k < 2; k++ )
 | |
|         {
 | |
|             const string& filename = imagelist[i*2+k];
 | |
|             Mat img = imread(filename, 0);
 | |
|             if(img.empty())
 | |
|                 break;
 | |
|             if( imageSize == Size() )
 | |
|                 imageSize = img.size();
 | |
|             else if( img.size() != imageSize )
 | |
|             {
 | |
|                 cout << "The image " << filename << " has the size different from the first image size. Skipping the pair\n";
 | |
|                 break;
 | |
|             }
 | |
|             bool found = false;
 | |
|             vector<Point2f>& corners = imagePoints[k][j];
 | |
|             for( int scale = 1; scale <= maxScale; scale++ )
 | |
|             {
 | |
|                 Mat timg;
 | |
|                 if( scale == 1 )
 | |
|                     timg = img;
 | |
|                 else
 | |
|                     resize(img, timg, Size(), scale, scale);
 | |
|                 found = findChessboardCorners(timg, boardSize, corners,
 | |
|                     CALIB_CB_ADAPTIVE_THRESH | CALIB_CB_NORMALIZE_IMAGE);
 | |
|                 if( found )
 | |
|                 {
 | |
|                     if( scale > 1 )
 | |
|                     {
 | |
|                         Mat cornersMat(corners);
 | |
|                         cornersMat *= 1./scale;
 | |
|                     }
 | |
|                     break;
 | |
|                 }
 | |
|             }
 | |
|             if( displayCorners )
 | |
|             {
 | |
|                 cout << filename << endl;
 | |
|                 Mat cimg, cimg1;
 | |
|                 cvtColor(img, cimg, COLOR_GRAY2BGR);
 | |
|                 drawChessboardCorners(cimg, boardSize, corners, found);
 | |
|                 double sf = 640./MAX(img.rows, img.cols);
 | |
|                 resize(cimg, cimg1, Size(), sf, sf);
 | |
|                 imshow("corners", cimg1);
 | |
|                 char c = (char)waitKey(500);
 | |
|                 if( c == 27 || c == 'q' || c == 'Q' ) //Allow ESC to quit
 | |
|                     exit(-1);
 | |
|             }
 | |
|             else
 | |
|                 putchar('.');
 | |
|             if( !found )
 | |
|                 break;
 | |
|             cornerSubPix(img, corners, Size(11,11), Size(-1,-1),
 | |
|                          TermCriteria(TermCriteria::COUNT+TermCriteria::EPS,
 | |
|                                       30, 0.01));
 | |
|         }
 | |
|         if( k == 2 )
 | |
|         {
 | |
|             goodImageList.push_back(imagelist[i*2]);
 | |
|             goodImageList.push_back(imagelist[i*2+1]);
 | |
|             j++;
 | |
|         }
 | |
|     }
 | |
|     cout << j << " pairs have been successfully detected.\n";
 | |
|     nimages = j;
 | |
|     if( nimages < 2 )
 | |
|     {
 | |
|         cout << "Error: too little pairs to run the calibration\n";
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     imagePoints[0].resize(nimages);
 | |
|     imagePoints[1].resize(nimages);
 | |
|     objectPoints.resize(nimages);
 | |
| 
 | |
|     for( i = 0; i < nimages; i++ )
 | |
|     {
 | |
|         for( j = 0; j < boardSize.height; j++ )
 | |
|             for( k = 0; k < boardSize.width; k++ )
 | |
|                 objectPoints[i].push_back(Point3f(k*squareSize, j*squareSize, 0));
 | |
|     }
 | |
| 
 | |
|     cout << "Running stereo calibration ...\n";
 | |
| 
 | |
|     Mat cameraMatrix[2], distCoeffs[2];
 | |
|     cameraMatrix[0] = initCameraMatrix2D(objectPoints,imagePoints[0],imageSize,0);
 | |
|     cameraMatrix[1] = initCameraMatrix2D(objectPoints,imagePoints[1],imageSize,0);
 | |
|     Mat R, T, E, F;
 | |
| 
 | |
|     double rms = stereoCalibrate(objectPoints, imagePoints[0], imagePoints[1],
 | |
|                     cameraMatrix[0], distCoeffs[0],
 | |
|                     cameraMatrix[1], distCoeffs[1],
 | |
|                     imageSize, R, T, E, F,
 | |
|                     CALIB_FIX_ASPECT_RATIO +
 | |
|                     CALIB_ZERO_TANGENT_DIST +
 | |
|                     CALIB_USE_INTRINSIC_GUESS +
 | |
