1436 lines
		
	
	
		
			38 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1436 lines
		
	
	
		
			38 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| ///////////////////////////////////////////////////////////////////////////
 | |
| //
 | |
| // Copyright (c) 2002, Industrial Light & Magic, a division of Lucas
 | |
| // Digital Ltd. LLC
 | |
| //
 | |
| // All rights reserved.
 | |
| //
 | |
| // Redistribution and use in source and binary forms, with or without
 | |
| // modification, are permitted provided that the following conditions are
 | |
| // met:
 | |
| // *       Redistributions of source code must retain the above copyright
 | |
| // notice, this list of conditions and the following disclaimer.
 | |
| // *       Redistributions in binary form must reproduce the above
 | |
| // copyright notice, this list of conditions and the following disclaimer
 | |
| // in the documentation and/or other materials provided with the
 | |
| // distribution.
 | |
| // *       Neither the name of Industrial Light & Magic nor the names of
 | |
| // its contributors may be used to endorse or promote products derived
 | |
| // from this software without specific prior written permission.
 | |
| //
 | |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 | |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 | |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 | |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 | |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 | |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 | |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 | |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 | |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 | |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 | |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 | |
| //
 | |
| ///////////////////////////////////////////////////////////////////////////
 | |
| 
 | |
| 
 | |
| #ifndef INCLUDED_IMATHMATRIXALGO_H
 | |
| #define INCLUDED_IMATHMATRIXALGO_H
 | |
| 
 | |
| //-------------------------------------------------------------------------
 | |
| //
 | |
| //      This file contains algorithms applied to or in conjunction with
 | |
| //	transformation matrices (Imath::Matrix33 and Imath::Matrix44).
 | |
| //	The assumption made is that these functions are called much less
 | |
| //	often than the basic point functions or these functions require
 | |
| //	more support classes.
 | |
| //
 | |
| //	This file also defines a few predefined constant matrices.
 | |
| //
 | |
| //-------------------------------------------------------------------------
 | |
| 
 | |
| #include "ImathMatrix.h"
 | |
| #include "ImathQuat.h"
 | |
| #include "ImathEuler.h"
 | |
| #include "ImathExc.h"
 | |
| #include "ImathVec.h"
 | |
| #include "ImathLimits.h"
 | |
| #include <math.h>
 | |
| 
 | |
| 
 | |
| #ifdef OPENEXR_DLL
 | |
|     #ifdef IMATH_EXPORTS
 | |
|         #define IMATH_EXPORT_CONST extern __declspec(dllexport)
 | |
|     #else
 | |
|     #define IMATH_EXPORT_CONST extern __declspec(dllimport)
 | |
|     #endif
 | |
| #else
 | |
|     #define IMATH_EXPORT_CONST extern const
 | |
| #endif
 | |
| 
 | |
| 
 | |
| namespace Imath {
 | |
| 
 | |
| //------------------
 | |
| // Identity matrices
 | |
| //------------------
 | |
| 
 | |
| IMATH_EXPORT_CONST M33f identity33f;
 | |
| IMATH_EXPORT_CONST M44f identity44f;
 | |
| IMATH_EXPORT_CONST M33d identity33d;
 | |
| IMATH_EXPORT_CONST M44d identity44d;
 | |
| 
 | |
| //----------------------------------------------------------------------
 | |
| // Extract scale, shear, rotation, and translation values from a matrix:
 | |
| //
 | |
| // Notes:
 | |
| //
 | |
| // This implementation follows the technique described in the paper by
 | |
| // Spencer W. Thomas in the Graphics Gems II article: "Decomposing a
 | |
| // Matrix into Simple Transformations", p. 320.
 | |
| //
 | |
| // - Some of the functions below have an optional exc parameter
 | |
| //   that determines the functions' behavior when the matrix'
 | |
| //   scaling is very close to zero:
 | |
| //
 | |
| //   If exc is true, the functions throw an Imath::ZeroScale exception.
 | |
| //
 | |
| //   If exc is false:
 | |
| //
 | |
| //      extractScaling (m, s)            returns false, s is invalid
 | |
| //	sansScaling (m)		         returns m
 | |
| //	removeScaling (m)	         returns false, m is unchanged
 | |
| //      sansScalingAndShear (m)          returns m
 | |
| //      removeScalingAndShear (m)        returns false, m is unchanged
 | |
| //      extractAndRemoveScalingAndShear (m, s, h)
 | |
| //                                       returns false, m is unchanged,
 | |
| //                                                      (sh) are invalid
 | |
| //      checkForZeroScaleInRow ()        returns false
 | |
| //	extractSHRT (m, s, h, r, t)      returns false, (shrt) are invalid
 | |
| //
 | |
| // - Functions extractEuler(), extractEulerXYZ() and extractEulerZYX()
 | |
| //   assume that the matrix does not include shear or non-uniform scaling,
 | |
| //   but they do not examine the matrix to verify this assumption.
 | |
| //   Matrices with shear or non-uniform scaling are likely to produce
 | |
| //   meaningless results.  Therefore, you should use the
 | |
| //   removeScalingAndShear() routine, if necessary, prior to calling
 | |
| //   extractEuler...() .
 | |
| //
 | |
| // - All functions assume that the matrix does not include perspective
 | |
| //   transformation(s), but they do not examine the matrix to verify
 | |
| //   this assumption.  Matrices with perspective transformations are
 | |
| //   likely to produce meaningless results.
 | |
| //
 | |
| //----------------------------------------------------------------------
 | |
| 
 | |
| 
 | |
| //
 | |
| // Declarations for 4x4 matrix.
 | |
| //
 | |
| 
 | |
| template <class T>  bool        extractScaling
 | |
|                                             (const Matrix44<T> &mat,
 | |
|                          Vec3<T> &scl,
 | |
|                          bool exc = true);
 | |
| 
 | |
| template <class T>  Matrix44<T> sansScaling (const Matrix44<T> &mat,
 | |
|                          bool exc = true);
 | |
| 
 | |
| template <class T>  bool        removeScaling
 | |
|                                             (Matrix44<T> &mat,
 | |
|                          bool exc = true);
 | |
| 
 | |
| template <class T>  bool        extractScalingAndShear
 | |
|                                             (const Matrix44<T> &mat,
 | |
|                          Vec3<T> &scl,
 | |
|                          Vec3<T> &shr,
 | |
|                          bool exc = true);
 | |
| 
 | |
| template <class T>  Matrix44<T> sansScalingAndShear
 | |
|                                             (const Matrix44<T> &mat,
 | |
|                          bool exc = true);
 | |
| 
 | |
| template <class T>  void        sansScalingAndShear
 | |
|                                             (Matrix44<T> &result,
 | |
|                                              const Matrix44<T> &mat,
 | |
|                          bool exc = true);
 | |
| 
 | |
| template <class T>  bool        removeScalingAndShear
 | |
|                                             (Matrix44<T> &mat,
 | |
|                          bool exc = true);
 | |
| 
 | |
| template <class T>  bool        extractAndRemoveScalingAndShear
 | |
|                                             (Matrix44<T> &mat,
 | |
|                          Vec3<T>     &scl,
 | |
|                          Vec3<T>     &shr,
 | |
|                          bool exc = true);
 | |
| 
 | |
| template <class T>  void	extractEulerXYZ
 | |
|                                             (const Matrix44<T> &mat,
 | |
|                          Vec3<T> &rot);
 | |
| 
 | |
| template <class T>  void	extractEulerZYX
 | |
|                                             (const Matrix44<T> &mat,
 | |
|                          Vec3<T> &rot);
 | |
| 
 | |
| template <class T>  Quat<T>	extractQuat (const Matrix44<T> &mat);
 | |
| 
 | |
| template <class T>  bool	extractSHRT
 | |
|                                     (const Matrix44<T> &mat,
 | |
|                      Vec3<T> &s,
 | |
|                      Vec3<T> &h,
 | |
|                      Vec3<T> &r,
 | |
|                      Vec3<T> &t,
 | |
|                      bool exc /*= true*/,
 | |
|                      typename Euler<T>::Order rOrder);
 | |
| 
 | |
| template <class T>  bool	extractSHRT
 | |
|                                     (const Matrix44<T> &mat,
 | |
|                      Vec3<T> &s,
 | |
|                      Vec3<T> &h,
 | |
|                      Vec3<T> &r,
 | |
|                      Vec3<T> &t,
 | |
|                      bool exc = true);
 | |
| 
 | |
| template <class T>  bool	extractSHRT
 | |
|                                     (const Matrix44<T> &mat,
 | |
|                      Vec3<T> &s,
 | |
|                      Vec3<T> &h,
 | |
|                      Euler<T> &r,
 | |
|                      Vec3<T> &t,
 | |
|                      bool exc = true);
 | |
| 
 | |
| //
 | |
| // Internal utility function.
