205 lines
		
	
	
		
			5.3 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			205 lines
		
	
	
		
			5.3 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| #include <iostream>
 | |
| #include <fstream>
 | |
| 
 | |
| #include <opencv2/core/utility.hpp>
 | |
| #include "opencv2/video.hpp"
 | |
| #include "opencv2/imgcodecs.hpp"
 | |
| #include "opencv2/highgui.hpp"
 | |
| 
 | |
| using namespace cv;
 | |
| using namespace std;
 | |
| 
 | |
| inline bool isFlowCorrect(Point2f u)
 | |
| {
 | |
|     return !cvIsNaN(u.x) && !cvIsNaN(u.y) && fabs(u.x) < 1e9 && fabs(u.y) < 1e9;
 | |
| }
 | |
| 
 | |
| static Vec3b computeColor(float fx, float fy)
 | |
| {
 | |
|     static bool first = true;
 | |
| 
 | |
|     // relative lengths of color transitions:
 | |
|     // these are chosen based on perceptual similarity
 | |
|     // (e.g. one can distinguish more shades between red and yellow
 | |
|     //  than between yellow and green)
 | |
|     const int RY = 15;
 | |
|     const int YG = 6;
 | |
|     const int GC = 4;
 | |
|     const int CB = 11;
 | |
|     const int BM = 13;
 | |
|     const int MR = 6;
 | |
|     const int NCOLS = RY + YG + GC + CB + BM + MR;
 | |
|     static Vec3i colorWheel[NCOLS];
 | |
| 
 | |
|     if (first)
 | |
|     {
 | |
|         int k = 0;
 | |
| 
 | |
|         for (int i = 0; i < RY; ++i, ++k)
 | |
|             colorWheel[k] = Vec3i(255, 255 * i / RY, 0);
 | |
| 
 | |
|         for (int i = 0; i < YG; ++i, ++k)
 | |
|             colorWheel[k] = Vec3i(255 - 255 * i / YG, 255, 0);
 | |
| 
 | |
|         for (int i = 0; i < GC; ++i, ++k)
 | |
|             colorWheel[k] = Vec3i(0, 255, 255 * i / GC);
 | |
| 
 | |
|         for (int i = 0; i < CB; ++i, ++k)
 | |
|             colorWheel[k] = Vec3i(0, 255 - 255 * i / CB, 255);
 | |
| 
 | |
|         for (int i = 0; i < BM; ++i, ++k)
 | |
|             colorWheel[k] = Vec3i(255 * i / BM, 0, 255);
 | |
| 
 | |
|         for (int i = 0; i < MR; ++i, ++k)
 | |
|             colorWheel[k] = Vec3i(255, 0, 255 - 255 * i / MR);
 | |
| 
 | |
|         first = false;
 | |
|     }
 | |
| 
 | |
|     const float rad = sqrt(fx * fx + fy * fy);
 | |
|     const float a = atan2(-fy, -fx) / (float)CV_PI;
 | |
| 
 | |
|     const float fk = (a + 1.0f) / 2.0f * (NCOLS - 1);
 | |
|     const int k0 = static_cast<int>(fk);
 | |
|     const int k1 = (k0 + 1) % NCOLS;
 | |
|     const float f = fk - k0;
 | |
| 
 | |
|     Vec3b pix;
 | |
| 
 | |
|     for (int b = 0; b < 3; b++)
 | |
|     {
 | |
|         const float col0 = colorWheel[k0][b] / 255.f;
 | |
|         const float col1 = colorWheel[k1][b] / 255.f;
 | |
| 
 | |
|         float col = (1 - f) * col0 + f * col1;
 | |
| 
 | |
|         if (rad <= 1)
 | |
|             col = 1 - rad * (1 - col); // increase saturation with radius
 | |
|         else
 | |
|             col *= .75; // out of range
 | |
| 
 | |
|         pix[2 - b] = static_cast<uchar>(255.f * col);
 | |
|     }
 | |
| 
 | |
|     return pix;
 | |
| }
 | |
| 
 | |
| static void drawOpticalFlow(const Mat_<Point2f>& flow, Mat& dst, float maxmotion = -1)
 | |
| {
 | |
|     dst.create(flow.size(), CV_8UC3);
 | |
|     dst.setTo(Scalar::all(0));
 | |
| 
 | |
|     // determine motion range:
 | |
|     float maxrad = maxmotion;
 | |
| 
 | |
|     if (maxmotion <= 0)
 | |
|     {
 | |
|         maxrad = 1;
 | |
|         for (int y = 0; y < flow.rows; ++y)
 | |
|         {
 | |
|             for (int x = 0; x < flow.cols; ++x)
 | |
|             {
 | |
|                 Point2f u = flow(y, x);