|                     CALIB_SAME_FOCAL_LENGTH +
 | |
|                     CALIB_RATIONAL_MODEL +
 | |
|                     CALIB_FIX_K3 + CALIB_FIX_K4 + CALIB_FIX_K5,
 | |
|                     TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, 100, 1e-5) );
 | |
|     cout << "done with RMS error=" << rms << endl;
 | |
| 
 | |
| // CALIBRATION QUALITY CHECK
 | |
| // because the output fundamental matrix implicitly
 | |
| // includes all the output information,
 | |
| // we can check the quality of calibration using the
 | |
| // epipolar geometry constraint: m2^t*F*m1=0
 | |
|     double err = 0;
 | |
|     int npoints = 0;
 | |
|     vector<Vec3f> lines[2];
 | |
|     for( i = 0; i < nimages; i++ )
 | |
|     {
 | |
|         int npt = (int)imagePoints[0][i].size();
 | |
|         Mat imgpt[2];
 | |
|         for( k = 0; k < 2; k++ )
 | |
|         {
 | |
|             imgpt[k] = Mat(imagePoints[k][i]);
 | |
|             undistortPoints(imgpt[k], imgpt[k], cameraMatrix[k], distCoeffs[k], Mat(), cameraMatrix[k]);
 | |
|             computeCorrespondEpilines(imgpt[k], k+1, F, lines[k]);
 | |
|         }
 | |
|         for( j = 0; j < npt; j++ )
 | |
|         {
 | |
|             double errij = fabs(imagePoints[0][i][j].x*lines[1][j][0] +
 | |
|                                 imagePoints[0][i][j].y*lines[1][j][1] + lines[1][j][2]) +
 | |
|                            fabs(imagePoints[1][i][j].x*lines[0][j][0] +
 | |
|                                 imagePoints[1][i][j].y*lines[0][j][1] + lines[0][j][2]);
 | |
|             err += errij;
 | |
|         }
 | |
|         npoints += npt;
 | |
|     }
 | |
|     cout << "average epipolar err = " <<  err/npoints << endl;
 | |
| 
 | |
|     // save intrinsic parameters
 | |
|     FileStorage fs("intrinsics.yml", FileStorage::WRITE);
 | |
|     if( fs.isOpened() )
 | |
|     {
 | |
|         fs << "M1" << cameraMatrix[0] << "D1" << distCoeffs[0] <<
 | |
|             "M2" << cameraMatrix[1] << "D2" << distCoeffs[1];
 | |
|         fs.release();
 | |
|     }
 | |
|     else
 | |
|         cout << "Error: can not save the intrinsic parameters\n";
 | |
| 
 | |
|     Mat R1, R2, P1, P2, Q;
 | |
|     Rect validRoi[2];
 | |
| 
 | |
|     stereoRectify(cameraMatrix[0], distCoeffs[0],
 | |
|                   cameraMatrix[1], distCoeffs[1],
 | |
|                   imageSize, R, T, R1, R2, P1, P2, Q,
 | |
|                   CALIB_ZERO_DISPARITY, 1, imageSize, &validRoi[0], &validRoi[1]);
 | |
| 
 | |
|     fs.open("extrinsics.yml", FileStorage::WRITE);
 | |
|     if( fs.isOpened() )
 | |
|     {
 | |
|         fs << "R" << R << "T" << T << "R1" << R1 << "R2" << R2 << "P1" << P1 << "P2" << P2 << "Q" << Q;
 | |
|         fs.release();
 | |
|     }
 | |
|     else
 | |
|         cout << "Error: can not save the extrinsic parameters\n";
 | |
| 
 | |
|     // OpenCV can handle left-right
 | |
|     // or up-down camera arrangements
 | |
|     bool isVerticalStereo = fabs(P2.at<double>(1, 3)) > fabs(P2.at<double>(0, 3));
 | |
| 
 | |
| // COMPUTE AND DISPLAY RECTIFICATION
 | |
|     if( !showRectified )
 | |
|         return;
 | |
| 
 | |
|     Mat rmap[2][2];
 | |
| // IF BY CALIBRATED (BOUGUET'S METHOD)
 | |
|     if( useCalibrated )
 | |
|     {
 | |
|         // we already computed everything
 | |
|     }
 | |
| // OR ELSE HARTLEY'S METHOD
 | |
|     else
 | |
|  // use intrinsic parameters of each camera, but
 | |
|  // compute the rectification transformation directly
 | |
|  // from the fundamental matrix
 | |
|     {
 | |
|         vector<Point2f> allimgpt[2];
 | |
|         for( k = 0; k < 2; k++ )
 | |
|         {
 | |
|             for( i = 0; i < nimages; i++ )
 | |
|                 std::copy(imagePoints[k][i].begin(), imagePoints[k][i].end(), back_inserter(allimgpt[k]));
 | |
|         }
 | |
|         F = findFundamentalMat(Mat(allimgpt[0]), Mat(allimgpt[1]), FM_8POINT, 0, 0);
 | |
|         Mat H1, H2;
 | |
|         stereoRectifyUncalibrated(Mat(allimgpt[0]), Mat(allimgpt[1]), F, imageSize, H1, H2, 3);
 | |
| 
 | |
|         R1 = cameraMatrix[0].inv()*H1*cameraMatrix[0];
 | |
|         R2 = cameraMatrix[1].inv()*H2*cameraMatrix[1];