 | |
| //
 | |
| 
 | |
| template <class T>  bool	checkForZeroScaleInRow
 | |
|                                             (const T       &scl,
 | |
|                          const Vec3<T> &row,
 | |
|                          bool exc = true);
 | |
| 
 | |
| template <class T>  Matrix44<T> outerProduct
 | |
|                                             ( const Vec4<T> &a,
 | |
|                                               const Vec4<T> &b);
 | |
| 
 | |
| 
 | |
| //
 | |
| // Returns a matrix that rotates "fromDirection" vector to "toDirection"
 | |
| // vector.
 | |
| //
 | |
| 
 | |
| template <class T> Matrix44<T>	rotationMatrix (const Vec3<T> &fromDirection,
 | |
|                         const Vec3<T> &toDirection);
 | |
| 
 | |
| 
 | |
| 
 | |
| //
 | |
| // Returns a matrix that rotates the "fromDir" vector
 | |
| // so that it points towards "toDir".  You may also
 | |
| // specify that you want the up vector to be pointing
 | |
| // in a certain direction "upDir".
 | |
| //
 | |
| 
 | |
| template <class T> Matrix44<T>	rotationMatrixWithUpDir
 | |
|                                             (const Vec3<T> &fromDir,
 | |
|                          const Vec3<T> &toDir,
 | |
|                          const Vec3<T> &upDir);
 | |
| 
 | |
| 
 | |
| //
 | |
| // Constructs a matrix that rotates the z-axis so that it
 | |
| // points towards "targetDir".  You must also specify
 | |
| // that you want the up vector to be pointing in a
 | |
| // certain direction "upDir".
 | |
| //
 | |
| // Notes: The following degenerate cases are handled:
 | |
| //        (a) when the directions given by "toDir" and "upDir"
 | |
| //            are parallel or opposite;
 | |
| //            (the direction vectors must have a non-zero cross product)
 | |
| //        (b) when any of the given direction vectors have zero length
 | |
| //
 | |
| 
 | |
| template <class T> void	alignZAxisWithTargetDir
 | |
|                                             (Matrix44<T> &result,
 | |
|                                              Vec3<T>      targetDir,
 | |
|                          Vec3<T>      upDir);
 | |
| 
 | |
| 
 | |
| // Compute an orthonormal direct frame from : a position, an x axis direction and a normal to the y axis
 | |
| // If the x axis and normal are perpendicular, then the normal will have the same direction as the z axis.
 | |
| // Inputs are :
 | |
| //     -the position of the frame
 | |
| //     -the x axis direction of the frame
 | |
| //     -a normal to the y axis of the frame
 | |
| // Return is the orthonormal frame
 | |
| template <class T> Matrix44<T> computeLocalFrame( const Vec3<T>& p,
 | |
|                                                   const Vec3<T>& xDir,
 | |
|                                                   const Vec3<T>& normal);
 | |
| 
 | |
| // Add a translate/rotate/scale offset to an input frame
 | |
| // and put it in another frame of reference
 | |
| // Inputs are :
 | |
| //     - input frame
 | |
| //     - translate offset
 | |
| //     - rotate    offset in degrees
 | |
| //     - scale     offset
 | |
| //     - frame of reference
 | |
| // Output is the offsetted frame
 | |
| template <class T> Matrix44<T> addOffset( const Matrix44<T>& inMat,
 | |
|                                           const Vec3<T>&     tOffset,
 | |
|                                           const Vec3<T>&     rOffset,
 | |
|                                           const Vec3<T>&     sOffset,
 | |
|                                           const Vec3<T>&     ref);
 | |
| 
 | |
| // Compute Translate/Rotate/Scale matrix from matrix A with the Rotate/Scale of Matrix B
 | |
| // Inputs are :
 | |
| //      -keepRotateA : if true keep rotate from matrix A, use B otherwise
 | |
| //      -keepScaleA  : if true keep scale  from matrix A, use B otherwise
 | |
| //      -Matrix A
 | |
| //      -Matrix B
 | |
| // Return Matrix A with tweaked rotation/scale
 | |
| template <class T> Matrix44<T> computeRSMatrix( bool               keepRotateA,
 | |
|                                                 bool               keepScaleA,
 | |
|                                                 const Matrix44<T>& A,
 | |
|                                                 const Matrix44<T>& B);
 | |
| 
 | |
| 
 | |
| //----------------------------------------------------------------------
 | |
| 
 | |
| 
 | |
| //
 | |
| // Declarations for 3x3 matrix.