 | |
| 
 | |
|                 if (!isFlowCorrect(u))
 | |
|                     continue;
 | |
| 
 | |
|                 maxrad = max(maxrad, sqrt(u.x * u.x + u.y * u.y));
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     for (int y = 0; y < flow.rows; ++y)
 | |
|     {
 | |
|         for (int x = 0; x < flow.cols; ++x)
 | |
|         {
 | |
|             Point2f u = flow(y, x);
 | |
| 
 | |
|             if (isFlowCorrect(u))
 | |
|                 dst.at<Vec3b>(y, x) = computeColor(u.x / maxrad, u.y / maxrad);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| // binary file format for flow data specified here:
 | |
| // http://vision.middlebury.edu/flow/data/
 | |
| static void writeOpticalFlowToFile(const Mat_<Point2f>& flow, const string& fileName)
 | |
| {
 | |
|     static const char FLO_TAG_STRING[] = "PIEH";
 | |
| 
 | |
|     ofstream file(fileName.c_str(), ios_base::binary);
 | |
| 
 | |
|     file << FLO_TAG_STRING;
 | |
| 
 | |
|     file.write((const char*) &flow.cols, sizeof(int));
 | |
|     file.write((const char*) &flow.rows, sizeof(int));
 | |
| 
 | |
|     for (int i = 0; i < flow.rows; ++i)
 | |
|     {
 | |
|         for (int j = 0; j < flow.cols; ++j)
 | |
|         {
 | |
|             const Point2f u = flow(i, j);
 | |
| 
 | |
|             file.write((const char*) &u.x, sizeof(float));
 | |
|             file.write((const char*) &u.y, sizeof(float));
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| int main(int argc, const char* argv[])
 | |
| {
 | |
|     cv::CommandLineParser parser(argc, argv, "{help h || show help message}"
 | |
|             "{ @frame0 | | frame 0}{ @frame1 | | frame 1}{ @output | | output flow}");
 | |
|     if (parser.has("help"))
 | |
|     {
 | |
|         parser.printMessage();
 | |
|         return 0;
 | |
|     }
 | |
|     string frame0_name = parser.get<string>("@frame0");
 | |
|     string frame1_name = parser.get<string>("@frame1");
 | |
|     string file = parser.get<string>("@output");
 | |
|     if (frame0_name.empty() || frame1_name.empty() || file.empty())
 | |
|     {
 | |
|         cerr << "Usage : " << argv[0] << " [<frame0>] [<frame1>] [<output_flow>]" << endl;
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     Mat frame0 = imread(frame0_name, IMREAD_GRAYSCALE);
 | |
|     Mat frame1 = imread(frame1_name, IMREAD_GRAYSCALE);
 | |
| 
 | |
|     if (frame0.empty())
 | |
|     {
 | |
|         cerr << "Can't open image ["  << parser.get<string>("frame0") << "]" << endl;
 | |
|         return -1;
 | |
|     }
 | |
|     if (frame1.empty())
 | |
|     {
 | |
|         cerr << "Can't open image ["  << parser.get<string>("frame1") << "]" << endl;
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     if (frame1.size() != frame0.size())
 | |
|     {
 | |
|         cerr << "Images should be of equal sizes" << endl;
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     Mat_<Point2f> flow;
 | |
|     Ptr<DenseOpticalFlow> tvl1 = createOptFlow_DualTVL1();
 | |
| 
 | |
|     const double start = (double)getTickCount();
 | |
|     tvl1->calc(frame0, frame1, flow);
 | |
|     const double timeSec = (getTickCount() - start) / getTickFrequency();
 | |
|     cout << "calcOpticalFlowDual_TVL1 : " << timeSec << " sec" << endl;
 | |
| 
 | |
|     Mat out;
 | |
|     drawOpticalFlow(flow, out);
 | |
|     if (!file.empty())
 | |
|         writeOpticalFlowToFile(flow, file);
 | |
| 
 | |
|     imshow("Flow", out);
 | |
|     waitKey();
 | |
| 
 | |
|     return 0;
 | |
| }
 | 
