2069 lines
		
	
	
		
			74 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			2069 lines
		
	
	
		
			74 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*M///////////////////////////////////////////////////////////////////////////////////////
 | |
| //
 | |
| //  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
 | |
| //
 | |
| //  By downloading, copying, installing or using the software you agree to this license.
 | |
| //  If you do not agree to this license, do not download, install,
 | |
| //  copy or use the software.
 | |
| //
 | |
| //
 | |
| //                        Intel License Agreement
 | |
| //
 | |
| // Copyright (C) 2000, Intel Corporation, all rights reserved.
 | |
| // Third party copyrights are property of their respective owners.
 | |
| //
 | |
| // Redistribution and use in source and binary forms, with or without modification,
 | |
| // are permitted provided that the following conditions are met:
 | |
| //
 | |
| //   * Redistribution's of source code must retain the above copyright notice,
 | |
| //     this list of conditions and the following disclaimer.
 | |
| //
 | |
| //   * Redistribution's in binary form must reproduce the above copyright notice,
 | |
| //     this list of conditions and the following disclaimer in the documentation
 | |
| //     and/or other materials provided with the distribution.
 | |
| //
 | |
| //   * The name of Intel Corporation may not be used to endorse or promote products
 | |
| //     derived from this software without specific prior written permission.
 | |
| //
 | |
| // This software is provided by the copyright holders and contributors "as is" and
 | |
| // any express or implied warranties, including, but not limited to, the implied
 | |
| // warranties of merchantability and fitness for a particular purpose are disclaimed.
 | |
| // In no event shall the Intel Corporation or contributors be liable for any direct,
 | |
| // indirect, incidental, special, exemplary, or consequential damages
 | |
| // (including, but not limited to, procurement of substitute goods or services;
 | |
| // loss of use, data, or profits; or business interruption) however caused
 | |
| // and on any theory of liability, whether in contract, strict liability,
 | |
| // or tort (including negligence or otherwise) arising in any way out of
 | |
| // the use of this software, even if advised of the possibility of such damage.
 | |
| //
 | |
| //M*/
 | |
| 
 | |
| #ifndef __OPENCV_ML_HPP__
 | |
| #define __OPENCV_ML_HPP__
 | |
| 
 | |
| #ifdef __cplusplus
 | |
| #  include "opencv2/core.hpp"
 | |
| #endif
 | |
| 
 | |
| #include "opencv2/core/core_c.h"
 | |
| #include <limits.h>
 | |
| 
 | |
| #ifdef __cplusplus
 | |
| 
 | |
| #include <map>
 | |
| #include <iostream>
 | |
| 
 | |
| // Apple defines a check() macro somewhere in the debug headers
 | |
| // that interferes with a method definiton in this header
 | |
| #undef check
 | |
| 
 | |
| /****************************************************************************************\
 | |
| *                               Main struct definitions                                  *
 | |
| \****************************************************************************************/
 | |
| 
 | |
| /* log(2*PI) */
 | |
| #define CV_LOG2PI (1.8378770664093454835606594728112)
 | |
| 
 | |
| /* columns of <trainData> matrix are training samples */
 | |
| #define CV_COL_SAMPLE 0
 | |
| 
 | |
| /* rows of <trainData> matrix are training samples */
 | |
| #define CV_ROW_SAMPLE 1
 | |
| 
 | |
| #define CV_IS_ROW_SAMPLE(flags) ((flags) & CV_ROW_SAMPLE)
 | |
| 
 | |
| struct CvVectors
 | |
| {
 | |
|     int type;
 | |
|     int dims, count;
 | |
|     CvVectors* next;
 | |
|     union
 | |
|     {
 | |
|         uchar** ptr;
 | |
|         float** fl;
 | |
|         double** db;
 | |
|     } data;
 | |
| };
 | |
| 
 | |
| #if 0
 | |
| /* A structure, representing the lattice range of statmodel parameters.
 | |
|    It is used for optimizing statmodel parameters by cross-validation method.