 | |
| //
 | |
| 
 | |
| 
 | |
| template <class T>  bool        extractScaling
 | |
|                                             (const Matrix33<T> &mat,
 | |
|                          Vec2<T> &scl,
 | |
|                          bool exc = true);
 | |
| 
 | |
| template <class T>  Matrix33<T> sansScaling (const Matrix33<T> &mat,
 | |
|                          bool exc = true);
 | |
| 
 | |
| template <class T>  bool        removeScaling
 | |
|                                             (Matrix33<T> &mat,
 | |
|                          bool exc = true);
 | |
| 
 | |
| template <class T>  bool        extractScalingAndShear
 | |
|                                             (const Matrix33<T> &mat,
 | |
|                          Vec2<T> &scl,
 | |
|                          T &h,
 | |
|                          bool exc = true);
 | |
| 
 | |
| template <class T>  Matrix33<T> sansScalingAndShear
 | |
|                                             (const Matrix33<T> &mat,
 | |
|                          bool exc = true);
 | |
| 
 | |
| template <class T>  bool        removeScalingAndShear
 | |
|                                             (Matrix33<T> &mat,
 | |
|                          bool exc = true);
 | |
| 
 | |
| template <class T>  bool        extractAndRemoveScalingAndShear
 | |
|                                             (Matrix33<T> &mat,
 | |
|                          Vec2<T>     &scl,
 | |
|                          T           &shr,
 | |
|                          bool exc = true);
 | |
| 
 | |
| template <class T>  void	extractEuler
 | |
|                                             (const Matrix33<T> &mat,
 | |
|                          T       &rot);
 | |
| 
 | |
| template <class T>  bool	extractSHRT (const Matrix33<T> &mat,
 | |
|                          Vec2<T> &s,
 | |
|                          T       &h,
 | |
|                          T       &r,
 | |
|                          Vec2<T> &t,
 | |
|                          bool exc = true);
 | |
| 
 | |
| template <class T>  bool	checkForZeroScaleInRow
 | |
|                                             (const T       &scl,
 | |
|                          const Vec2<T> &row,
 | |
|                          bool exc = true);
 | |
| 
 | |
| template <class T>  Matrix33<T> outerProduct
 | |
|                                             ( const Vec3<T> &a,
 | |
|                                               const Vec3<T> &b);
 | |
| 
 | |
| 
 | |
| //-----------------------------------------------------------------------------
 | |
| // Implementation for 4x4 Matrix
 | |
| //------------------------------
 | |
| 
 | |
| 
 | |
| template <class T>
 | |
| bool
 | |
| extractScaling (const Matrix44<T> &mat, Vec3<T> &scl, bool exc)
 | |
| {
 | |
|     Vec3<T> shr;
 | |
|     Matrix44<T> M (mat);
 | |
| 
 | |
|     if (! extractAndRemoveScalingAndShear (M, scl, shr, exc))
 | |
|     return false;
 | |
| 
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| 
 | |
| template <class T>
 | |
| Matrix44<T>
 | |
| sansScaling (const Matrix44<T> &mat, bool exc)
 | |
| {
 | |
|     Vec3<T> scl;
 | |
|     Vec3<T> shr;
 | |
|     Vec3<T> rot;
 | |
|     Vec3<T> tran;
 | |
| 
 | |
|     if (! extractSHRT (mat, scl, shr, rot, tran, exc))
 | |
|     return mat;
 | |
| 
 | |
|     Matrix44<T> M;
 | |
| 
 | |
|     M.translate (tran);
 | |
|     M.rotate (rot);
 | |
|     M.shear (shr);
 | |
| 
 | |
|     return M;
 | |
| }
 | |
| 
 | |
| 
 | |
| template <class T>
 | |
| bool
 | |
| removeScaling (Matrix44<T> &mat, bool exc)
 | |
| {
 | |
|     Vec3<T> scl;
 | |
|     Vec3<T> shr;
 | |
|     Vec3<T> rot;
 | |
|     Vec3<T> tran;
 | |
| 
 | |
|     if (! extractSHRT (mat, scl, shr, rot, tran, exc))
 | |
|     return false;
 | |
| 
 | |
|     mat.makeIdentity ();
 | |
|     mat.translate (tran);
 | |
|     mat.rotate (rot);
 | |
|     mat.shear (shr);
 | |
| 
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| 
 | |
| template <class T>
 | |
| bool
 | |
| extractScalingAndShear (const Matrix44<T> &mat,
 | |
|             Vec3<T> &scl, Vec3<T> &shr, bool exc)
 | |
| {
 | |
|     Matrix44<T> M (mat);
 | |
| 
 | |
|     if (! extractAndRemoveScalingAndShear (M, scl, shr, exc))
 | |
|     return false;
 | |
| 
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| 
 | |
| template <class T>
 | |
| Matrix44<T>
 | |
| sansScalingAndShear (const Matrix44<T> &mat, bool exc)
 | |
| {
 | |
|     Vec3<T> scl;
 | |
|     Vec3<T> shr;
 | |
|     Matrix44<T> M (mat);
 | |
| 
 | |
|     if (! extractAndRemoveScalingAndShear (M, scl, shr, exc))
 | |
|     return mat;
 | |
| 
 | |
|     return M;
 | |
| }
 | |
| 
 | |
| 
 | |
| template <class T>
 | |
| void
 | |
| sansScalingAndShear (Matrix44<T> &result, const Matrix44<T> &mat, bool exc)
 | |
| {
 | |
|     Vec3<T> scl;
 | |
|     Vec3<T> shr;
 | |
| 
 | |
|     if (! extractAndRemoveScalingAndShear (result, scl, shr, exc))
 | |
|     result = mat;
 | |
| }
 | |
| 
 | |
| 
 | |
| template <class T>
 | |
| bool
 | |
| removeScalingAndShear (Matrix44<T> &mat, bool exc)
 | |
| {
 | |
|     Vec3<T> scl;
 | |
|     Vec3<T> shr;
 | |
| 
 | |
|     if (! extractAndRemoveScalingAndShear (mat, scl, shr, exc))
 | |
|     return false;
 | |
| 
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| 
 | |
| template <class T>
 | |
| bool
 | |
| extractAndRemoveScalingAndShear (Matrix44<T> &mat,
 | |
|                  Vec3<T> &scl, Vec3<T> &shr, bool exc)
 | |
| {
 | |
|     //
 | |
|     // This implementation follows the technique described in the paper by
 | |
|     // Spencer W. Thomas in the Graphics Gems II article: "Decomposing a
 | |
|     // Matrix into Simple Transformations", p. 320.
 | |
|     //
 | |
| 
 | |
|     Vec3<T> row[3];
 | |
| 
 | |
|     row[0] = Vec3<T> (mat[0][0], mat[0][1], mat[0][2]);
 | |
|     row[1] = Vec3<T> (mat[1][0], mat[1][1], mat[1][2]);
 | |
|     row[2] = Vec3<T> (mat[2][0], mat[2][1], mat[2][2]);
 | |
| 
 | |
|     T maxVal = 0;
 | |
|     for (int i=0; i < 3; i++)
 | |
|     for (int j=0; j < 3; j++)
 | |
|         if (Imath::abs (row[i][j]) > maxVal)
 | |
|         maxVal = Imath::abs (row[i][j]);
 | |
| 
 | |
|     //
 | |
|     // We normalize the 3x3 matrix here.
 | |
|     // It was noticed that this can improve numerical stability significantly,
 | |
|     // especially when many of the upper 3x3 matrix's coefficients are very
 | |
|     // close to zero; we correct for this step at the end by multiplying the
 | |
|     // scaling factors by maxVal at the end (shear and rotation are not
 | |
|     // affected by the normalization).
 | |
| 
 | |
|     if (maxVal != 0)
 | |
|     {
 | |
|     for (int i=0; i < 3; i++)
 | |
|         if (! checkForZeroScaleInRow (maxVal, row[i], exc))
 | |
|         return false;
 | |
|         else
 | |
|         row[i] /= maxVal;
 | |
|     }
 | |
| 
 | |
|     // Compute X scale factor.
 | |
|     scl.x = row[0].length ();
 | |
|     if (! checkForZeroScaleInRow (scl.x, row[0], exc))
 | |
|     return false;
 | |
| 
 | |
|     // Normalize first row.
 | |
|     row[0] /= scl.x;
 | |
| 
 | |
|     // An XY shear factor will shear the X coord. as the Y coord. changes.
 | |
|     // There are 6 combinations (XY, XZ, YZ, YX, ZX, ZY), although we only
 | |
|     // extract the first 3 because we can effect the last 3 by shearing in
 | |
|     // XY, XZ, YZ combined rotations and scales.
 | |
|     //
 | |
|     // shear matrix <   1,  YX,  ZX,  0,
 | |
|     //                 XY,   1,  ZY,  0,
 | |
|     //                 XZ,  YZ,   1,  0,
 | |
|     //                  0,   0,   0,  1 >
 | |
| 
 | |
|     // Compute XY shear factor and make 2nd row orthogonal to 1st.
