385 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			385 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| #include "opencv2/objdetect/objdetect.hpp"
 | |
| #include "opencv2/highgui/highgui.hpp"
 | |
| #include "opencv2/imgproc/imgproc.hpp"
 | |
| #include "opencv2/ocl/ocl.hpp"
 | |
| #include <iostream>
 | |
| #include <stdio.h>
 | |
| 
 | |
| #if defined(_MSC_VER) && (_MSC_VER >= 1700)
 | |
|     # include <thread>
 | |
| #endif
 | |
| 
 | |
| using namespace std;
 | |
| using namespace cv;
 | |
| 
 | |
| #define LOOP_NUM 10
 | |
| #define MAX_THREADS 10
 | |
| 
 | |
| 
 | |
| ///////////////////////////single-threading faces detecting///////////////////////////////
 | |
| 
 | |
| const static Scalar colors[] =  { CV_RGB(0,0,255),
 | |
|                                   CV_RGB(0,128,255),
 | |
|                                   CV_RGB(0,255,255),
 | |
|                                   CV_RGB(0,255,0),
 | |
|                                   CV_RGB(255,128,0),
 | |
|                                   CV_RGB(255,255,0),
 | |
|                                   CV_RGB(255,0,0),
 | |
|                                   CV_RGB(255,0,255)
 | |
|                                 } ;
 | |
| 
 | |
| 
 | |
| int64 work_begin[MAX_THREADS] = {0};
 | |
| int64 work_total[MAX_THREADS] = {0};
 | |
| string inputName, outputName, cascadeName;
 | |
| 
 | |
| static void workBegin(int i = 0)
 | |
| {
 | |
|     work_begin[i] = getTickCount();
 | |
| }
 | |
| 
 | |
| static void workEnd(int i = 0)
 | |
| {
 | |
|     work_total[i] += (getTickCount() - work_begin[i]);
 | |
| }
 | |
| 
 | |
| static double getTotalTime(int i = 0)
 | |
| {
 | |
|     return work_total[i] /getTickFrequency() * 1000.;
 | |
| }
 | |
| 
 | |
| 
 | |
| static void detect( Mat& img, vector<Rect>& faces,
 | |
|              ocl::OclCascadeClassifier& cascade,
 | |
|              double scale, bool calTime);
 | |
| 
 | |
| 
 | |
| static void detectCPU( Mat& img, vector<Rect>& faces,
 | |
|                 CascadeClassifier& cascade,
 | |
|                 double scale, bool calTime);
 | |
| 
 | |
| 
 | |
| static void Draw(Mat& img, vector<Rect>& faces, double scale);
 | |
| 
 | |
| 
 | |
| // This function test if gpu_rst matches cpu_rst.
 | |
| // If the two vectors are not equal, it will return the difference in vector size
 | |
| // Else if will return (total diff of each cpu and gpu rects covered pixels)/(total cpu rects covered pixels)
 | |
| double checkRectSimilarity(Size sz, vector<Rect>& cpu_rst, vector<Rect>& gpu_rst);
 | |
| 
 | |
| static int facedetect_one_thread(bool useCPU, double scale )
 | |
| {
 | |
|     CvCapture* capture = 0;
 | |
|     Mat frame, frameCopy, image;
 | |
| 
 | |
|     ocl::OclCascadeClassifier cascade;
 | |
|     CascadeClassifier  cpu_cascade;
 | |
| 
 | |
|     if( !cascade.load( cascadeName ) || !cpu_cascade.load(cascadeName) )
 | |
|     {
 | |
|         cout << "ERROR: Could not load classifier cascade: " << cascadeName << endl;
 | |
|         return EXIT_FAILURE;
 | |
|     }
 | |
| 
 | |
|     if( inputName.empty() )
 | |
|     {
 | |
|         capture = cvCaptureFromCAM(0);
 | |
|         if(!capture)
 | |
|             cout << "Capture from CAM 0 didn't work" << endl;
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         image = imread( inputName, CV_LOAD_IMAGE_COLOR );
 | |
|         if( image.empty() )
 | |
|         {
 | |
|             capture = cvCaptureFromAVI( inputName.c_str() );
 | |
|             if(!capture)
 | |
|                 cout << "Capture from AVI didn't work" << endl;
 | |
|             return EXIT_FAILURE;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if( capture )
 | |
|     {
 | |
|         cout << "In capture ..." << endl;
