390 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			390 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * jidctint.c
 | |
|  *
 | |
|  * Copyright (C) 1991-1998, Thomas G. Lane.
 | |
|  * This file is part of the Independent JPEG Group's software.
 | |
|  * For conditions of distribution and use, see the accompanying README file.
 | |
|  *
 | |
|  * This file contains a slow-but-accurate integer implementation of the
 | |
|  * inverse DCT (Discrete Cosine Transform).  In the IJG code, this routine
 | |
|  * must also perform dequantization of the input coefficients.
 | |
|  *
 | |
|  * A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT
 | |
|  * on each row (or vice versa, but it's more convenient to emit a row at
 | |
|  * a time).  Direct algorithms are also available, but they are much more
 | |
|  * complex and seem not to be any faster when reduced to code.
 | |
|  *
 | |
|  * This implementation is based on an algorithm described in
 | |
|  *   C. Loeffler, A. Ligtenberg and G. Moschytz, "Practical Fast 1-D DCT
 | |
|  *   Algorithms with 11 Multiplications", Proc. Int'l. Conf. on Acoustics,
 | |
|  *   Speech, and Signal Processing 1989 (ICASSP '89), pp. 988-991.
 | |
|  * The primary algorithm described there uses 11 multiplies and 29 adds.
 | |
|  * We use their alternate method with 12 multiplies and 32 adds.
 | |
|  * The advantage of this method is that no data path contains more than one
 | |
|  * multiplication; this allows a very simple and accurate implementation in
 | |
|  * scaled fixed-point arithmetic, with a minimal number of shifts.
 | |
|  */
 | |
| 
 | |
| #define JPEG_INTERNALS
 | |
| #include "jinclude.h"
 | |
| #include "jpeglib.h"
 | |
| #include "jdct.h"		/* Private declarations for DCT subsystem */
 | |
| 
 | |
| #ifdef DCT_ISLOW_SUPPORTED
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * This module is specialized to the case DCTSIZE = 8.
 | |
|  */
 | |
| 
 | |
| #if DCTSIZE != 8
 | |
|   Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
 | |
| #endif
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * The poop on this scaling stuff is as follows:
 | |
|  *
 | |
|  * Each 1-D IDCT step produces outputs which are a factor of sqrt(N)
 | |
|  * larger than the true IDCT outputs.  The final outputs are therefore
 | |
|  * a factor of N larger than desired; since N=8 this can be cured by
 | |
|  * a simple right shift at the end of the algorithm.  The advantage of
 | |
|  * this arrangement is that we save two multiplications per 1-D IDCT,
 | |
|  * because the y0 and y4 inputs need not be divided by sqrt(N).
 | |
|  *
 | |
|  * We have to do addition and subtraction of the integer inputs, which
 | |
|  * is no problem, and multiplication by fractional constants, which is
 | |
|  * a problem to do in integer arithmetic.  We multiply all the constants
 | |
|  * by CONST_SCALE and convert them to integer constants (thus retaining
 | |
|  * CONST_BITS bits of precision in the constants).  After doing a
 | |
|  * multiplication we have to divide the product by CONST_SCALE, with proper
 | |
|  * rounding, to produce the correct output.  This division can be done
 | |
|  * cheaply as a right shift of CONST_BITS bits.  We postpone shifting
 | |
|  * as long as possible so that partial sums can be added together with
 | |
|  * full fractional precision.
 | |
|  *
 | |
|  * The outputs of the first pass are scaled up by PASS1_BITS bits so that
 | |
|  * they are represented to better-than-integral precision.  These outputs
 | |
|  * require BITS_IN_JSAMPLE + PASS1_BITS + 3 bits; this fits in a 16-bit word
 | |
|  * with the recommended scaling.  (To scale up 12-bit sample data further, an
 | |
|  * intermediate INT32 array would be needed.)
 | |
|  *
 | |
|  * To avoid overflow of the 32-bit intermediate results in pass 2, we must
 | |
|  * have BITS_IN_JSAMPLE + CONST_BITS + PASS1_BITS <= 26.  Error analysis
 | |
|  * shows that the values given below are the most effective.