 | |
|    The lattice is logarithmic, so <step> must be greater then 1. */
 | |
| typedef struct CvParamLattice
 | |
| {
 | |
|     double min_val;
 | |
|     double max_val;
 | |
|     double step;
 | |
| }
 | |
| CvParamLattice;
 | |
| 
 | |
| CV_INLINE CvParamLattice cvParamLattice( double min_val, double max_val,
 | |
|                                          double log_step )
 | |
| {
 | |
|     CvParamLattice pl;
 | |
|     pl.min_val = MIN( min_val, max_val );
 | |
|     pl.max_val = MAX( min_val, max_val );
 | |
|     pl.step = MAX( log_step, 1. );
 | |
|     return pl;
 | |
| }
 | |
| 
 | |
| CV_INLINE CvParamLattice cvDefaultParamLattice( void )
 | |
| {
 | |
|     CvParamLattice pl = {0,0,0};
 | |
|     return pl;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* Variable type */
 | |
| #define CV_VAR_NUMERICAL    0
 | |
| #define CV_VAR_ORDERED      0
 | |
| #define CV_VAR_CATEGORICAL  1
 | |
| 
 | |
| #define CV_TYPE_NAME_ML_SVM         "opencv-ml-svm"
 | |
| #define CV_TYPE_NAME_ML_KNN         "opencv-ml-knn"
 | |
| #define CV_TYPE_NAME_ML_NBAYES      "opencv-ml-bayesian"
 | |
| #define CV_TYPE_NAME_ML_BOOSTING    "opencv-ml-boost-tree"
 | |
| #define CV_TYPE_NAME_ML_TREE        "opencv-ml-tree"
 | |
| #define CV_TYPE_NAME_ML_ANN_MLP     "opencv-ml-ann-mlp"
 | |
| #define CV_TYPE_NAME_ML_CNN         "opencv-ml-cnn"
 | |
| #define CV_TYPE_NAME_ML_RTREES      "opencv-ml-random-trees"
 | |
| #define CV_TYPE_NAME_ML_ERTREES     "opencv-ml-extremely-randomized-trees"
 | |
| #define CV_TYPE_NAME_ML_GBT         "opencv-ml-gradient-boosting-trees"
 | |
| 
 | |
| #define CV_TRAIN_ERROR  0
 | |
| #define CV_TEST_ERROR   1
 | |
| 
 | |
| class CvStatModel
 | |
| {
 | |
| public:
 | |
|     CvStatModel();
 | |
|     virtual ~CvStatModel();
 | |
| 
 | |
|     virtual void clear();
 | |
| 
 | |
|     CV_WRAP virtual void save( const char* filename, const char* name=0 ) const;
 | |
|     CV_WRAP virtual void load( const char* filename, const char* name=0 );
 | |
| 
 | |
|     virtual void write( CvFileStorage* storage, const char* name ) const;
 | |
|     virtual void read( CvFileStorage* storage, CvFileNode* node );
 | |
| 
 | |
| protected:
 | |
|     const char* default_model_name;
 | |
| };
 | |
| 
 | |
| /****************************************************************************************\
 | |
| *                                 Normal Bayes Classifier                                *
 | |
| \****************************************************************************************/
 | |
| 
 | |
| /* The structure, representing the grid range of statmodel parameters.
 | |
|    It is used for optimizing statmodel accuracy by varying model parameters,
 | |
|    the accuracy estimate being computed by cross-validation.
 | |
|    The grid is logarithmic, so <step> must be greater then 1. */
 | |
| 
 | |
| class CvMLData;
 | |
| 
 | |
| struct CvParamGrid
 | |
| {
 | |
|     // SVM params type
 | |
|     enum { SVM_C=0, SVM_GAMMA=1, SVM_P=2, SVM_NU=3, SVM_COEF=4, SVM_DEGREE=5 };
 | |
| 
 | |
|     CvParamGrid()
 | |
|     {
 | |
|         min_val = max_val = step = 0;
 | |
|     }
 | |
| 
 | |
|     CvParamGrid( double min_val, double max_val, double log_step );
 | |
|     //CvParamGrid( int param_id );
 | |
|     bool check() const;
 | |
| 
 | |
|     CV_PROP_RW double min_val;
 | |
|     CV_PROP_RW double max_val;
 | |
|     CV_PROP_RW double step;
 | |
| };
 | |
| 
 | |
| inline CvParamGrid::CvParamGrid( double _min_val, double _max_val, double _log_step )
 | |
| {
 | |
|     min_val = _min_val;
 | |
|     max_val = _max_val;
 | |
|     step = _log_step;
 | |
| }
 | |
| 
 | |
| class CvNormalBayesClassifier : public CvStatModel
 | |
| {
 | |
| public:
 | |
|     CV_WRAP CvNormalBayesClassifier();
 | |
|     virtual ~CvNormalBayesClassifier();
 | |
| 
 | |
|     CvNormalBayesClassifier( const CvMat* trainData, const CvMat* responses,
 | |
|         const CvMat* varIdx=0, const CvMat* sampleIdx=0 );
 | |
| 
 | |
|     virtual bool train( const CvMat* trainData, const CvMat* responses,
 | |
|         const CvMat* varIdx = 0, const CvMat* sampleIdx=0, bool update=false );