 | |
|     shr[0]  = row[0].dot (row[1]);
 | |
|     row[1] -= shr[0] * row[0];
 | |
| 
 | |
|     // Now, compute Y scale.
 | |
|     scl.y = row[1].length ();
 | |
|     if (! checkForZeroScaleInRow (scl.y, row[1], exc))
 | |
|     return false;
 | |
| 
 | |
|     // Normalize 2nd row and correct the XY shear factor for Y scaling.
 | |
|     row[1] /= scl.y;
 | |
|     shr[0] /= scl.y;
 | |
| 
 | |
|     // Compute XZ and YZ shears, orthogonalize 3rd row.
 | |
|     shr[1]  = row[0].dot (row[2]);
 | |
|     row[2] -= shr[1] * row[0];
 | |
|     shr[2]  = row[1].dot (row[2]);
 | |
|     row[2] -= shr[2] * row[1];
 | |
| 
 | |
|     // Next, get Z scale.
 | |
|     scl.z = row[2].length ();
 | |
|     if (! checkForZeroScaleInRow (scl.z, row[2], exc))
 | |
|     return false;
 | |
| 
 | |
|     // Normalize 3rd row and correct the XZ and YZ shear factors for Z scaling.
 | |
|     row[2] /= scl.z;
 | |
|     shr[1] /= scl.z;
 | |
|     shr[2] /= scl.z;
 | |
| 
 | |
|     // At this point, the upper 3x3 matrix in mat is orthonormal.
 | |
|     // Check for a coordinate system flip. If the determinant
 | |
|     // is less than zero, then negate the matrix and the scaling factors.
 | |
|     if (row[0].dot (row[1].cross (row[2])) < 0)
 | |
|     for (int  i=0; i < 3; i++)
 | |
|     {
 | |
|         scl[i] *= -1;
 | |
|         row[i] *= -1;
 | |
|     }
 | |
| 
 | |
|     // Copy over the orthonormal rows into the returned matrix.
 | |
|     // The upper 3x3 matrix in mat is now a rotation matrix.
 | |
|     for (int i=0; i < 3; i++)
 | |
|     {
 | |
|     mat[i][0] = row[i][0];
 | |
|     mat[i][1] = row[i][1];
 | |
|     mat[i][2] = row[i][2];
 | |
|     }
 | |
| 
 | |
|     // Correct the scaling factors for the normalization step that we
 | |
|     // performed above; shear and rotation are not affected by the
 | |
|     // normalization.
 | |
|     scl *= maxVal;
 | |
| 
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| 
 | |
| template <class T>
 | |
| void
 | |
| extractEulerXYZ (const Matrix44<T> &mat, Vec3<T> &rot)
 | |
| {
 | |
|     //
 | |
|     // Normalize the local x, y and z axes to remove scaling.
 | |
|     //
 | |
| 
 | |
|     Vec3<T> i (mat[0][0], mat[0][1], mat[0][2]);
 | |
|     Vec3<T> j (mat[1][0], mat[1][1], mat[1][2]);
 | |
|     Vec3<T> k (mat[2][0], mat[2][1], mat[2][2]);
 | |
| 
 | |
|     i.normalize();
 | |
|     j.normalize();
 | |
|     k.normalize();
 | |
| 
 | |
|     Matrix44<T> M (i[0], i[1], i[2], 0,
 | |
|            j[0], j[1], j[2], 0,
 | |
|            k[0], k[1], k[2], 0,
 | |
|            0,    0,    0,    1);
 | |
| 
 | |
|     //
 | |
|     // Extract the first angle, rot.x.
 | |
|     //
 | |
| 
 | |
|     rot.x = Math<T>::atan2 (M[1][2], M[2][2]);
 | |
| 
 | |
|     //
 | |
|     // Remove the rot.x rotation from M, so that the remaining
 | |
|     // rotation, N, is only around two axes, and gimbal lock
 | |
|     // cannot occur.
 | |
|     //
 | |
| 
 | |
|     Matrix44<T> N;
 | |
|     N.rotate (Vec3<T> (-rot.x, 0, 0));
 | |
|     N = N * M;
 | |
| 
 | |
|     //
 | |
|     // Extract the other two angles, rot.y and rot.z, from N.
 | |
|     //
 | |
| 
 | |
|     T cy = Math<T>::sqrt (N[0][0]*N[0][0] + N[0][1]*N[0][1]);
 | |
|     rot.y = Math<T>::atan2 (-N[0][2], cy);
 | |
|     rot.z = Math<T>::atan2 (-N[1][0], N[1][1]);
 | |
| }
 | |
| 
 | |
| 
 | |
| template <class T>
 | |
| void
 | |
| extractEulerZYX (const Matrix44<T> &mat, Vec3<T> &rot)
 | |
| {
 | |
|     //
 | |
|     // Normalize the local x, y and z axes to remove scaling.
 | |
|     //
 | |
| 
 | |
|     Vec3<T> i (mat[0][0], mat[0][1], mat[0][2]);
 | |
|     Vec3<T> j (mat[1][0], mat[1][1], mat[1][2]);
 | |
|     Vec3<T> k (mat[2][0], mat[2][1], mat[2][2]);
 | |
| 
 | |
|     i.normalize();
 | |
|     j.normalize();
 | |
|     k.normalize();
 | |
| 
 | |
|     Matrix44<T> M (i[0], i[1], i[2], 0,
 | |
|            j[0], j[1], j[2], 0,
 | |
|            k[0], k[1], k[2], 0,
 | |
|            0,    0,    0,    1);
 | |
| 
 | |
|     //
 | |
|     // Extract the first angle, rot.x.
 | |
|     //
 | |
| 
 | |
|     rot.x = -Math<T>::atan2 (M[1][0], M[0][0]);
 | |
| 
 | |
|     //
 | |
|     // Remove the x rotation from M, so that the remaining
 | |
|     // rotation, N, is only around two axes, and gimbal lock
 | |
|     // cannot occur.
 | |
|     //
 | |
| 
 | |
|     Matrix44<T> N;
 | |
|     N.rotate (Vec3<T> (0, 0, -rot.x));
 | |
|     N = N * M;
 | |
| 
 | |
|     //
 | |
|     // Extract the other two angles, rot.y and rot.z, from N.