 | |
|         P1 = cameraMatrix[0];
 | |
|         P2 = cameraMatrix[1];
 | |
|     }
 | |
| 
 | |
|     //Precompute maps for cv::remap()
 | |
|     initUndistortRectifyMap(cameraMatrix[0], distCoeffs[0], R1, P1, imageSize, CV_16SC2, rmap[0][0], rmap[0][1]);
 | |
|     initUndistortRectifyMap(cameraMatrix[1], distCoeffs[1], R2, P2, imageSize, CV_16SC2, rmap[1][0], rmap[1][1]);
 | |
| 
 | |
|     Mat canvas;
 | |
|     double sf;
 | |
|     int w, h;
 | |
|     if( !isVerticalStereo )
 | |
|     {
 | |
|         sf = 600./MAX(imageSize.width, imageSize.height);
 | |
|         w = cvRound(imageSize.width*sf);
 | |
|         h = cvRound(imageSize.height*sf);
 | |
|         canvas.create(h, w*2, CV_8UC3);
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         sf = 300./MAX(imageSize.width, imageSize.height);
 | |
|         w = cvRound(imageSize.width*sf);
 | |
|         h = cvRound(imageSize.height*sf);
 | |
|         canvas.create(h*2, w, CV_8UC3);
 | |
|     }
 | |
| 
 | |
|     for( i = 0; i < nimages; i++ )
 | |
|     {
 | |
|         for( k = 0; k < 2; k++ )
 | |
|         {
 | |
|             Mat img = imread(goodImageList[i*2+k], 0), rimg, cimg;
 | |
|             remap(img, rimg, rmap[k][0], rmap[k][1], INTER_LINEAR);
 | |
|             cvtColor(rimg, cimg, COLOR_GRAY2BGR);
 | |
|             Mat canvasPart = !isVerticalStereo ? canvas(Rect(w*k, 0, w, h)) : canvas(Rect(0, h*k, w, h));
 | |
|             resize(cimg, canvasPart, canvasPart.size(), 0, 0, INTER_AREA);
 | |
|             if( useCalibrated )
 | |
|             {
 | |
|                 Rect vroi(cvRound(validRoi[k].x*sf), cvRound(validRoi[k].y*sf),
 | |
|                           cvRound(validRoi[k].width*sf), cvRound(validRoi[k].height*sf));
 | |
|                 rectangle(canvasPart, vroi, Scalar(0,0,255), 3, 8);
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         if( !isVerticalStereo )
 | |
|             for( j = 0; j < canvas.rows; j += 16 )
 | |
|                 line(canvas, Point(0, j), Point(canvas.cols, j), Scalar(0, 255, 0), 1, 8);
 | |
|         else
 | |
|             for( j = 0; j < canvas.cols; j += 16 )
 | |
|                 line(canvas, Point(j, 0), Point(j, canvas.rows), Scalar(0, 255, 0), 1, 8);
 | |
|         imshow("rectified", canvas);
 | |
|         char c = (char)waitKey();
 | |
|         if( c == 27 || c == 'q' || c == 'Q' )
 | |
|             break;
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| static bool readStringList( const string& filename, vector<string>& l )
 | |
| {
 | |
|     l.resize(0);
 | |
|     FileStorage fs(filename, FileStorage::READ);
 | |
|     if( !fs.isOpened() )
 | |
|         return false;
 | |
|     FileNode n = fs.getFirstTopLevelNode();
 | |
|     if( n.type() != FileNode::SEQ )
 | |
|         return false;
 | |
|     FileNodeIterator it = n.begin(), it_end = n.end();
 | |
|     for( ; it != it_end; ++it )
 | |
|         l.push_back((string)*it);
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| int main(int argc, char** argv)
 | |
| {
 | |
|     Size boardSize;
 | |
|     string imagelistfn;
 | |
|     bool showRectified;
 | |
|     cv::CommandLineParser parser(argc, argv, "{w|9|}{h|6|}{s|1.0|}{nr||}{help||}{@input|../data/stereo_calib.xml|}");
 | |
|     if (parser.has("help"))
 | |
|         return print_help();
 | |
|     showRectified = !parser.has("nr");
 | |
|     imagelistfn = parser.get<string>("@input");
 | |
|     boardSize.width = parser.get<int>("w");
 | |
|     boardSize.height = parser.get<int>("h");
 | |
|     float squareSize = parser.get<float>("s");
 | |
|     if (!parser.check())
 | |
|     {
 | |
|         parser.printErrors();
 | |
|         return 1;
 | |
|     }
 | |
|     vector<string> imagelist;
 | |
|     bool ok = readStringList(imagelistfn, imagelist);
 | |
|     if(!ok || imagelist.empty())
 | |
|     {
 | |
|         cout << "can not open " << imagelistfn << " or the string list is empty" << endl;
 | |
|         return print_help();
 | |
|     }
 | |
| 
 | |
|     StereoCalib(imagelist, boardSize, squareSize, false, true, showRectified);
 | |
|     return 0;
 | |
| }
 | 