 | |
| 
 | |
|     virtual float predict( const CvMat* samples, CV_OUT CvMat* results=0, CV_OUT CvMat* results_prob=0 ) const;
 | |
|     CV_WRAP virtual void clear();
 | |
| 
 | |
|     CV_WRAP CvNormalBayesClassifier( const cv::Mat& trainData, const cv::Mat& responses,
 | |
|                             const cv::Mat& varIdx=cv::Mat(), const cv::Mat& sampleIdx=cv::Mat() );
 | |
|     CV_WRAP virtual bool train( const cv::Mat& trainData, const cv::Mat& responses,
 | |
|                        const cv::Mat& varIdx = cv::Mat(), const cv::Mat& sampleIdx=cv::Mat(),
 | |
|                        bool update=false );
 | |
|     CV_WRAP virtual float predict( const cv::Mat& samples, CV_OUT cv::Mat* results=0, CV_OUT cv::Mat* results_prob=0 ) const;
 | |
| 
 | |
|     virtual void write( CvFileStorage* storage, const char* name ) const;
 | |
|     virtual void read( CvFileStorage* storage, CvFileNode* node );
 | |
| 
 | |
| protected:
 | |
|     int     var_count, var_all;
 | |
|     CvMat*  var_idx;
 | |
|     CvMat*  cls_labels;
 | |
|     CvMat** count;
 | |
|     CvMat** sum;
 | |
|     CvMat** productsum;
 | |
|     CvMat** avg;
 | |
|     CvMat** inv_eigen_values;
 | |
|     CvMat** cov_rotate_mats;
 | |
|     CvMat*  c;
 | |
| };
 | |
| 
 | |
| 
 | |
| /****************************************************************************************\
 | |
| *                          K-Nearest Neighbour Classifier                                *
 | |
| \****************************************************************************************/
 | |
| 
 | |
| // k Nearest Neighbors
 | |
| class CvKNearest : public CvStatModel
 | |
| {
 | |
| public:
 | |
| 
 | |
|     CV_WRAP CvKNearest();
 | |
|     virtual ~CvKNearest();
 | |
| 
 | |
|     CvKNearest( const CvMat* trainData, const CvMat* responses,
 | |
|                 const CvMat* sampleIdx=0, bool isRegression=false, int max_k=32 );
 | |
| 
 | |
|     virtual bool train( const CvMat* trainData, const CvMat* responses,
 | |
|                         const CvMat* sampleIdx=0, bool is_regression=false,
 | |
|                         int maxK=32, bool updateBase=false );
 | |
| 
 | |
|     virtual float find_nearest( const CvMat* samples, int k, CV_OUT CvMat* results=0,
 | |
|         const float** neighbors=0, CV_OUT CvMat* neighborResponses=0, CV_OUT CvMat* dist=0 ) const;
 | |
| 
 | |
|     CV_WRAP CvKNearest( const cv::Mat& trainData, const cv::Mat& responses,
 | |
|                const cv::Mat& sampleIdx=cv::Mat(), bool isRegression=false, int max_k=32 );
 | |
| 
 | |
|     CV_WRAP virtual bool train( const cv::Mat& trainData, const cv::Mat& responses,
 | |
|                        const cv::Mat& sampleIdx=cv::Mat(), bool isRegression=false,
 | |
|                        int maxK=32, bool updateBase=false );
 | |
| 
 | |
|     virtual float find_nearest( const cv::Mat& samples, int k, cv::Mat* results=0,
 | |
|                                 const float** neighbors=0, cv::Mat* neighborResponses=0,
 | |
|                                 cv::Mat* dist=0 ) const;
 | |
|     CV_WRAP virtual float find_nearest( const cv::Mat& samples, int k, CV_OUT cv::Mat& results,
 | |
|                                         CV_OUT cv::Mat& neighborResponses, CV_OUT cv::Mat& dists) const;
 | |
| 
 | |
|     virtual void clear();
 | |
|     int get_max_k() const;
 | |
|     int get_var_count() const;
 | |
|     int get_sample_count() const;
 | |
|     bool is_regression() const;
 | |
| 
 | |
|     virtual float write_results( int k, int k1, int start, int end,
 | |
|         const float* neighbor_responses, const float* dist, CvMat* _results,
 | |
|         CvMat* _neighbor_responses, CvMat* _dist, Cv32suf* sort_buf ) const;
 | |
| 
 | |
|     virtual void find_neighbors_direct( const CvMat* _samples, int k, int start, int end,
 | |
|         float* neighbor_responses, const float** neighbors, float* dist ) const;
 | |
| 
 | |
| protected:
 | |
| 
 | |
|     int max_k, var_count;
 | |
|     int total;
 | |
|     bool regression;
 | |
|     CvVectors* samples;
 | |
| };
 | |
| 
 | |