 | |
|         for(;;)
 | |
|         {
 | |
|             IplImage* iplImg = cvQueryFrame( capture );
 | |
|             frame = iplImg;
 | |
|             vector<Rect> faces;
 | |
|             if( frame.empty() )
 | |
|                 break;
 | |
|             if( iplImg->origin == IPL_ORIGIN_TL )
 | |
|                 frame.copyTo( frameCopy );
 | |
|             else
 | |
|                 flip( frame, frameCopy, 0 );
 | |
| 
 | |
|             if(useCPU)
 | |
|                 detectCPU(frameCopy, faces, cpu_cascade, scale, false);
 | |
|             else
 | |
|                 detect(frameCopy, faces, cascade, scale, false);
 | |
| 
 | |
|             Draw(frameCopy, faces, scale);
 | |
|             if( waitKey( 10 ) >= 0 )
 | |
|                 break;
 | |
|         }
 | |
|         cvReleaseCapture( &capture );
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         cout << "In image read " << image.size() << endl;
 | |
|         vector<Rect> faces;
 | |
|         vector<Rect> ref_rst;
 | |
|         double accuracy = 0.;
 | |
|         cout << "loops: ";
 | |
|         for(int i = 0; i <= LOOP_NUM; i++)
 | |
|         {
 | |
|             cout << i << ", ";
 | |
|             if(useCPU)
 | |
|                 detectCPU(image, faces, cpu_cascade, scale, i!=0);
 | |
|             else
 | |
|             {
 | |
|                 detect(image, faces, cascade, scale, i!=0);
 | |
|                 if(i == 0)
 | |
|                 {
 | |
|                     detectCPU(image, ref_rst, cpu_cascade, scale, false);
 | |
|                     accuracy = checkRectSimilarity(image.size(), ref_rst, faces);
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|         cout << "done!" << endl;
 | |
|         if (useCPU)
 | |
|             cout << "average CPU time (noCamera) : ";
 | |
|         else
 | |
|             cout << "average GPU time (noCamera) : ";
 | |
|         cout << getTotalTime() / LOOP_NUM << " ms" << endl;
 | |
|         cout << "accuracy value: " << accuracy <<endl;
 | |
| 
 | |
|         Draw(image, faces, scale);
 | |
|         waitKey(0);
 | |
|     }
 | |
| 
 | |
|     cvDestroyWindow("result");
 | |
|     std::cout<< "single-threaded sample has finished" <<std::endl;
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| ///////////////////////////////////////detectfaces with multithreading////////////////////////////////////////////
 | |
| #if defined(_MSC_VER) && (_MSC_VER >= 1700)
 | |
| 
 | |
| static void detectFaces(std::string fileName, int threadNum)
 | |
| {
 | |
|     ocl::OclCascadeClassifier cascade;
 | |
|     if(!cascade.load(cascadeName))
 | |
|     {
 | |
|         std::cout << "ERROR: Could not load classifier cascade: " << cascadeName << std::endl;
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     Mat img = imread(fileName, CV_LOAD_IMAGE_COLOR);
 | |
|     if (img.empty())
 | |
|     {
 | |
|         std::cout << '[' << threadNum << "] " << "can't open file " + fileName <<std::endl;
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     ocl::oclMat d_img;
 | |
|     d_img.upload(img);
 | |
| 
 | |
|     std::vector<Rect> oclfaces;
 | |
|     std::thread::id tid = std::this_thread::get_id();
 | |
|     std::cout << '[' << threadNum << "] "
 | |
|         << "ThreadID = " << tid
 | |
|         << ", CommandQueue = " << *(void**)ocl::getClCommandQueuePtr()
 | |
|         << endl;
 | |
|     for(int i = 0; i <= LOOP_NUM; i++)
 | |
|     {
 | |
|         if(i>0) workBegin(threadNum);
 | |
|         cascade.detectMultiScale(d_img, oclfaces,  1.1, 3, 0|CV_HAAR_SCALE_IMAGE, Size(30, 30), Size(0, 0));
 | |
|         if(i>0) workEnd(threadNum);
 | |
|     }
 | |