 | |
|     //
 | |
| 
 | |
|     T cy = Math<T>::sqrt (N[2][2]*N[2][2] + N[2][1]*N[2][1]);
 | |
|     rot.y = -Math<T>::atan2 (-N[2][0], cy);
 | |
|     rot.z = -Math<T>::atan2 (-N[1][2], N[1][1]);
 | |
| }
 | |
| 
 | |
| 
 | |
| template <class T>
 | |
| Quat<T>
 | |
| extractQuat (const Matrix44<T> &mat)
 | |
| {
 | |
|   Matrix44<T> rot;
 | |
| 
 | |
|   T        tr, s;
 | |
|   T         q[4];
 | |
|   int    i, j, k;
 | |
|   Quat<T>   quat;
 | |
| 
 | |
|   int nxt[3] = {1, 2, 0};
 | |
|   tr = mat[0][0] + mat[1][1] + mat[2][2];
 | |
| 
 | |
|   // check the diagonal
 | |
|   if (tr > 0.0) {
 | |
|      s = Math<T>::sqrt (tr + T(1.0));
 | |
|      quat.r = s / T(2.0);
 | |
|      s = T(0.5) / s;
 | |
| 
 | |
|      quat.v.x = (mat[1][2] - mat[2][1]) * s;
 | |
|      quat.v.y = (mat[2][0] - mat[0][2]) * s;
 | |
|      quat.v.z = (mat[0][1] - mat[1][0]) * s;
 | |
|   }
 | |
|   else {
 | |
|      // diagonal is negative
 | |
|      i = 0;
 | |
|      if (mat[1][1] > mat[0][0])
 | |
|         i=1;
 | |
|      if (mat[2][2] > mat[i][i])
 | |
|         i=2;
 | |
| 
 | |
|      j = nxt[i];
 | |
|      k = nxt[j];
 | |
|      s = Math<T>::sqrt ((mat[i][i] - (mat[j][j] + mat[k][k])) + T(1.0));
 | |
| 
 | |
|      q[i] = s * T(0.5);
 | |
|      if (s != T(0.0))
 | |
|         s = T(0.5) / s;
 | |
| 
 | |
|      q[3] = (mat[j][k] - mat[k][j]) * s;
 | |
|      q[j] = (mat[i][j] + mat[j][i]) * s;
 | |
|      q[k] = (mat[i][k] + mat[k][i]) * s;
 | |
| 
 | |
|      quat.v.x = q[0];
 | |
|      quat.v.y = q[1];
 | |
|      quat.v.z = q[2];
 | |
|      quat.r = q[3];
 | |
|  }
 | |
| 
 | |
|   return quat;
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| bool
 | |
| extractSHRT (const Matrix44<T> &mat,
 | |
|          Vec3<T> &s,
 | |
|          Vec3<T> &h,
 | |
|          Vec3<T> &r,
 | |
|          Vec3<T> &t,
 | |
|          bool exc /* = true */ ,
 | |
|          typename Euler<T>::Order rOrder /* = Euler<T>::XYZ */ )
 | |
| {
 | |
|     Matrix44<T> rot;
 | |
| 
 | |
|     rot = mat;
 | |
|     if (! extractAndRemoveScalingAndShear (rot, s, h, exc))
 | |
|     return false;
 | |
| 
 | |
|     extractEulerXYZ (rot, r);
 | |
| 
 | |
|     t.x = mat[3][0];
 | |
|     t.y = mat[3][1];
 | |
|     t.z = mat[3][2];
 | |
| 
 | |
|     if (rOrder != Euler<T>::XYZ)
 | |
|     {
 | |
|     Imath::Euler<T> eXYZ (r, Imath::Euler<T>::XYZ);
 | |
|     Imath::Euler<T> e (eXYZ, rOrder);
 | |
|     r = e.toXYZVector ();
 | |
|     }
 | |
| 
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| bool
 | |
| extractSHRT (const Matrix44<T> &mat,
 | |
|          Vec3<T> &s,
 | |
|          Vec3<T> &h,
 | |
|          Vec3<T> &r,
 | |
|          Vec3<T> &t,
 | |
|          bool exc)
 | |
| {
 | |
|     return extractSHRT(mat, s, h, r, t, exc, Imath::Euler<T>::XYZ);
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| bool
 | |
| extractSHRT (const Matrix44<T> &mat,
 | |
|          Vec3<T> &s,
 | |
|          Vec3<T> &h,
 | |
|          Euler<T> &r,
 | |
|          Vec3<T> &t,
 | |
|          bool exc /* = true */)
 | |
| {
 | |
|     return extractSHRT (mat, s, h, r, t, exc, r.order ());
 | |
| }
 | |
| 
 | |
| 
 | |
| template <class T>
 | |
| bool
 | |
| checkForZeroScaleInRow (const T& scl,
 | |
|             const Vec3<T> &row,
 | |
|             bool exc /* = true */ )
 | |
| {
 | |
|     for (int i = 0; i < 3; i++)
 | |
|     {
 | |
|     if ((abs (scl) < 1 && abs (row[i]) >= limits<T>::max() * abs (scl)))
 | |
|     {
 | |
|         if (exc)
 | |
|         throw Imath::ZeroScaleExc ("Cannot remove zero scaling "
 | |
|                        "from matrix.");
 | |
|         else
 | |
|         return false;
 | |
|     }
 | |
|     }
 | |
| 
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| Matrix44<T>
 | |
| outerProduct (const Vec4<T> &a, const Vec4<T> &b )
 | |
| {
 | |
|     return Matrix44<T> (a.x*b.x, a.x*b.y, a.x*b.z, a.x*b.w,
 | |
|                         a.y*b.x, a.y*b.y, a.y*b.z, a.x*b.w,
 | |
|                         a.z*b.x, a.z*b.y, a.z*b.z, a.x*b.w,
 | |
|                         a.w*b.x, a.w*b.y, a.w*b.z, a.w*b.w);
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| Matrix44<T>
 | |
| rotationMatrix (const Vec3<T> &from, const Vec3<T> &to)
 | |
| {
 | |
|     Quat<T> q;
 | |
|     q.setRotation(from, to);
 | |
|     return q.toMatrix44();
 | |
| }
 | |
| 
 | |
| 
 | |
| template <class T>
 | |
| Matrix44<T>
 | |
| rotationMatrixWithUpDir (const Vec3<T> &fromDir,
 | |
|              const Vec3<T> &toDir,
 | |
|              const Vec3<T> &upDir)
 | |
| {
 | |
|     //
 | |
|     // The goal is to obtain a rotation matrix that takes
 | |
|     // "fromDir" to "toDir".  We do this in two steps and
 | |
|     // compose the resulting rotation matrices;
 | |
|     //    (a) rotate "fromDir" into the z-axis
 | |
|     //    (b) rotate the z-axis into "toDir"
 | |
|     //
 | |
| 
 | |
|     // The from direction must be non-zero; but we allow zero to and up dirs.
 | |
|     if (fromDir.length () == 0)
 | |
|     return Matrix44<T> ();
 | |
| 
 | |
|     else
 | |
|     {
 | |
|     Matrix44<T> zAxis2FromDir( Imath::UNINITIALIZED );
 | |
|     alignZAxisWithTargetDir (zAxis2FromDir, fromDir, Vec3<T> (0, 1, 0));
 | |
| 
 | |
|     Matrix44<T> fromDir2zAxis  = zAxis2FromDir.transposed ();
 | |
| 
 | |
|     Matrix44<T> zAxis2ToDir( Imath::UNINITIALIZED );
 | |
|     alignZAxisWithTargetDir (zAxis2ToDir, toDir, upDir);
 | |
| 
 | |
|     return fromDir2zAxis * zAxis2ToDir;
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| template <class T>
 | |
| void
 | |
| alignZAxisWithTargetDir (Matrix44<T> &result, Vec3<T> targetDir, Vec3<T> upDir)
 | |
| {
 | |
|     //
 | |
|     // Ensure that the target direction is non-zero.
 | |
|     //
 | |
| 
 | |
|     if ( targetDir.length () == 0 )
 | |
|     targetDir = Vec3<T> (0, 0, 1);
 | |
| 
 | |
|     //
 | |
|     // Ensure that the up direction is non-zero.