| /****************************************************************************************\
 | |
| *                                   Support Vector Machines                              *
 | |
| \****************************************************************************************/
 | |
| 
 | |
| // SVM training parameters
 | |
| struct CvSVMParams
 | |
| {
 | |
|     CvSVMParams();
 | |
|     CvSVMParams( int svm_type, int kernel_type,
 | |
|                  double degree, double gamma, double coef0,
 | |
|                  double Cvalue, double nu, double p,
 | |
|                  CvMat* class_weights, CvTermCriteria term_crit );
 | |
| 
 | |
|     CV_PROP_RW int         svm_type;
 | |
|     CV_PROP_RW int         kernel_type;
 | |
|     CV_PROP_RW double      degree; // for poly
 | |
|     CV_PROP_RW double      gamma;  // for poly/rbf/sigmoid/chi2
 | |
|     CV_PROP_RW double      coef0;  // for poly/sigmoid
 | |
| 
 | |
|     CV_PROP_RW double      C;  // for CV_SVM_C_SVC, CV_SVM_EPS_SVR and CV_SVM_NU_SVR
 | |
|     CV_PROP_RW double      nu; // for CV_SVM_NU_SVC, CV_SVM_ONE_CLASS, and CV_SVM_NU_SVR
 | |
|     CV_PROP_RW double      p; // for CV_SVM_EPS_SVR
 | |
|     CvMat*      class_weights; // for CV_SVM_C_SVC
 | |
|     CV_PROP_RW CvTermCriteria term_crit; // termination criteria
 | |
| };
 | |
| 
 | |
| 
 | |
| struct CvSVMKernel
 | |
| {
 | |
|     typedef void (CvSVMKernel::*Calc)( int vec_count, int vec_size, const float** vecs,
 | |
|                                        const float* another, float* results );
 | |
|     CvSVMKernel();
 | |
|     CvSVMKernel( const CvSVMParams* params, Calc _calc_func );
 | |
|     virtual bool create( const CvSVMParams* params, Calc _calc_func );
 | |
|     virtual ~CvSVMKernel();
 | |
| 
 | |
|     virtual void clear();
 | |
|     virtual void calc( int vcount, int n, const float** vecs, const float* another, float* results );
 | |
| 
 | |
|     const CvSVMParams* params;
 | |
|     Calc calc_func;
 | |
| 
 | |
|     virtual void calc_non_rbf_base( int vec_count, int vec_size, const float** vecs,
 | |
|                                     const float* another, float* results,
 | |
|                                     double alpha, double beta );
 | |
|     virtual void calc_intersec( int vcount, int var_count, const float** vecs,
 | |
|                             const float* another, float* results );
 | |
|     virtual void calc_chi2( int vec_count, int vec_size, const float** vecs,
 | |
|                               const float* another, float* results );
 | |
|     virtual void calc_linear( int vec_count, int vec_size, const float** vecs,
 | |
|                               const float* another, float* results );
 | |
|     virtual void calc_rbf( int vec_count, int vec_size, const float** vecs,
 | |
|                            const float* another, float* results );
 | |
|     virtual void calc_poly( int vec_count, int vec_size, const float** vecs,
 | |
|                             const float* another, float* results );
 | |
|     virtual void calc_sigmoid( int vec_count, int vec_size, const float** vecs,
 | |
|                                const float* another, float* results );
 | |
| };
 | |
| 
 | |
| 
 | |
| struct CvSVMKernelRow
 | |
| {
 | |
|     CvSVMKernelRow* prev;
 | |
|     CvSVMKernelRow* next;
 | |
|     float* data;
 | |
| };
 | |
| 
 | |
| 
 | |
| struct CvSVMSolutionInfo
 | |
| {
 | |
|     double obj;
 | |
|     double rho;
 | |
|     double upper_bound_p;
 | |
|     double upper_bound_n;
 | |
|     double r;   // for Solver_NU
 | |
| };
 | |
| 
 | |
| class CvSVMSolver
 | |
| {
 | |
| public:
 | |
|     typedef bool (CvSVMSolver::*SelectWorkingSet)( int& i, int& j );
 | |
|     typedef float* (CvSVMSolver::*GetRow)( int i, float* row, float* dst, bool existed );
 | |
|     typedef void (CvSVMSolver::*CalcRho)( double& rho, double& r );
 | |
| 
 | |
|     CvSVMSolver();
 | |
| 
 | |
|     CvSVMSolver( int count, int var_count, const float** samples, schar* y,
 | |
|                  int alpha_count, double* alpha, double Cp, double Cn,
 | |
|                  CvMemStorage* storage, CvSVMKernel* kernel, GetRow get_row,