|     std::cout << '[' << threadNum << "] " << "Average time = " << getTotalTime(threadNum) / LOOP_NUM << " ms" << endl;
 | |
| 
 | |
|     for(unsigned int i = 0; i<oclfaces.size(); i++)
 | |
|         rectangle(img, Point(oclfaces[i].x, oclfaces[i].y), Point(oclfaces[i].x + oclfaces[i].width, oclfaces[i].y + oclfaces[i].height), colors[i%8], 3);
 | |
| 
 | |
|     std::string::size_type pos = outputName.rfind('.');
 | |
|     std::string strTid = std::to_string(_threadid);
 | |
|     if( !outputName.empty() )
 | |
|     {
 | |
|         if(pos == std::string::npos)
 | |
|         {
 | |
|             std::cout << "Invalid output file name: " << outputName << std::endl;
 | |
|         }
 | |
|         else
 | |
|         {
 | |
|             std::string outputNameTid = outputName.substr(0, pos) + "_" + strTid + outputName.substr(pos);
 | |
|             imwrite(outputNameTid, img);
 | |
|         }
 | |
|     }
 | |
|     imshow(strTid, img);
 | |
|     waitKey(0);
 | |
| }
 | |
| 
 | |
| static void facedetect_multithreading(int nthreads)
 | |
| {
 | |
|     int thread_number = MAX_THREADS < nthreads ? MAX_THREADS : nthreads;
 | |
|     std::vector<std::thread> threads;
 | |
|     for(int i = 0; i<thread_number; i++)
 | |
|         threads.push_back(std::thread(detectFaces, inputName, i));
 | |
|     for(int i = 0; i<thread_number; i++)
 | |
|         threads[i].join();
 | |
| }
 | |
| #endif
 | |
| 
 | |
| int main( int argc, const char** argv )
 | |
| {
 | |
| 
 | |
|     const char* keys =
 | |
|         "{ h | help       | false       | print help message }"
 | |
|         "{ i | input      |             | specify input image }"
 | |
|         "{ t | template   | haarcascade_frontalface_alt.xml |"
 | |
|         " specify template file path }"
 | |
|         "{ c | scale      |   1.0       | scale image }"
 | |
|         "{ s | use_cpu    | false       | use cpu or gpu to process the image }"
 | |
|         "{ o | output     | | specify output image save path(only works when input is images) }"
 | |
|         "{ n | thread_num |      1      | set number of threads >= 1 }";
 | |
| 
 | |
|     CommandLineParser cmd(argc, argv, keys);
 | |
|     if (cmd.get<bool>("help"))
 | |
|     {
 | |
|         cout << "Usage : facedetect [options]" << endl;
 | |
|         cout << "Available options:" << endl;
 | |
|         cmd.printParams();
 | |
|         return EXIT_SUCCESS;
 | |
|     }
 | |
|     bool useCPU = cmd.get<bool>("s");
 | |
|     inputName = cmd.get<string>("i");
 | |
|     outputName = cmd.get<string>("o");
 | |
|     cascadeName = cmd.get<string>("t");
 | |
|     double scale = cmd.get<double>("c");
 | |
|     int n = cmd.get<int>("n");
 | |
| 
 | |
|     if(n > 1)
 | |
|     {
 | |
| #if defined(_MSC_VER) && (_MSC_VER >= 1700)
 | |
|             std::cout<<"multi-threaded sample is running" <<std::endl;
 | |
|             facedetect_multithreading(n);
 | |
|             std::cout<<"multi-threaded sample has finished" <<std::endl;
 | |
|             return 0;
 | |
| #else
 | |
|             std::cout << "std::thread is not supported, running a single-threaded version" << std::endl;
 | |
| #endif
 | |
|     }
 | |
|     if (n<0)
 | |
|         std::cout<<"incorrect number of threads:" << n << ", running a single-threaded version" <<std::endl;
 | |
|     else
 | |
|         std::cout<<"single-threaded sample is running" <<std::endl;
 | |
|     return facedetect_one_thread(useCPU, scale);
 | |
| 
 | |
| }
 | |
| 
 | |
| void detect( Mat& img, vector<Rect>& faces,
 | |
|              ocl::OclCascadeClassifier& cascade,
 | |
|              double scale, bool calTime)
 | |
| {
 | |
|     ocl::oclMat image(img);
 | |
|     ocl::oclMat gray, smallImg( cvRound (img.rows/scale), cvRound(img.cols/scale), CV_8UC1 );
 | |