 | |
|     //
 | |
| 
 | |
|     if ( upDir.length () == 0 )
 | |
|     upDir = Vec3<T> (0, 1, 0);
 | |
| 
 | |
|     //
 | |
|     // Check for degeneracies.  If the upDir and targetDir are parallel
 | |
|     // or opposite, then compute a new, arbitrary up direction that is
 | |
|     // not parallel or opposite to the targetDir.
 | |
|     //
 | |
| 
 | |
|     if (upDir.cross (targetDir).length () == 0)
 | |
|     {
 | |
|     upDir = targetDir.cross (Vec3<T> (1, 0, 0));
 | |
|     if (upDir.length() == 0)
 | |
|         upDir = targetDir.cross(Vec3<T> (0, 0, 1));
 | |
|     }
 | |
| 
 | |
|     //
 | |
|     // Compute the x-, y-, and z-axis vectors of the new coordinate system.
 | |
|     //
 | |
| 
 | |
|     Vec3<T> targetPerpDir = upDir.cross (targetDir);
 | |
|     Vec3<T> targetUpDir   = targetDir.cross (targetPerpDir);
 | |
| 
 | |
|     //
 | |
|     // Rotate the x-axis into targetPerpDir (row 0),
 | |
|     // rotate the y-axis into targetUpDir   (row 1),
 | |
|     // rotate the z-axis into targetDir     (row 2).
 | |
|     //
 | |
| 
 | |
|     Vec3<T> row[3];
 | |
|     row[0] = targetPerpDir.normalized ();
 | |
|     row[1] = targetUpDir  .normalized ();
 | |
|     row[2] = targetDir    .normalized ();
 | |
| 
 | |
|     result.x[0][0] = row[0][0];
 | |
|     result.x[0][1] = row[0][1];
 | |
|     result.x[0][2] = row[0][2];
 | |
|     result.x[0][3] = (T)0;
 | |
| 
 | |
|     result.x[1][0] = row[1][0];
 | |
|     result.x[1][1] = row[1][1];
 | |
|     result.x[1][2] = row[1][2];
 | |
|     result.x[1][3] = (T)0;
 | |
| 
 | |
|     result.x[2][0] = row[2][0];
 | |
|     result.x[2][1] = row[2][1];
 | |
|     result.x[2][2] = row[2][2];
 | |
|     result.x[2][3] = (T)0;
 | |
| 
 | |
|     result.x[3][0] = (T)0;
 | |
|     result.x[3][1] = (T)0;
 | |
|     result.x[3][2] = (T)0;
 | |
|     result.x[3][3] = (T)1;
 | |
| }
 | |
| 
 | |
| 
 | |
| // Compute an orthonormal direct frame from : a position, an x axis direction and a normal to the y axis
 | |
| // If the x axis and normal are perpendicular, then the normal will have the same direction as the z axis.
 | |
| // Inputs are :
 | |
| //     -the position of the frame
 | |
| //     -the x axis direction of the frame
 | |
| //     -a normal to the y axis of the frame
 | |
| // Return is the orthonormal frame
 | |
| template <class T>
 | |
| Matrix44<T>
 | |
| computeLocalFrame( const Vec3<T>& p,
 | |
|                    const Vec3<T>& xDir,
 | |
|                    const Vec3<T>& normal)
 | |
| {
 | |
|     Vec3<T> _xDir(xDir);
 | |
|     Vec3<T> x = _xDir.normalize();
 | |
|     Vec3<T> y = (normal % x).normalize();
 | |
|     Vec3<T> z = (x % y).normalize();
 | |
| 
 | |
|     Matrix44<T> L;
 | |
|     L[0][0] = x[0];
 | |
|     L[0][1] = x[1];
 | |
|     L[0][2] = x[2];
 | |
|     L[0][3] = 0.0;
 | |
| 
 | |
|     L[1][0] = y[0];
 | |
|     L[1][1] = y[1];
 | |
|     L[1][2] = y[2];
 | |
|     L[1][3] = 0.0;
 | |
| 
 | |
|     L[2][0] = z[0];
 | |
|     L[2][1] = z[1];
 | |
|     L[2][2] = z[2];
 | |
|     L[2][3] = 0.0;
 | |
| 
 | |
|     L[3][0] = p[0];
 | |
|     L[3][1] = p[1];
 | |
|     L[3][2] = p[2];
 | |
|     L[3][3] = 1.0;
 | |
| 
 | |
|     return L;
 | |
| }
 | |
| 
 | |
| // Add a translate/rotate/scale offset to an input frame
 | |
| // and put it in another frame of reference
 | |
| // Inputs are :
 | |
| //     - input frame
 | |
| //     - translate offset
 | |
| //     - rotate    offset in degrees
 | |
| //     - scale     offset
 | |
| //     - frame of reference
 | |
| // Output is the offsetted frame
 | |
| template <class T>
 | |
| Matrix44<T>
 | |
| addOffset( const Matrix44<T>& inMat,
 | |
|            const Vec3<T>&     tOffset,
 | |
|            const Vec3<T>&     rOffset,
 | |
|            const Vec3<T>&     sOffset,
 | |
|            const Matrix44<T>& ref)
 | |
| {
 | |
|     Matrix44<T> O;
 | |
| 
 | |
|     Vec3<T> _rOffset(rOffset);
 | |
|     _rOffset *= M_PI / 180.0;
 | |
|     O.rotate (_rOffset);
 | |
| 
 | |
|     O[3][0] = tOffset[0];
 | |
|     O[3][1] = tOffset[1];
 | |
|     O[3][2] = tOffset[2];
 | |
| 
 | |
|     Matrix44<T> S;
 | |
|     S.scale (sOffset);
 | |
| 
 | |
|     Matrix44<T> X = S * O * inMat * ref;
 | |
| 
 | |
|     return X;
 | |
| }
 | |
| 
 | |
| // Compute Translate/Rotate/Scale matrix from matrix A with the Rotate/Scale of Matrix B
 | |
| // Inputs are :
 | |
| //      -keepRotateA : if true keep rotate from matrix A, use B otherwise
 | |
| //      -keepScaleA  : if true keep scale  from matrix A, use B otherwise
 | |
| //      -Matrix A
 | |
| //      -Matrix B
 | |
| // Return Matrix A with tweaked rotation/scale
 | |
| template <class T>
 | |
| Matrix44<T>
 | |
| computeRSMatrix( bool               keepRotateA,
 | |
|                  bool               keepScaleA,
 | |
|                  const Matrix44<T>& A,
 | |
|                  const Matrix44<T>& B)
 | |
| {
 | |
|     Vec3<T> as, ah, ar, at;
 | |
|     extractSHRT (A, as, ah, ar, at);
 | |
| 
 | |
|     Vec3<T> bs, bh, br, bt;
 | |
|     extractSHRT (B, bs, bh, br, bt);
 | |
| 
 | |
|     if (!keepRotateA)
 | |
|         ar = br;
 | |
| 
 | |
|     if (!keepScaleA)
 | |
|         as = bs;
 | |
| 
 | |
|     Matrix44<T> mat;
 | |
|     mat.makeIdentity();
 | |
|     mat.translate (at);
 | |
|     mat.rotate (ar);
 | |
|     mat.scale (as);
 | |
| 
 | |
|     return mat;
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| //-----------------------------------------------------------------------------
 | |
| // Implementation for 3x3 Matrix
 | |
| //------------------------------
 | |
| 
 | |
| 
 | |
| template <class T>
 | |
| bool
 | |
| extractScaling (const Matrix33<T> &mat, Vec2<T> &scl, bool exc)
 | |
| {
 | |