 | |
|                  SelectWorkingSet select_working_set, CalcRho calc_rho );
 | |
|     virtual bool create( int count, int var_count, const float** samples, schar* y,
 | |
|                  int alpha_count, double* alpha, double Cp, double Cn,
 | |
|                  CvMemStorage* storage, CvSVMKernel* kernel, GetRow get_row,
 | |
|                  SelectWorkingSet select_working_set, CalcRho calc_rho );
 | |
|     virtual ~CvSVMSolver();
 | |
| 
 | |
|     virtual void clear();
 | |
|     virtual bool solve_generic( CvSVMSolutionInfo& si );
 | |
| 
 | |
|     virtual bool solve_c_svc( int count, int var_count, const float** samples, schar* y,
 | |
|                               double Cp, double Cn, CvMemStorage* storage,
 | |
|                               CvSVMKernel* kernel, double* alpha, CvSVMSolutionInfo& si );
 | |
|     virtual bool solve_nu_svc( int count, int var_count, const float** samples, schar* y,
 | |
|                                CvMemStorage* storage, CvSVMKernel* kernel,
 | |
|                                double* alpha, CvSVMSolutionInfo& si );
 | |
|     virtual bool solve_one_class( int count, int var_count, const float** samples,
 | |
|                                   CvMemStorage* storage, CvSVMKernel* kernel,
 | |
|                                   double* alpha, CvSVMSolutionInfo& si );
 | |
| 
 | |
|     virtual bool solve_eps_svr( int count, int var_count, const float** samples, const float* y,
 | |
|                                 CvMemStorage* storage, CvSVMKernel* kernel,
 | |
|                                 double* alpha, CvSVMSolutionInfo& si );
 | |
| 
 | |
|     virtual bool solve_nu_svr( int count, int var_count, const float** samples, const float* y,
 | |
|                                CvMemStorage* storage, CvSVMKernel* kernel,
 | |
|                                double* alpha, CvSVMSolutionInfo& si );
 | |
| 
 | |
|     virtual float* get_row_base( int i, bool* _existed );
 | |
|     virtual float* get_row( int i, float* dst );
 | |
| 
 | |
|     int sample_count;
 | |
|     int var_count;
 | |
|     int cache_size;
 | |
|     int cache_line_size;
 | |
|     const float** samples;
 | |
|     const CvSVMParams* params;
 | |
|     CvMemStorage* storage;
 | |
|     CvSVMKernelRow lru_list;
 | |
|     CvSVMKernelRow* rows;
 | |
| 
 | |
|     int alpha_count;
 | |
| 
 | |
|     double* G;
 | |
|     double* alpha;
 | |
| 
 | |
|     // -1 - lower bound, 0 - free, 1 - upper bound
 | |
|     schar* alpha_status;
 | |
| 
 | |
|     schar* y;
 | |
|     double* b;
 | |
|     float* buf[2];
 | |
|     double eps;
 | |
|     int max_iter;
 | |
|     double C[2];  // C[0] == Cn, C[1] == Cp
 | |
|     CvSVMKernel* kernel;
 | |
| 
 | |
|     SelectWorkingSet select_working_set_func;
 | |
|     CalcRho calc_rho_func;
 | |
|     GetRow get_row_func;
 | |
| 
 | |
|     virtual bool select_working_set( int& i, int& j );
 | |
|     virtual bool select_working_set_nu_svm( int& i, int& j );
 | |
|     virtual void calc_rho( double& rho, double& r );
 | |
|     virtual void calc_rho_nu_svm( double& rho, double& r );
 | |
| 
 | |
|     virtual float* get_row_svc( int i, float* row, float* dst, bool existed );
 | |
|     virtual float* get_row_one_class( int i, float* row, float* dst, bool existed );
 | |
|     virtual float* get_row_svr( int i, float* row, float* dst, bool existed );
 | |
| };
 | |
| 
 | |
| 
 | |
| struct CvSVMDecisionFunc
 | |
| {
 | |
|     double rho;
 | |
|     int sv_count;
 | |
|     double* alpha;
 | |
|     int* sv_index;
 | |
| };
 | |
| 
 | |
| 
 | |
| // SVM model
 | |
| class CvSVM : public CvStatModel
 | |
| {
 | |
| public:
 | |
|     // SVM type
 | |
|     enum { C_SVC=100, NU_SVC=101, ONE_CLASS=102, EPS_SVR=103, NU_SVR=104 };
 | |
| 
 | |
|     // SVM kernel type
 | |
|     enum { LINEAR=0, POLY=1, RBF=2, SIGMOID=3, CHI2=4, INTER=5 };
 | |
| 
 | |
|     // SVM params type
 | |
|     enum { C=0, GAMMA=1, P=2, NU=3, COEF=4, DEGREE=5 };
 | |
| 
 | |
|     CV_WRAP CvSVM();
 | |
|     virtual ~CvSVM();
 | |
| 
 | |
|     CvSVM( const CvMat* trainData, const CvMat* responses,
 | |