|     if(calTime) workBegin();
 | |
|     ocl::cvtColor( image, gray, CV_BGR2GRAY );
 | |
|     ocl::resize( gray, smallImg, smallImg.size(), 0, 0, INTER_LINEAR );
 | |
|     ocl::equalizeHist( smallImg, smallImg );
 | |
| 
 | |
|     cascade.detectMultiScale( smallImg, faces, 1.1,
 | |
|                               3, 0
 | |
|                               |CV_HAAR_SCALE_IMAGE
 | |
|                               , Size(30,30), Size(0, 0) );
 | |
|     if(calTime) workEnd();
 | |
| }
 | |
| 
 | |
| 
 | |
| void detectCPU( Mat& img, vector<Rect>& faces,
 | |
|                 CascadeClassifier& cascade,
 | |
|                 double scale, bool calTime)
 | |
| {
 | |
|     if(calTime) workBegin();
 | |
|     Mat cpu_gray, cpu_smallImg( cvRound (img.rows/scale), cvRound(img.cols/scale), CV_8UC1 );
 | |
|     cvtColor(img, cpu_gray, CV_BGR2GRAY);
 | |
|     resize(cpu_gray, cpu_smallImg, cpu_smallImg.size(), 0, 0, INTER_LINEAR);
 | |
|     equalizeHist(cpu_smallImg, cpu_smallImg);
 | |
|     cascade.detectMultiScale(cpu_smallImg, faces, 1.1,
 | |
|                              3, 0 | CV_HAAR_SCALE_IMAGE,
 | |
|                              Size(30, 30), Size(0, 0));
 | |
|     if(calTime) workEnd();
 | |
| }
 | |
| 
 | |
| 
 | |
| void Draw(Mat& img, vector<Rect>& faces, double scale)
 | |
| {
 | |
|     int i = 0;
 | |
|     for( vector<Rect>::const_iterator r = faces.begin(); r != faces.end(); r++, i++ )
 | |
|     {
 | |
|         Point center;
 | |
|         Scalar color = colors[i%8];
 | |
|         int radius;
 | |
|         center.x = cvRound((r->x + r->width*0.5)*scale);
 | |
|         center.y = cvRound((r->y + r->height*0.5)*scale);
 | |
|         radius = cvRound((r->width + r->height)*0.25*scale);
 | |
|         circle( img, center, radius, color, 3, 8, 0 );
 | |
|     }
 | |
|     if( !outputName.empty() ) imwrite( outputName, img );
 | |
|     if( abs(scale-1.0)>.001 )
 | |
|     {
 | |
|         resize(img, img, Size((int)(img.cols/scale), (int)(img.rows/scale)));
 | |
|     }
 | |
|     imshow( "result", img );
 | |
| 
 | |
| }
 | |
| 
 | |
| 
 | |
| double checkRectSimilarity(Size sz, vector<Rect>& ob1, vector<Rect>& ob2)
 | |
| {
 | |
|     double final_test_result = 0.0;
 | |
|     size_t sz1 = ob1.size();
 | |
|     size_t sz2 = ob2.size();
 | |
| 
 | |
|     if(sz1 != sz2)
 | |
|     {
 | |
|         return sz1 > sz2 ? (double)(sz1 - sz2) : (double)(sz2 - sz1);
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         if(sz1==0 && sz2==0)
 | |
|             return 0;
 | |
|         Mat cpu_result(sz, CV_8UC1);
 | |
|         cpu_result.setTo(0);
 | |
| 
 | |
|         for(vector<Rect>::const_iterator r = ob1.begin(); r != ob1.end(); r++)
 | |
|         {
 | |
|             Mat cpu_result_roi(cpu_result, *r);
 | |
|             cpu_result_roi.setTo(1);
 | |
|             cpu_result.copyTo(cpu_result);
 | |
|         }
 | |
|         int cpu_area = countNonZero(cpu_result > 0);
 | |
| 
 | |
| 
 | |
|         Mat gpu_result(sz, CV_8UC1);
 | |
|         gpu_result.setTo(0);
 | |
|         for(vector<Rect>::const_iterator r2 = ob2.begin(); r2 != ob2.end(); r2++)
 | |
|         {
 | |
|             cv::Mat gpu_result_roi(gpu_result, *r2);
 | |
|             gpu_result_roi.setTo(1);
 | |
|             gpu_result.copyTo(gpu_result);
 | |
|         }
 | |
| 
 | |
|         Mat result_;
 | |
|         multiply(cpu_result, gpu_result, result_);
 | |
|         int result = countNonZero(result_ > 0);
 | |
|         if(cpu_area!=0 && result!=0)
 | |
|             final_test_result = 1.0 - (double)result/(double)cpu_area;
 | |
|         else if(cpu_area==0 && result!=0)
 | |
|             final_test_result = -1;
 | |
|     }
 | |
|     return final_test_result;
 | |
| }
 | 