|     T shr;
 | |
|     Matrix33<T> M (mat);
 | |
| 
 | |
|     if (! extractAndRemoveScalingAndShear (M, scl, shr, exc))
 | |
|     return false;
 | |
| 
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| 
 | |
| template <class T>
 | |
| Matrix33<T>
 | |
| sansScaling (const Matrix33<T> &mat, bool exc)
 | |
| {
 | |
|     Vec2<T> scl;
 | |
|     T shr;
 | |
|     T rot;
 | |
|     Vec2<T> tran;
 | |
| 
 | |
|     if (! extractSHRT (mat, scl, shr, rot, tran, exc))
 | |
|     return mat;
 | |
| 
 | |
|     Matrix33<T> M;
 | |
| 
 | |
|     M.translate (tran);
 | |
|     M.rotate (rot);
 | |
|     M.shear (shr);
 | |
| 
 | |
|     return M;
 | |
| }
 | |
| 
 | |
| 
 | |
| template <class T>
 | |
| bool
 | |
| removeScaling (Matrix33<T> &mat, bool exc)
 | |
| {
 | |
|     Vec2<T> scl;
 | |
|     T shr;
 | |
|     T rot;
 | |
|     Vec2<T> tran;
 | |
| 
 | |
|     if (! extractSHRT (mat, scl, shr, rot, tran, exc))
 | |
|     return false;
 | |
| 
 | |
|     mat.makeIdentity ();
 | |
|     mat.translate (tran);
 | |
|     mat.rotate (rot);
 | |
|     mat.shear (shr);
 | |
| 
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| 
 | |
| template <class T>
 | |
| bool
 | |
| extractScalingAndShear (const Matrix33<T> &mat, Vec2<T> &scl, T &shr, bool exc)
 | |
| {
 | |
|     Matrix33<T> M (mat);
 | |
| 
 | |
|     if (! extractAndRemoveScalingAndShear (M, scl, shr, exc))
 | |
|     return false;
 | |
| 
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| 
 | |
| template <class T>
 | |
| Matrix33<T>
 | |
| sansScalingAndShear (const Matrix33<T> &mat, bool exc)
 | |
| {
 | |
|     Vec2<T> scl;
 | |
|     T shr;
 | |
|     Matrix33<T> M (mat);
 | |
| 
 | |
|     if (! extractAndRemoveScalingAndShear (M, scl, shr, exc))
 | |
|     return mat;
 | |
| 
 | |
|     return M;
 | |
| }
 | |
| 
 | |
| 
 | |
| template <class T>
 | |
| bool
 | |
| removeScalingAndShear (Matrix33<T> &mat, bool exc)
 | |
| {
 | |
|     Vec2<T> scl;
 | |
|     T shr;
 | |
| 
 | |
|     if (! extractAndRemoveScalingAndShear (mat, scl, shr, exc))
 | |
|     return false;
 | |
| 
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| bool
 | |
| extractAndRemoveScalingAndShear (Matrix33<T> &mat,
 | |
|                  Vec2<T> &scl, T &shr, bool exc)
 | |
| {
 | |
|     Vec2<T> row[2];
 | |
| 
 | |
|     row[0] = Vec2<T> (mat[0][0], mat[0][1]);
 | |
|     row[1] = Vec2<T> (mat[1][0], mat[1][1]);
 | |
| 
 | |
|     T maxVal = 0;
 | |
|     for (int i=0; i < 2; i++)
 | |
|     for (int j=0; j < 2; j++)
 | |
|         if (Imath::abs (row[i][j]) > maxVal)
 | |
|         maxVal = Imath::abs (row[i][j]);
 | |
| 
 | |
|     //
 | |
|     // We normalize the 2x2 matrix here.
 | |
|     // It was noticed that this can improve numerical stability significantly,
 | |
|     // especially when many of the upper 2x2 matrix's coefficients are very
 | |
|     // close to zero; we correct for this step at the end by multiplying the
 | |
|     // scaling factors by maxVal at the end (shear and rotation are not
 | |
|     // affected by the normalization).
 | |
| 
 | |
|     if (maxVal != 0)
 | |
|     {
 | |
|     for (int i=0; i < 2; i++)
 | |
|         if (! checkForZeroScaleInRow (maxVal, row[i], exc))
 | |
|         return false;
 | |
|         else
 | |
|         row[i] /= maxVal;
 | |
|     }
 | |
| 
 | |
|     // Compute X scale factor.
 | |
|     scl.x = row[0].length ();
 | |
|     if (! checkForZeroScaleInRow (scl.x, row[0], exc))
 | |
|     return false;
 | |
| 
 | |
|     // Normalize first row.
 | |
|     row[0] /= scl.x;
 | |
| 
 | |
|     // An XY shear factor will shear the X coord. as the Y coord. changes.
 | |
|     // There are 2 combinations (XY, YX), although we only extract the XY
 | |
|     // shear factor because we can effect the an YX shear factor by
 | |
|     // shearing in XY combined with rotations and scales.
 | |
|     //
 | |
|     // shear matrix <   1,  YX,  0,
 | |
|     //                 XY,   1,  0,
 | |
|     //                  0,   0,  1 >
 | |
| 
 | |
|     // Compute XY shear factor and make 2nd row orthogonal to 1st.
 | |
|     shr     = row[0].dot (row[1]);
 | |
|     row[1] -= shr * row[0];
 | |
| 
 | |
|     // Now, compute Y scale.
 | |
|     scl.y = row[1].length ();
 | |
|     if (! checkForZeroScaleInRow (scl.y, row[1], exc))
 | |
|     return false;
 | |
| 
 | |
|     // Normalize 2nd row and correct the XY shear factor for Y scaling.
 | |
|     row[1] /= scl.y;
 | |
|     shr    /= scl.y;
 | |
| 
 | |
|     // At this point, the upper 2x2 matrix in mat is orthonormal.
 | |
|     // Check for a coordinate system flip. If the determinant
 | |
|     // is -1, then flip the rotation matrix and adjust the scale(Y)
 | |
|     // and shear(XY) factors to compensate.
 | |
|     if (row[0][0] * row[1][1] - row[0][1] * row[1][0] < 0)
 | |
|     {
 | |
|     row[1][0] *= -1;
 | |
|     row[1][1] *= -1;
 | |
|     scl[1] *= -1;
 | |
|     shr *= -1;
 | |
|     }
 | |
| 
 | |
|     // Copy over the orthonormal rows into the returned matrix.
 | |
|     // The upper 2x2 matrix in mat is now a rotation matrix.
 | |
|     for (int i=0; i < 2; i++)
 | |
|     {
 | |
|     mat[i][0] = row[i][0];
 | |
|     mat[i][1] = row[i][1];
 | |
|     }
 | |
| 
 | |
|     scl *= maxVal;
 | |
| 
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| 
 | |
| template <class T>
 | |
| void
 | |
| extractEuler (const Matrix33<T> &mat, T &rot)
 | |
| {
 | |
|     //
 | |
|     // Normalize the local x and y axes to remove scaling.
 | |
|     //
 | |
| 
 | |
|     Vec2<T> i (mat[0][0], mat[0][1]);
 | |
|     Vec2<T> j (mat[1][0], mat[1][1]);
 | |
| 
 | |
|     i.normalize();
 | |
|     j.normalize();
 | |
| 
 | |
|     //
 | |
|     // Extract the angle, rot.
