284 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			284 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * jfdctint.c
 | |
|  *
 | |
|  * Copyright (C) 1991-1996, Thomas G. Lane.
 | |
|  * This file is part of the Independent JPEG Group's software.
 | |
|  * For conditions of distribution and use, see the accompanying README file.
 | |
|  *
 | |
|  * This file contains a slow-but-accurate integer implementation of the
 | |
|  * forward DCT (Discrete Cosine Transform).
 | |
|  *
 | |
|  * A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT
 | |
|  * on each column.  Direct algorithms are also available, but they are
 | |
|  * much more complex and seem not to be any faster when reduced to code.
 | |
|  *
 | |
|  * This implementation is based on an algorithm described in
 | |
|  *   C. Loeffler, A. Ligtenberg and G. Moschytz, "Practical Fast 1-D DCT
 | |
|  *   Algorithms with 11 Multiplications", Proc. Int'l. Conf. on Acoustics,
 | |
|  *   Speech, and Signal Processing 1989 (ICASSP '89), pp. 988-991.
 | |
|  * The primary algorithm described there uses 11 multiplies and 29 adds.
 | |
|  * We use their alternate method with 12 multiplies and 32 adds.
 | |
|  * The advantage of this method is that no data path contains more than one
 | |
|  * multiplication; this allows a very simple and accurate implementation in
 | |
|  * scaled fixed-point arithmetic, with a minimal number of shifts.
 | |
|  */
 | |
| 
 | |
| #define JPEG_INTERNALS
 | |
| #include "jinclude.h"
 | |
| #include "jpeglib.h"
 | |
| #include "jdct.h"		/* Private declarations for DCT subsystem */
 | |
| 
 | |
| #ifdef DCT_ISLOW_SUPPORTED
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * This module is specialized to the case DCTSIZE = 8.
 | |
|  */
 | |
| 
 | |
| #if DCTSIZE != 8
 | |
|   Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
 | |
| #endif
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * The poop on this scaling stuff is as follows:
 | |
|  *
 | |
|  * Each 1-D DCT step produces outputs which are a factor of sqrt(N)
 | |
|  * larger than the true DCT outputs.  The final outputs are therefore
 | |
|  * a factor of N larger than desired; since N=8 this can be cured by
 | |
|  * a simple right shift at the end of the algorithm.  The advantage of
 | |
|  * this arrangement is that we save two multiplications per 1-D DCT,
 | |
|  * because the y0 and y4 outputs need not be divided by sqrt(N).
 | |
|  * In the IJG code, this factor of 8 is removed by the quantization step
 | |
|  * (in jcdctmgr.c), NOT in this module.
 | |
|  *
 | |
|  * We have to do addition and subtraction of the integer inputs, which
 | |
|  * is no problem, and multiplication by fractional constants, which is
 | |
|  * a problem to do in integer arithmetic.  We multiply all the constants
 | |
|  * by CONST_SCALE and convert them to integer constants (thus retaining
 | |
|  * CONST_BITS bits of precision in the constants).  After doing a
 | |
|  * multiplication we have to divide the product by CONST_SCALE, with proper
 | |
|  * rounding, to produce the correct output.  This division can be done
 | |
|  * cheaply as a right shift of CONST_BITS bits.  We postpone shifting
 | |
|  * as long as possible so that partial sums can be added together with
 | |
|  * full fractional precision.
 | |
|  *
 | |
|  * The outputs of the first pass are scaled up by PASS1_BITS bits so that
 | |
|  * they are represented to better-than-integral precision.  These outputs
 | |
|  * require BITS_IN_JSAMPLE + PASS1_BITS + 3 bits; this fits in a 16-bit word
 | |
|  * with the recommended scaling.  (For 12-bit sample data, the intermediate
 | |
|  * array is INT32 anyway.)
 | |
|  *
 | |
|  * To avoid overflow of the 32-bit intermediate results in pass 2, we must
 | |
|  * have BITS_IN_JSAMPLE + CONST_BITS + PASS1_BITS <= 26.  Error analysis
 | |
|  * shows that the values given below are the most effective.
 | |
|  */
 | |
| 
 | |
| #if BITS_IN_JSAMPLE == 8
 | |
| #define CONST_BITS  13
 | |
| #define PASS1_BITS  2
 | |
| #else
 | |
| #define CONST_BITS  13
 | |
| #define PASS1_BITS  1		/* lose a little precision to avoid overflow */
 | |
| #endif
 | |
| 
 | |
| /* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
 | |
|  * causing a lot of useless floating-point operations at run time.
 | |
|  * To get around this we use the following pre-calculated constants.
 | |
|  * If you change CONST_BITS you may want to add appropriate values.
 | |
|  * (With a reasonable C compiler, you can just rely on the FIX() macro...)
