opencv/3rdparty/lapack/dgeqrf.c

240 lines
6.7 KiB
C

#include "clapack.h"
/* Table of constant values */
static integer c__1 = 1;
static integer c_n1 = -1;
static integer c__3 = 3;
static integer c__2 = 2;
/* Subroutine */ int dgeqrf_(integer *m, integer *n, doublereal *a, integer *
lda, doublereal *tau, doublereal *work, integer *lwork, integer *info)
{
/* System generated locals */
integer a_dim1, a_offset, i__1, i__2, i__3, i__4;
/* Local variables */
integer i__, k, ib, nb, nx, iws, nbmin, iinfo;
extern /* Subroutine */ int dgeqr2_(integer *, integer *, doublereal *,
integer *, doublereal *, doublereal *, integer *), dlarfb_(char *,
char *, char *, char *, integer *, integer *, integer *,
doublereal *, integer *, doublereal *, integer *, doublereal *,
integer *, doublereal *, integer *), dlarft_(char *, char *, integer *, integer *, doublereal
*, integer *, doublereal *, doublereal *, integer *), xerbla_(char *, integer *);
extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
integer *, integer *);
integer ldwork, lwkopt;
logical lquery;
/* -- LAPACK routine (version 3.1) -- */
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/* November 2006 */
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* Purpose */
/* ======= */
/* DGEQRF computes a QR factorization of a real M-by-N matrix A: */
/* A = Q * R. */
/* Arguments */
/* ========= */
/* M (input) INTEGER */
/* The number of rows of the matrix A. M >= 0. */
/* N (input) INTEGER */
/* The number of columns of the matrix A. N >= 0. */
/* A (input/output) DOUBLE PRECISION array, dimension (LDA,N) */
/* On entry, the M-by-N matrix A. */
/* On exit, the elements on and above the diagonal of the array */
/* contain the min(M,N)-by-N upper trapezoidal matrix R (R is */
/* upper triangular if m >= n); the elements below the diagonal, */
/* with the array TAU, represent the orthogonal matrix Q as a */
/* product of min(m,n) elementary reflectors (see Further */
/* Details). */
/* LDA (input) INTEGER */
/* The leading dimension of the array A. LDA >= max(1,M). */
/* TAU (output) DOUBLE PRECISION array, dimension (min(M,N)) */
/* The scalar factors of the elementary reflectors (see Further */
/* Details). */
/* WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) */
/* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
/* LWORK (input) INTEGER */
/* The dimension of the array WORK. LWORK >= max(1,N). */
/* For optimum performance LWORK >= N*NB, where NB is */
/* the optimal blocksize. */
/* If LWORK = -1, then a workspace query is assumed; the routine */
/* only calculates the optimal size of the WORK array, returns */
/* this value as the first entry of the WORK array, and no error */
/* message related to LWORK is issued by XERBLA. */
/* INFO (output) INTEGER */
/* = 0: successful exit */
/* < 0: if INFO = -i, the i-th argument had an illegal value */
/* Further Details */
/* =============== */
/* The matrix Q is represented as a product of elementary reflectors */
/* Q = H(1) H(2) . . . H(k), where k = min(m,n). */
/* Each H(i) has the form */
/* H(i) = I - tau * v * v' */
/* where tau is a real scalar, and v is a real vector with */
/* v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i), */
/* and tau in TAU(i). */
/* ===================================================================== */
/* .. Local Scalars .. */
/* .. */
/* .. External Subroutines .. */
/* .. */
/* .. Intrinsic Functions .. */
/* .. */
/* .. External Functions .. */
/* .. */
/* .. Executable Statements .. */
/* Test the input arguments */
/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1;
a -= a_offset;
--tau;
--work;
/* Function Body */
*info = 0;
nb = ilaenv_(&c__1, "DGEQRF", " ", m, n, &c_n1, &c_n1);
lwkopt = *n * nb;
work[1] = (doublereal) lwkopt;
lquery = *lwork == -1;
if (*m < 0) {
*info = -1;
} else if (*n < 0) {
*info = -2;
} else if (*lda < max(1,*m)) {
*info = -4;
} else if (*lwork < max(1,*n) && ! lquery) {
*info = -7;
}
if (*info != 0) {
i__1 = -(*info);
xerbla_("DGEQRF", &i__1);
return 0;
} else if (lquery) {
return 0;
}
/* Quick return if possible */
k = min(*m,*n);
if (k == 0) {
work[1] = 1.;
return 0;
}
nbmin = 2;
nx = 0;
iws = *n;
if (nb > 1 && nb < k) {
/* Determine when to cross over from blocked to unblocked code. */
/* Computing MAX */
i__1 = 0, i__2 = ilaenv_(&c__3, "DGEQRF", " ", m, n, &c_n1, &c_n1);
nx = max(i__1,i__2);
if (nx < k) {
/* Determine if workspace is large enough for blocked code. */
ldwork = *n;
iws = ldwork * nb;
if (*lwork < iws) {
/* Not enough workspace to use optimal NB: reduce NB and */
/* determine the minimum value of NB. */
nb = *lwork / ldwork;
/* Computing MAX */
i__1 = 2, i__2 = ilaenv_(&c__2, "DGEQRF", " ", m, n, &c_n1, &
c_n1);
nbmin = max(i__1,i__2);
}
}
}
if (nb >= nbmin && nb < k && nx < k) {
/* Use blocked code initially */
i__1 = k - nx;
i__2 = nb;
for (i__ = 1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) {
/* Computing MIN */
i__3 = k - i__ + 1;
ib = min(i__3,nb);
/* Compute the QR factorization of the current block */
/* A(i:m,i:i+ib-1) */
i__3 = *m - i__ + 1;
dgeqr2_(&i__3, &ib, &a[i__ + i__ * a_dim1], lda, &tau[i__], &work[
1], &iinfo);
if (i__ + ib <= *n) {
/* Form the triangular factor of the block reflector */
/* H = H(i) H(i+1) . . . H(i+ib-1) */
i__3 = *m - i__ + 1;
dlarft_("Forward", "Columnwise", &i__3, &ib, &a[i__ + i__ *
a_dim1], lda, &tau[i__], &work[1], &ldwork);
/* Apply H' to A(i:m,i+ib:n) from the left */
i__3 = *m - i__ + 1;
i__4 = *n - i__ - ib + 1;
dlarfb_("Left", "Transpose", "Forward", "Columnwise", &i__3, &
i__4, &ib, &a[i__ + i__ * a_dim1], lda, &work[1], &
ldwork, &a[i__ + (i__ + ib) * a_dim1], lda, &work[ib
+ 1], &ldwork);
}
/* L10: */
}
} else {
i__ = 1;
}
/* Use unblocked code to factor the last or only block. */
if (i__ <= k) {
i__2 = *m - i__ + 1;
i__1 = *n - i__ + 1;
dgeqr2_(&i__2, &i__1, &a[i__ + i__ * a_dim1], lda, &tau[i__], &work[1]
, &iinfo);
}
work[1] = (doublereal) iws;
return 0;
/* End of DGEQRF */
} /* dgeqrf_ */