 | |
|     //
 | |
| 
 | |
|     rot = - Math<T>::atan2 (j[0], i[0]);
 | |
| }
 | |
| 
 | |
| 
 | |
| template <class T>
 | |
| bool
 | |
| extractSHRT (const Matrix33<T> &mat,
 | |
|          Vec2<T> &s,
 | |
|          T       &h,
 | |
|          T       &r,
 | |
|          Vec2<T> &t,
 | |
|          bool    exc)
 | |
| {
 | |
|     Matrix33<T> rot;
 | |
| 
 | |
|     rot = mat;
 | |
|     if (! extractAndRemoveScalingAndShear (rot, s, h, exc))
 | |
|     return false;
 | |
| 
 | |
|     extractEuler (rot, r);
 | |
| 
 | |
|     t.x = mat[2][0];
 | |
|     t.y = mat[2][1];
 | |
| 
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| 
 | |
| template <class T>
 | |
| bool
 | |
| checkForZeroScaleInRow (const T& scl,
 | |
|             const Vec2<T> &row,
 | |
|             bool exc /* = true */ )
 | |
| {
 | |
|     for (int i = 0; i < 2; i++)
 | |
|     {
 | |
|     if ((abs (scl) < 1 && abs (row[i]) >= limits<T>::max() * abs (scl)))
 | |
|     {
 | |
|         if (exc)
 | |
|         throw Imath::ZeroScaleExc ("Cannot remove zero scaling "
 | |
|                        "from matrix.");
 | |
|         else
 | |
|         return false;
 | |
|     }
 | |
|     }
 | |
| 
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| 
 | |
| template <class T>
 | |
| Matrix33<T>
 | |
| outerProduct (const Vec3<T> &a, const Vec3<T> &b )
 | |
| {
 | |
|     return Matrix33<T> (a.x*b.x, a.x*b.y, a.x*b.z,
 | |
|                         a.y*b.x, a.y*b.y, a.y*b.z,
 | |
|                         a.z*b.x, a.z*b.y, a.z*b.z );
 | |
| }
 | |
| 
 | |
| 
 | |
| // Computes the translation and rotation that brings the 'from' points
 | |
| // as close as possible to the 'to' points under the Frobenius norm.
 | |
| // To be more specific, let x be the matrix of 'from' points and y be
 | |
| // the matrix of 'to' points, we want to find the matrix A of the form
 | |
| //    [ R t ]
 | |
| //    [ 0 1 ]
 | |
| // that minimizes
 | |
| //     || (A*x - y)^T * W * (A*x - y) ||_F
 | |
| // If doScaling is true, then a uniform scale is allowed also.
 | |
| template <typename T>
 | |
| Imath::M44d
 | |
| procrustesRotationAndTranslation (const Imath::Vec3<T>* A,  // From these
 | |
|                                   const Imath::Vec3<T>* B,  // To these
 | |
|                                   const T* weights,
 | |
|                                   const size_t numPoints,
 | |
|                                   const bool doScaling = false);
 | |
| 
 | |
| // Unweighted:
 | |
| template <typename T>
 | |
| Imath::M44d
 | |
| procrustesRotationAndTranslation (const Imath::Vec3<T>* A,
 | |
|                                   const Imath::Vec3<T>* B,
 | |
|                                   const size_t numPoints,
 | |
|                                   const bool doScaling = false);
 | |
| 
 | |
| // Compute the SVD of a 3x3 matrix using Jacobi transformations.  This method
 | |
| // should be quite accurate (competitive with LAPACK) even for poorly
 | |
| // conditioned matrices, and because it has been written specifically for the
 | |
| // 3x3/4x4 case it is much faster than calling out to LAPACK.
 | |
| //
 | |
| // The SVD of a 3x3/4x4 matrix A is defined as follows:
 | |
| //     A = U * S * V^T
 | |
| // where S is the diagonal matrix of singular values and both U and V are
 | |
| // orthonormal.  By convention, the entries S are all positive and sorted from
 | |
| // the largest to the smallest.  However, some uses of this function may
 | |
| // require that the matrix U*V^T have positive determinant; in this case, we
 | |
| // may make the smallest singular value negative to ensure that this is
 | |
| // satisfied.
 | |
| //
 | |
| // Currently only available for single- and double-precision matrices.
 | |
| template <typename T>
 | |
| void
 | |
| jacobiSVD (const Imath::Matrix33<T>& A,
 | |
|            Imath::Matrix33<T>& U,
 | |
|            Imath::Vec3<T>& S,
 | |
|            Imath::Matrix33<T>& V,
 | |
|            const T tol = Imath::limits<T>::epsilon(),
 | |
|            const bool forcePositiveDeterminant = false);
 | |
| 
 | |
| template <typename T>
 | |
| void
 | |
| jacobiSVD (const Imath::Matrix44<T>& A,
 | |
|            Imath::Matrix44<T>& U,
 | |
|            Imath::Vec4<T>& S,
 | |
|            Imath::Matrix44<T>& V,
 | |
|            const T tol = Imath::limits<T>::epsilon(),
 | |
|            const bool forcePositiveDeterminant = false);
 | |
| 
 | |
| // Compute the eigenvalues (S) and the eigenvectors (V) of
 | |
| // a real symmetric matrix using Jacobi transformation.
 | |
| //
 | |
| // Jacobi transformation of a 3x3/4x4 matrix A outputs S and V:
 | |
| // 	A = V * S * V^T
 | |
| // where V is orthonormal and S is the diagonal matrix of eigenvalues.
 | |
| // Input matrix A must be symmetric. A is also modified during
 | |
| // the computation so that upper diagonal entries of A become zero.
 | |
| //
 | |
| template <typename T>
 | |
| void
 | |
| jacobiEigenSolver (Matrix33<T>& A,
 | |
|                    Vec3<T>& S,
 | |
|                    Matrix33<T>& V,
 | |
|                    const T tol);
 | |
| 
 | |
| template <typename T>
 | |
| inline
 | |
| void
 | |
| jacobiEigenSolver (Matrix33<T>& A,
 | |
|                    Vec3<T>& S,
 | |
|                    Matrix33<T>& V)
 | |
| {
 | |
|     jacobiEigenSolver(A,S,V,limits<T>::epsilon());
 | |
| }
 | |
| 
 | |
| template <typename T>
 | |
| void
 | |
| jacobiEigenSolver (Matrix44<T>& A,
 | |
|                    Vec4<T>& S,
 | |
|                    Matrix44<T>& V,
 | |
|                    const T tol);
 | |
| 
 | |
| template <typename T>
 | |
| inline
 | |
| void
 | |
| jacobiEigenSolver (Matrix44<T>& A,
 | |
|                    Vec4<T>& S,
 | |
|                    Matrix44<T>& V)
 | |
| {
 | |
|     jacobiEigenSolver(A,S,V,limits<T>::epsilon());
 | |
| }
 | |
| 
 | |
| // Compute a eigenvector corresponding to the abs max/min eigenvalue
 | |
| // of a real symmetric matrix using Jacobi transformation.
 | |
| template <typename TM, typename TV>
 | |
| void
 | |
| maxEigenVector (TM& A, TV& S);
 | |
| template <typename TM, typename TV>
 | |
| void
 | |
| minEigenVector (TM& A, TV& S);
 | |
| 
 | |
| } // namespace Imath
 | |
| 
 | |
| #endif
 | 