|            const CvMat* varIdx=0, const CvMat* sampleIdx=0,
 | |
|            CvSVMParams params=CvSVMParams() );
 | |
| 
 | |
|     virtual bool train( const CvMat* trainData, const CvMat* responses,
 | |
|                         const CvMat* varIdx=0, const CvMat* sampleIdx=0,
 | |
|                         CvSVMParams params=CvSVMParams() );
 | |
| 
 | |
|     virtual bool train_auto( const CvMat* trainData, const CvMat* responses,
 | |
|         const CvMat* varIdx, const CvMat* sampleIdx, CvSVMParams params,
 | |
|         int kfold = 10,
 | |
|         CvParamGrid Cgrid      = get_default_grid(CvSVM::C),
 | |
|         CvParamGrid gammaGrid  = get_default_grid(CvSVM::GAMMA),
 | |
|         CvParamGrid pGrid      = get_default_grid(CvSVM::P),
 | |
|         CvParamGrid nuGrid     = get_default_grid(CvSVM::NU),
 | |
|         CvParamGrid coeffGrid  = get_default_grid(CvSVM::COEF),
 | |
|         CvParamGrid degreeGrid = get_default_grid(CvSVM::DEGREE),
 | |
|         bool balanced=false );
 | |
| 
 | |
|     virtual float predict( const CvMat* sample, bool returnDFVal=false ) const;
 | |
|     virtual float predict( const CvMat* samples, CV_OUT CvMat* results, bool returnDFVal=false ) const;
 | |
| 
 | |
|     CV_WRAP CvSVM( const cv::Mat& trainData, const cv::Mat& responses,
 | |
|           const cv::Mat& varIdx=cv::Mat(), const cv::Mat& sampleIdx=cv::Mat(),
 | |
|           CvSVMParams params=CvSVMParams() );
 | |
| 
 | |
|     CV_WRAP virtual bool train( const cv::Mat& trainData, const cv::Mat& responses,
 | |
|                        const cv::Mat& varIdx=cv::Mat(), const cv::Mat& sampleIdx=cv::Mat(),
 | |
|                        CvSVMParams params=CvSVMParams() );
 | |
| 
 | |
|     CV_WRAP virtual bool train_auto( const cv::Mat& trainData, const cv::Mat& responses,
 | |
|                             const cv::Mat& varIdx, const cv::Mat& sampleIdx, CvSVMParams params,
 | |
|                             int k_fold = 10,
 | |
|                             CvParamGrid Cgrid      = CvSVM::get_default_grid(CvSVM::C),
 | |
|                             CvParamGrid gammaGrid  = CvSVM::get_default_grid(CvSVM::GAMMA),
 | |
|                             CvParamGrid pGrid      = CvSVM::get_default_grid(CvSVM::P),
 | |
|                             CvParamGrid nuGrid     = CvSVM::get_default_grid(CvSVM::NU),
 | |
|                             CvParamGrid coeffGrid  = CvSVM::get_default_grid(CvSVM::COEF),
 | |
|                             CvParamGrid degreeGrid = CvSVM::get_default_grid(CvSVM::DEGREE),
 | |
|                             bool balanced=false);
 | |
|     CV_WRAP virtual float predict( const cv::Mat& sample, bool returnDFVal=false ) const;
 | |
|     CV_WRAP_AS(predict_all) virtual void predict( cv::InputArray samples, cv::OutputArray results ) const;
 | |
| 
 | |
|     CV_WRAP virtual int get_support_vector_count() const;
 | |
|     virtual const float* get_support_vector(int i) const;
 | |
|     virtual CvSVMParams get_params() const { return params; }
 | |
|     CV_WRAP virtual void clear();
 | |
| 
 | |
|     virtual const CvSVMDecisionFunc* get_decision_function() const { return decision_func; }
 | |
| 
 | |
|     static CvParamGrid get_default_grid( int param_id );
 | |
| 
 | |
|     virtual void write( CvFileStorage* storage, const char* name ) const;
 | |
|     virtual void read( CvFileStorage* storage, CvFileNode* node );
 | |
|     CV_WRAP int get_var_count() const { return var_idx ? var_idx->cols : var_all; }
 | |
| 
 | |
| protected:
 | |
| 
 | |
|     virtual bool set_params( const CvSVMParams& params );
 | |
|     virtual bool train1( int sample_count, int var_count, const float** samples,
 | |
|                     const void* responses, double Cp, double Cn,
 | |
|                     CvMemStorage* _storage, double* alpha, double& rho );
 | |
|     virtual bool do_train( int svm_type, int sample_count, int var_count, const float** samples,
 | |
|                     const CvMat* responses, CvMemStorage* _storage, double* alpha );
 | |
|     virtual void create_kernel();
 | |
|     virtual void create_solver();
 | |
| 
 | |