 | |
|  */
 | |
| 
 | |
| #if CONST_BITS == 13
 | |
| #define FIX_0_298631336  ((INT32)  2446)	/* FIX(0.298631336) */
 | |
| #define FIX_0_390180644  ((INT32)  3196)	/* FIX(0.390180644) */
 | |
| #define FIX_0_541196100  ((INT32)  4433)	/* FIX(0.541196100) */
 | |
| #define FIX_0_765366865  ((INT32)  6270)	/* FIX(0.765366865) */
 | |
| #define FIX_0_899976223  ((INT32)  7373)	/* FIX(0.899976223) */
 | |
| #define FIX_1_175875602  ((INT32)  9633)	/* FIX(1.175875602) */
 | |
| #define FIX_1_501321110  ((INT32)  12299)	/* FIX(1.501321110) */
 | |
| #define FIX_1_847759065  ((INT32)  15137)	/* FIX(1.847759065) */
 | |
| #define FIX_1_961570560  ((INT32)  16069)	/* FIX(1.961570560) */
 | |
| #define FIX_2_053119869  ((INT32)  16819)	/* FIX(2.053119869) */
 | |
| #define FIX_2_562915447  ((INT32)  20995)	/* FIX(2.562915447) */
 | |
| #define FIX_3_072711026  ((INT32)  25172)	/* FIX(3.072711026) */
 | |
| #else
 | |
| #define FIX_0_298631336  FIX(0.298631336)
 | |
| #define FIX_0_390180644  FIX(0.390180644)
 | |
| #define FIX_0_541196100  FIX(0.541196100)
 | |
| #define FIX_0_765366865  FIX(0.765366865)
 | |
| #define FIX_0_899976223  FIX(0.899976223)
 | |
| #define FIX_1_175875602  FIX(1.175875602)
 | |
| #define FIX_1_501321110  FIX(1.501321110)
 | |
| #define FIX_1_847759065  FIX(1.847759065)
 | |
| #define FIX_1_961570560  FIX(1.961570560)
 | |
| #define FIX_2_053119869  FIX(2.053119869)
 | |
| #define FIX_2_562915447  FIX(2.562915447)
 | |
| #define FIX_3_072711026  FIX(3.072711026)
 | |
| #endif
 | |
| 
 | |
| 
 | |
| /* Multiply an INT32 variable by an INT32 constant to yield an INT32 result.
 | |
|  * For 8-bit samples with the recommended scaling, all the variable
 | |
|  * and constant values involved are no more than 16 bits wide, so a
 | |
|  * 16x16->32 bit multiply can be used instead of a full 32x32 multiply.
 | |
|  * For 12-bit samples, a full 32-bit multiplication will be needed.
 | |
|  */
 | |
| 
 | |
| #if BITS_IN_JSAMPLE == 8
 | |
| #define MULTIPLY(var,const)  MULTIPLY16C16(var,const)
 | |
| #else
 | |
| #define MULTIPLY(var,const)  ((var) * (const))
 | |
| #endif
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Perform the forward DCT on one block of samples.
 | |
|  */
 | |
| 
 | |
| GLOBAL(void)
 | |
| jpeg_fdct_islow (DCTELEM * data)
 | |
| {
 | |
|   INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
 | |
|   INT32 tmp10, tmp11, tmp12, tmp13;
 | |
|   INT32 z1, z2, z3, z4, z5;
 | |
|   DCTELEM *dataptr;
 | |
|   int ctr;
 | |
|   SHIFT_TEMPS
 | |
| 
 | |
|   /* Pass 1: process rows. */
 | |
|   /* Note results are scaled up by sqrt(8) compared to a true DCT; */
 | |
|   /* furthermore, we scale the results by 2**PASS1_BITS. */
 | |
| 
 | |
|   dataptr = data;
 | |
|   for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
 | |
|     tmp0 = dataptr[0] + dataptr[7];
 | |
|     tmp7 = dataptr[0] - dataptr[7];
 | |
|     tmp1 = dataptr[1] + dataptr[6];
 | |
|     tmp6 = dataptr[1] - dataptr[6];
 | |
|     tmp2 = dataptr[2] + dataptr[5];
 | |
|     tmp5 = dataptr[2] - dataptr[5];
 | |
|     tmp3 = dataptr[3] + dataptr[4];
 | |
|     tmp4 = dataptr[3] - dataptr[4];
 | |
|     
 | |
|     /* Even part per LL&M figure 1 --- note that published figure is faulty;
 | |
|      * rotator "sqrt(2)*c1" should be "sqrt(2)*c6".
 | |
|      */
 | |
|     
 | |
|     tmp10 = tmp0 + tmp3;
 | |
|     tmp13 = tmp0 - tmp3;
 | |
|     tmp11 = tmp1 + tmp2;
 | |
|     tmp12 = tmp1 - tmp2;
 | |
|     
 | |
|     dataptr[0] = (DCTELEM) ((tmp10 + tmp11) << PASS1_BITS);
 | |
|     dataptr[4] = (DCTELEM) ((tmp10 - tmp11) << PASS1_BITS);
 | |
|     
 | |
|     z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);
 | |
|     dataptr[2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865),
 | |
| 				   CONST_BITS-PASS1_BITS);
 | |
|     dataptr[6] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065),
 | |
| 				   CONST_BITS-PASS1_BITS);
 | |
|     
 | |
|     /* Odd part per figure 8 --- note paper omits factor of sqrt(2).