 | |
|  */
 | |
| 
 | |
| #if BITS_IN_JSAMPLE == 8
 | |
| #define CONST_BITS  13
 | |
| #define PASS1_BITS  2
 | |
| #else
 | |
| #define CONST_BITS  13
 | |
| #define PASS1_BITS  1		/* lose a little precision to avoid overflow */
 | |
| #endif
 | |
| 
 | |
| /* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
 | |
|  * causing a lot of useless floating-point operations at run time.
 | |
|  * To get around this we use the following pre-calculated constants.
 | |
|  * If you change CONST_BITS you may want to add appropriate values.
 | |
|  * (With a reasonable C compiler, you can just rely on the FIX() macro...)
 | |
|  */
 | |
| 
 | |
| #if CONST_BITS == 13
 | |
| #define FIX_0_298631336  ((INT32)  2446)	/* FIX(0.298631336) */
 | |
| #define FIX_0_390180644  ((INT32)  3196)	/* FIX(0.390180644) */
 | |
| #define FIX_0_541196100  ((INT32)  4433)	/* FIX(0.541196100) */
 | |
| #define FIX_0_765366865  ((INT32)  6270)	/* FIX(0.765366865) */
 | |
| #define FIX_0_899976223  ((INT32)  7373)	/* FIX(0.899976223) */
 | |
| #define FIX_1_175875602  ((INT32)  9633)	/* FIX(1.175875602) */
 | |
| #define FIX_1_501321110  ((INT32)  12299)	/* FIX(1.501321110) */
 | |
| #define FIX_1_847759065  ((INT32)  15137)	/* FIX(1.847759065) */
 | |
| #define FIX_1_961570560  ((INT32)  16069)	/* FIX(1.961570560) */
 | |
| #define FIX_2_053119869  ((INT32)  16819)	/* FIX(2.053119869) */
 | |
| #define FIX_2_562915447  ((INT32)  20995)	/* FIX(2.562915447) */
 | |
| #define FIX_3_072711026  ((INT32)  25172)	/* FIX(3.072711026) */
 | |
| #else
 | |
| #define FIX_0_298631336  FIX(0.298631336)
 | |
| #define FIX_0_390180644  FIX(0.390180644)
 | |
| #define FIX_0_541196100  FIX(0.541196100)
 | |
| #define FIX_0_765366865  FIX(0.765366865)
 | |
| #define FIX_0_899976223  FIX(0.899976223)
 | |
| #define FIX_1_175875602  FIX(1.175875602)
 | |
| #define FIX_1_501321110  FIX(1.501321110)
 | |
| #define FIX_1_847759065  FIX(1.847759065)
 | |
| #define FIX_1_961570560  FIX(1.961570560)
 | |
| #define FIX_2_053119869  FIX(2.053119869)
 | |
| #define FIX_2_562915447  FIX(2.562915447)
 | |
| #define FIX_3_072711026  FIX(3.072711026)
 | |
| #endif
 | |
| 
 | |
| 
 | |
| /* Multiply an INT32 variable by an INT32 constant to yield an INT32 result.
 | |
|  * For 8-bit samples with the recommended scaling, all the variable
 | |
|  * and constant values involved are no more than 16 bits wide, so a
 | |
|  * 16x16->32 bit multiply can be used instead of a full 32x32 multiply.
 | |
|  * For 12-bit samples, a full 32-bit multiplication will be needed.
 | |
|  */
 | |
| 
 | |
| #if BITS_IN_JSAMPLE == 8
 | |
| #define MULTIPLY(var,const)  MULTIPLY16C16(var,const)
 | |
| #else
 | |
| #define MULTIPLY(var,const)  ((var) * (const))
 | |
| #endif
 | |
| 
 | |
| 
 | |
| /* Dequantize a coefficient by multiplying it by the multiplier-table
 | |
|  * entry; produce an int result.  In this module, both inputs and result
 | |
|  * are 16 bits or less, so either int or short multiply will work.
 | |
|  */
 | |
| 
 | |
| #define DEQUANTIZE(coef,quantval)  (((ISLOW_MULT_TYPE) (coef)) * (quantval))
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Perform dequantization and inverse DCT on one block of coefficients.