|     virtual float predict( const float* row_sample, int row_len, bool returnDFVal=false ) const;
 | |
| 
 | |
|     virtual void write_params( CvFileStorage* fs ) const;
 | |
|     virtual void read_params( CvFileStorage* fs, CvFileNode* node );
 | |
| 
 | |
|     void optimize_linear_svm();
 | |
| 
 | |
|     CvSVMParams params;
 | |
|     CvMat* class_labels;
 | |
|     int var_all;
 | |
|     float** sv;
 | |
|     int sv_total;
 | |
|     CvMat* var_idx;
 | |
|     CvMat* class_weights;
 | |
|     CvSVMDecisionFunc* decision_func;
 | |
|     CvMemStorage* storage;
 | |
| 
 | |
|     CvSVMSolver* solver;
 | |
|     CvSVMKernel* kernel;
 | |
| 
 | |
| private:
 | |
|     CvSVM(const CvSVM&);
 | |
|     CvSVM& operator = (const CvSVM&);
 | |
| };
 | |
| 
 | |
| /****************************************************************************************\
 | |
| *                                      Decision Tree                                     *
 | |
| \****************************************************************************************/\
 | |
| struct CvPair16u32s
 | |
| {
 | |
|     unsigned short* u;
 | |
|     int* i;
 | |
| };
 | |
| 
 | |
| 
 | |
| #define CV_DTREE_CAT_DIR(idx,subset) \
 | |
|     (2*((subset[(idx)>>5]&(1 << ((idx) & 31)))==0)-1)
 | |
| 
 | |
| struct CvDTreeSplit
 | |
| {
 | |
|     int var_idx;
 | |
|     int condensed_idx;
 | |
|     int inversed;
 | |
|     float quality;
 | |
|     CvDTreeSplit* next;
 | |
|     union
 | |
|     {
 | |
|         int subset[2];
 | |
|         struct
 | |
|         {
 | |
|             float c;
 | |
|             int split_point;
 | |
|         }
 | |
|         ord;
 | |
|     };
 | |
| };
 | |
| 
 | |
| struct CvDTreeNode
 | |
| {
 | |
|     int class_idx;
 | |
|     int Tn;
 | |
|     double value;
 | |
| 
 | |
|     CvDTreeNode* parent;
 | |
|     CvDTreeNode* left;
 | |
|     CvDTreeNode* right;
 | |
| 
 | |
|     CvDTreeSplit* split;
 | |
| 
 | |
|     int sample_count;
 | |
|     int depth;
 | |
|     int* num_valid;
 | |
|     int offset;
 | |
|     int buf_idx;
 | |
|     double maxlr;
 | |
| 
 | |
|     // global pruning data
 | |
|     int complexity;
 | |
|     double alpha;
 | |
|     double node_risk, tree_risk, tree_error;
 | |
| 
 | |
|     // cross-validation pruning data
 | |
|     int* cv_Tn;
 | |
|     double* cv_node_risk;
 | |
|     double* cv_node_error;
 | |
| 
 | |
|     int get_num_valid(int vi) { return num_valid ? num_valid[vi] : sample_count; }
 | |
|     void set_num_valid(int vi, int n) { if( num_valid ) num_valid[vi] = n; }
 | |
| };
 | |
| 
 | |
| 
 | |
| struct CvDTreeParams
 | |
| {
 | |
|     CV_PROP_RW int   max_categories;
 | |
|     CV_PROP_RW int   max_depth;
 | |
|     CV_PROP_RW int   min_sample_count;
 | |
|     CV_PROP_RW int   cv_folds;
 | |
|     CV_PROP_RW bool  use_surrogates;
 | |
|     CV_PROP_RW bool  use_1se_rule;
 | |
|     CV_PROP_RW bool  truncate_pruned_tree;
 | |
|     CV_PROP_RW float regression_accuracy;
 | |
|     const float* priors;
 | |
| 
 | |
|     CvDTreeParams();
 | |
|     CvDTreeParams( int max_depth, int min_sample_count,
 | |
|                    float regression_accuracy, bool use_surrogates,
 | |
|                    int max_categories, int cv_folds,
 | |
|                    bool use_1se_rule, bool truncate_pruned_tree,
 | |
|                    const float* priors );
 | |
| };
 | |
| 
 | |
| 
 | |
| struct CvDTreeTrainData
 | |
| {
 | |
|     CvDTreeTrainData();
 | |
|     CvDTreeTrainData( const CvMat* trainData, int tflag,
 | |
|                       const CvMat* responses, const CvMat* varIdx=0,
 | |
|                       const CvMat* sampleIdx=0, const CvMat* varType=0,
 | |
|                       const CvMat* missingDataMask=0,
 | |
|                       const CvDTreeParams& params=CvDTreeParams(),
 | |
|                       bool _shared=false, bool _add_labels=false );
 | |
|     virtual ~CvDTreeTrainData();
 | |
| 
 | |
|     virtual void set_data( const CvMat* trainData, int tflag,
 | |
|                           const CvMat* responses, const CvMat* varIdx=0,
 | |
|                           const CvMat* sampleIdx=0, const CvMat* varType=0,