 | |
|      * cK represents cos(K*pi/16).
 | |
|      * i0..i3 in the paper are tmp4..tmp7 here.
 | |
|      */
 | |
|     
 | |
|     z1 = tmp4 + tmp7;
 | |
|     z2 = tmp5 + tmp6;
 | |
|     z3 = tmp4 + tmp6;
 | |
|     z4 = tmp5 + tmp7;
 | |
|     z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */
 | |
|     
 | |
|     tmp4 = MULTIPLY(tmp4, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
 | |
|     tmp5 = MULTIPLY(tmp5, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
 | |
|     tmp6 = MULTIPLY(tmp6, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
 | |
|     tmp7 = MULTIPLY(tmp7, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
 | |
|     z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
 | |
|     z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
 | |
|     z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
 | |
|     z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
 | |
|     
 | |
|     z3 += z5;
 | |
|     z4 += z5;
 | |
|     
 | |
|     dataptr[7] = (DCTELEM) DESCALE(tmp4 + z1 + z3, CONST_BITS-PASS1_BITS);
 | |
|     dataptr[5] = (DCTELEM) DESCALE(tmp5 + z2 + z4, CONST_BITS-PASS1_BITS);
 | |
|     dataptr[3] = (DCTELEM) DESCALE(tmp6 + z2 + z3, CONST_BITS-PASS1_BITS);
 | |
|     dataptr[1] = (DCTELEM) DESCALE(tmp7 + z1 + z4, CONST_BITS-PASS1_BITS);
 | |
|     
 | |
|     dataptr += DCTSIZE;		/* advance pointer to next row */
 | |
|   }
 | |
| 
 | |
|   /* Pass 2: process columns.
 | |
|    * We remove the PASS1_BITS scaling, but leave the results scaled up
 | |
|    * by an overall factor of 8.
 | |
|    */
 | |
| 
 | |
|   dataptr = data;
 | |
|   for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
 | |
|     tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7];
 | |
|     tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7];
 | |
|     tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6];
 | |
|     tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6];
 | |
|     tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5];
 | |
|     tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5];
 | |
|     tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4];
 | |
|     tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4];
 | |
|     
 | |
|     /* Even part per LL&M figure 1 --- note that published figure is faulty;
 | |
|      * rotator "sqrt(2)*c1" should be "sqrt(2)*c6".
 | |
|      */
 | |
|     
 | |
|     tmp10 = tmp0 + tmp3;
 | |
|     tmp13 = tmp0 - tmp3;
 | |
|     tmp11 = tmp1 + tmp2;
 | |
|     tmp12 = tmp1 - tmp2;
 | |
|     
 | |
|     dataptr[DCTSIZE*0] = (DCTELEM) DESCALE(tmp10 + tmp11, PASS1_BITS);
 | |
|     dataptr[DCTSIZE*4] = (DCTELEM) DESCALE(tmp10 - tmp11, PASS1_BITS);
 | |
|     
 | |
|     z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);
 | |
|     dataptr[DCTSIZE*2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865),
 | |
| 					   CONST_BITS+PASS1_BITS);
 | |
|     dataptr[DCTSIZE*6] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065),
 | |
| 					   CONST_BITS+PASS1_BITS);
 | |
|     
 | |
|     /* Odd part per figure 8 --- note paper omits factor of sqrt(2).
 | |
|      * cK represents cos(K*pi/16).
 | |
|      * i0..i3 in the paper are tmp4..tmp7 here.
 | |
|      */
 | |
|     
 | |
|     z1 = tmp4 + tmp7;
 | |
|     z2 = tmp5 + tmp6;
 | |
|     z3 = tmp4 + tmp6;
 | |
|     z4 = tmp5 + tmp7;
 | |
|     z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */
 | |
|     
 | |
|     tmp4 = MULTIPLY(tmp4, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
 | |
|     tmp5 = MULTIPLY(tmp5, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
 | |
|     tmp6 = MULTIPLY(tmp6, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
 | |
|     tmp7 = MULTIPLY(tmp7, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
 | |
|     z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
 | |
|     z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
 | |
|     z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
 | |
|     z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
 | |
|     
 | |
|     z3 += z5;
 | |
|     z4 += z5;
 | |
|     
 | |
|     dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp4 + z1 + z3,
 | |
| 					   CONST_BITS+PASS1_BITS);
 | |
|     dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp5 + z2 + z4,
 | |
| 					   CONST_BITS+PASS1_BITS);
 | |
|     dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp6 + z2 + z3,
 | |
| 					   CONST_BITS+PASS1_BITS);
 | |
|     dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp7 + z1 + z4,
 | |
| 					   CONST_BITS+PASS1_BITS);
 | |
|     
 | |
|     dataptr++;			/* advance pointer to next column */
 | |
|   }
 | |
| }
 | |
| 
 | |
| #endif /* DCT_ISLOW_SUPPORTED */
 | 