 | |
|  */
 | |
| 
 | |
| GLOBAL(void)
 | |
| jpeg_idct_islow (j_decompress_ptr cinfo, jpeg_component_info * compptr,
 | |
| 		 JCOEFPTR coef_block,
 | |
| 		 JSAMPARRAY output_buf, JDIMENSION output_col)
 | |
| {
 | |
|   INT32 tmp0, tmp1, tmp2, tmp3;
 | |
|   INT32 tmp10, tmp11, tmp12, tmp13;
 | |
|   INT32 z1, z2, z3, z4, z5;
 | |
|   JCOEFPTR inptr;
 | |
|   ISLOW_MULT_TYPE * quantptr;
 | |
|   int * wsptr;
 | |
|   JSAMPROW outptr;
 | |
|   JSAMPLE *range_limit = IDCT_range_limit(cinfo);
 | |
|   int ctr;
 | |
|   int workspace[DCTSIZE2];	/* buffers data between passes */
 | |
|   SHIFT_TEMPS
 | |
| 
 | |
|   /* Pass 1: process columns from input, store into work array. */
 | |
|   /* Note results are scaled up by sqrt(8) compared to a true IDCT; */
 | |
|   /* furthermore, we scale the results by 2**PASS1_BITS. */
 | |
| 
 | |
|   inptr = coef_block;
 | |
|   quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
 | |
|   wsptr = workspace;
 | |
|   for (ctr = DCTSIZE; ctr > 0; ctr--) {
 | |
|     /* Due to quantization, we will usually find that many of the input
 | |
|      * coefficients are zero, especially the AC terms.  We can exploit this
 | |
|      * by short-circuiting the IDCT calculation for any column in which all
 | |
|      * the AC terms are zero.  In that case each output is equal to the
 | |
|      * DC coefficient (with scale factor as needed).
 | |
|      * With typical images and quantization tables, half or more of the
 | |
|      * column DCT calculations can be simplified this way.
 | |
|      */
 | |
|     
 | |
|     if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 &&
 | |
| 	inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*4] == 0 &&
 | |
| 	inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*6] == 0 &&
 | |
| 	inptr[DCTSIZE*7] == 0) {
 | |
|       /* AC terms all zero */
 | |
|       int dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]) << PASS1_BITS;
 | |
|       
 | |
|       wsptr[DCTSIZE*0] = dcval;
 | |
|       wsptr[DCTSIZE*1] = dcval;
 | |
|       wsptr[DCTSIZE*2] = dcval;
 | |
|       wsptr[DCTSIZE*3] = dcval;
 | |
|       wsptr[DCTSIZE*4] = dcval;
 | |
|       wsptr[DCTSIZE*5] = dcval;
 | |
|       wsptr[DCTSIZE*6] = dcval;
 | |
|       wsptr[DCTSIZE*7] = dcval;
 | |
|       
 | |
|       inptr++;			/* advance pointers to next column */
 | |
|       quantptr++;
 | |
|       wsptr++;
 | |
|       continue;
 | |
|     }
 | |
|     
 | |
|     /* Even part: reverse the even part of the forward DCT. */
 | |
|     /* The rotator is sqrt(2)*c(-6). */
 | |
|     
 | |
|     z2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
 | |
|     z3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
 | |
|     
 | |
|     z1 = MULTIPLY(z2 + z3, FIX_0_541196100);
 | |
|     tmp2 = z1 + MULTIPLY(z3, - FIX_1_847759065);
 | |
|     tmp3 = z1 + MULTIPLY(z2, FIX_0_765366865);
 | |
|     
 | |
|     z2 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
 | |
|     z3 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
 | |
| 
 | |
|     tmp0 = (z2 + z3) << CONST_BITS;
 | |
|     tmp1 = (z2 - z3) << CONST_BITS;
 | |
|     
 | |
|     tmp10 = tmp0 + tmp3;
 | |
|     tmp13 = tmp0 - tmp3;
 | |
|     tmp11 = tmp1 + tmp2;
 | |
|     tmp12 = tmp1 - tmp2;
 | |
|     
 | |
|     /* Odd part per figure 8; the matrix is unitary and hence its
 | |
|      * transpose is its inverse.  i0..i3 are y7,y5,y3,y1 respectively.
 | |
|      */
 | |
|     
 | |
|     tmp0 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
 | |
|     tmp1 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
 | |
|     tmp2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
 | |
|     tmp3 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
 | |
|     
 | |
|     z1 = tmp0 + tmp3;
 | |
|     z2 = tmp1 + tmp2;
 | |
|     z3 = tmp0 + tmp2;
 | |
|     z4 = tmp1 + tmp3;
 | |
|     z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */
 | |
|     
 | |
|     tmp0 = MULTIPLY(tmp0, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
 | |
|     tmp1 = MULTIPLY(tmp1, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
 | |
|     tmp2 = MULTIPLY(tmp2, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
 | |
|     tmp3 = MULTIPLY(tmp3, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
 | |
|     z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
 | |
|     z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
 | |
|     z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
 | |
|     z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
 | |
|     
 | |
|     z3 += z5;
 | |
|     z4 += z5;
 | |
|     
 | |
|     tmp0 += z1 + z3;
 | |
|     tmp1 += z2 + z4;
 | |
|     tmp2 += z2 + z3;
 | |
|     tmp3 += z1 + z4;
 | |
|     
 | |
|     /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */
 | |
|     
 | |
|     wsptr[DCTSIZE*0] = (int) DESCALE(tmp10 + tmp3, CONST_BITS-PASS1_BITS);
 | |
|     wsptr[DCTSIZE*7] = (int) DESCALE(tmp10 - tmp3, CONST_BITS-PASS1_BITS);
 | |
|     wsptr[DCTSIZE*1] = (int) DESCALE(tmp11 + tmp2, CONST_BITS-PASS1_BITS);
 | |
|     wsptr[DCTSIZE*6] = (int) DESCALE(tmp11 - tmp2, CONST_BITS-PASS1_BITS);
 | |
|     wsptr[DCTSIZE*2] = (int) DESCALE(tmp12 + tmp1, CONST_BITS-PASS1_BITS);
 | |
|     wsptr[DCTSIZE*5] = (int) DESCALE(tmp12 - tmp1, CONST_BITS-PASS1_BITS);
 | |
|     wsptr[DCTSIZE*3] = (int) DESCALE(tmp13 + tmp0, CONST_BITS-PASS1_BITS);
 | |
|     wsptr[DCTSIZE*4] = (int) DESCALE(tmp13 - tmp0, CONST_BITS-PASS1_BITS);
 | |
|     
 | |
|     inptr++;			/* advance pointers to next column */
 | |
|     quantptr++;
 | |
|     wsptr++;
 | |
|   }
 | |
|   
 | |
|   /* Pass 2: process rows from work array, store into output array. */
 | |
|   /* Note that we must descale the results by a factor of 8 == 2**3, */
 | |
|   /* and also undo the PASS1_BITS scaling. */
 | |
| 
 | |
|   wsptr = workspace;
 | |
|   for (ctr = 0; ctr < DCTSIZE; ctr++) {
 | |
|     outptr = output_buf[ctr] + output_col;
 | |
|     /* Rows of zeroes can be exploited in the same way as we did with columns.
 | |
|      * However, the column calculation has created many nonzero AC terms, so
 | |
|      * the simplification applies less often (typically 5% to 10% of the time).
 | |
|      * On machines with very fast multiplication, it's possible that the
 | |
|      * test takes more time than it's worth.  In that case this section
 | |
|      * may be commented out.
 | |
|      */
 | |
|     
 | |
| #ifndef NO_ZERO_ROW_TEST
 | |
|     if (wsptr[1] == 0 && wsptr[2] == 0 && wsptr[3] == 0 && wsptr[4] == 0 &&
 | |
| 	wsptr[5] == 0 && wsptr[6] == 0 && wsptr[7] == 0) {
 | |
|       /* AC terms all zero */
 | |
|       JSAMPLE dcval = range_limit[(int) DESCALE((INT32) wsptr[0], PASS1_BITS+3)
 | |
| 				  & RANGE_MASK];
 | |
|       
 | |
|       outptr[0] = dcval;
 | |
|       outptr[1] = dcval;
 | |
|       outptr[2] = dcval;
 | |
|       outptr[3] = dcval;
 | |
|       outptr[4] = dcval;
 | |
|       outptr[5] = dcval;
 | |
|       outptr[6] = dcval;
 | |
|       outptr[7] = dcval;
 | |
| 
 | |
|       wsptr += DCTSIZE;		/* advance pointer to next row */
 | |
|       continue;
 | |
|     }
 | |
| #endif
 | |
|     
 | |
|     /* Even part: reverse the even part of the forward DCT. */
 | |
|     /* The rotator is sqrt(2)*c(-6). */
 | |
|     
 | |
|     z2 = (INT32) wsptr[2];
 | |
|     z3 = (INT32) wsptr[6];
 | |
|     
 | |
|     z1 = MULTIPLY(z2 + z3, FIX_0_541196100);
 | |
|     tmp2 = z1 + MULTIPLY(z3, - FIX_1_847759065);
 | |
|     tmp3 = z1 + MULTIPLY(z2, FIX_0_765366865);
 | |
|     
 | |
|     tmp0 = ((INT32) wsptr[0] + (INT32) wsptr[4]) << CONST_BITS;
 | |
|     tmp1 = ((INT32) wsptr[0] - (INT32) wsptr[4]) << CONST_BITS;
 | |
|     
 | |
|     tmp10 = tmp0 + tmp3;
 | |
|     tmp13 = tmp0 - tmp3;
 | |
|     tmp11 = tmp1 + tmp2;
 | |
|     tmp12 = tmp1 - tmp2;
 | |
|     
 | |
|     /* Odd part per figure 8; the matrix is unitary and hence its
 | |
|      * transpose is its inverse.  i0..i3 are y7,y5,y3,y1 respectively.
 | |
|      */
 | |
|     
 | |
|     tmp0 = (INT32) wsptr[7];
 | |
|     tmp1 = (INT32) wsptr[5];
 | |
|     tmp2 = (INT32) wsptr[3];
 | |
|     tmp3 = (INT32) wsptr[1];
 | |
|     
 | |
|     z1 = tmp0 + tmp3;
 | |
|     z2 = tmp1 + tmp2;
 | |
|     z3 = tmp0 + tmp2;
 | |
|     z4 = tmp1 + tmp3;
 | |
|     z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */
 | |
|     
 | |
|     tmp0 = MULTIPLY(tmp0, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
 | |
|     tmp1 = MULTIPLY(tmp1, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
 | |
|     tmp2 = MULTIPLY(tmp2, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
 | |
|     tmp3 = MULTIPLY(tmp3, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
 | |
|     z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
 | |
|     z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
 | |
|     z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
 | |
|     z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
 | |
|     
 | |
|     z3 += z5;
 | |
|     z4 += z5;
 | |
|     
 | |
|     tmp0 += z1 + z3;
 | |
|     tmp1 += z2 + z4;
 | |
|     tmp2 += z2 + z3;
 | |
|     tmp3 += z1 + z4;
 | |
|     
 | |
|     /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */
 | |
|     
 | |
|     outptr[0] = range_limit[(int) DESCALE(tmp10 + tmp3,
 | |
| 					  CONST_BITS+PASS1_BITS+3)
 | |
| 			    & RANGE_MASK];
 | |
|     outptr[7] = range_limit[(int) DESCALE(tmp10 - tmp3,
 | |
| 					  CONST_BITS+PASS1_BITS+3)
 | |
| 			    & RANGE_MASK];
 | |
|     outptr[1] = range_limit[(int) DESCALE(tmp11 + tmp2,
 | |
| 					  CONST_BITS+PASS1_BITS+3)
 | |
| 			    & RANGE_MASK];
 | |
|     outptr[6] = range_limit[(int) DESCALE(tmp11 - tmp2,
 | |
| 					  CONST_BITS+PASS1_BITS+3)
 | |
| 			    & RANGE_MASK];
 | |
|     outptr[2] = range_limit[(int) DESCALE(tmp12 + tmp1,
 | |
| 					  CONST_BITS+PASS1_BITS+3)
 | |
| 			    & RANGE_MASK];
 | |
|     outptr[5] = range_limit[(int) DESCALE(tmp12 - tmp1,
 | |
| 					  CONST_BITS+PASS1_BITS+3)
 | |
| 			    & RANGE_MASK];
 | |
|     outptr[3] = range_limit[(int) DESCALE(tmp13 + tmp0,
 | |
| 					  CONST_BITS+PASS1_BITS+3)
 | |
| 			    & RANGE_MASK];
 | |
|     outptr[4] = range_limit[(int) DESCALE(tmp13 - tmp0,
 | |
| 					  CONST_BITS+PASS1_BITS+3)
 | |
| 			    & RANGE_MASK];
 | |
|     
 | |
|     wsptr += DCTSIZE;		/* advance pointer to next row */
 | |
|   }
 | |
| }
 | |
| 
 | |
| #endif /* DCT_ISLOW_SUPPORTED */
 | 