 | |
|                           const CvMat* missingDataMask=0,
 | |
|                           const CvDTreeParams& params=CvDTreeParams(),
 | |
|                           bool _shared=false, bool _add_labels=false,
 | |
|                           bool _update_data=false );
 | |
|     virtual void do_responses_copy();
 | |
| 
 | |
|     virtual void get_vectors( const CvMat* _subsample_idx,
 | |
|          float* values, uchar* missing, float* responses, bool get_class_idx=false );
 | |
| 
 | |
|     virtual CvDTreeNode* subsample_data( const CvMat* _subsample_idx );
 | |
| 
 | |
|     virtual void write_params( CvFileStorage* fs ) const;
 | |
|     virtual void read_params( CvFileStorage* fs, CvFileNode* node );
 | |
| 
 | |
|     // release all the data
 | |
|     virtual void clear();
 | |
| 
 | |
|     int get_num_classes() const;
 | |
|     int get_var_type(int vi) const;
 | |
|     int get_work_var_count() const {return work_var_count;}
 | |
| 
 | |
|     virtual const float* get_ord_responses( CvDTreeNode* n, float* values_buf, int* sample_indices_buf );
 | |
|     virtual const int* get_class_labels( CvDTreeNode* n, int* labels_buf );
 | |
|     virtual const int* get_cv_labels( CvDTreeNode* n, int* labels_buf );
 | |
|     virtual const int* get_sample_indices( CvDTreeNode* n, int* indices_buf );
 | |
|     virtual const int* get_cat_var_data( CvDTreeNode* n, int vi, int* cat_values_buf );
 | |
|     virtual void get_ord_var_data( CvDTreeNode* n, int vi, float* ord_values_buf, int* sorted_indices_buf,
 | |
|                                    const float** ord_values, const int** sorted_indices, int* sample_indices_buf );
 | |
|     virtual int get_child_buf_idx( CvDTreeNode* n );
 | |
| 
 | |
|     ////////////////////////////////////
 | |
| 
 | |
|     virtual bool set_params( const CvDTreeParams& params );
 | |
|     virtual CvDTreeNode* new_node( CvDTreeNode* parent, int count,
 | |
|                                    int storage_idx, int offset );
 | |
| 
 | |
|     virtual CvDTreeSplit* new_split_ord( int vi, float cmp_val,
 | |
|                 int split_point, int inversed, float quality );
 | |
|     virtual CvDTreeSplit* new_split_cat( int vi, float quality );
 | |
|     virtual void free_node_data( CvDTreeNode* node );
 | |
|     virtual void free_train_data();
 | |
|     virtual void free_node( CvDTreeNode* node );
 | |
| 
 | |
|     int sample_count, var_all, var_count, max_c_count;
 | |
|     int ord_var_count, cat_var_count, work_var_count;
 | |
|     bool have_labels, have_priors;
 | |
|     bool is_classifier;
 | |
|     int tflag;
 | |
| 
 | |
|     const CvMat* train_data;
 | |
|     const CvMat* responses;
 | |
|     CvMat* responses_copy; // used in Boosting
 | |
| 
 | |
|     int buf_count, buf_size; // buf_size is obsolete, please do not use it, use expression ((int64)buf->rows * (int64)buf->cols / buf_count) instead
 | |
|     bool shared;
 | |
|     int is_buf_16u;
 | |
| 
 | |
|     CvMat* cat_count;
 | |
|     CvMat* cat_ofs;
 | |
|     CvMat* cat_map;
 | |
| 
 | |
|     CvMat* counts;
 | |
|     CvMat* buf;
 | |
|     inline size_t get_length_subbuf() const
 | |
|     {
 | |
|         size_t res = (size_t)(work_var_count + 1) * (size_t)sample_count;
 | |
|         return res;
 | |
|     }
 | |
| 
 | |
|     CvMat* direction;
 | |
|     CvMat* split_buf;
 | |
| 
 | |
|     CvMat* var_idx;
 | |
|     CvMat* var_type; // i-th element =
 | |
|                      //   k<0  - ordered
 | |
|                      //   k>=0 - categorical, see k-th element of cat_* arrays
 | |
|     CvMat* priors;
 | |
|     CvMat* priors_mult;
 | |
| 
 | |
|     CvDTreeParams params;
 | |
| 
 | |
|     CvMemStorage* tree_storage;
 | |
|     CvMemStorage* temp_storage;
 | |
| 
 | |
|     CvDTreeNode* data_root;
 | |
| 
 | |
|     CvSet* node_heap;
 | |
|     CvSet* split_heap;
 | |
|     CvSet* cv_heap;
 | |
|     CvSet* nv_heap;
 | |
| 
 | |
|     cv::RNG* rng;
 | |
| };
 | |
| 
 | |
| class CvDTree;
 | |
| class CvForestTree;
 | |
| 
 | |
| namespace cv
 | |
| {
 | |
|     struct DTreeBestSplitFinder;
 | |
|     struct ForestTreeBestSplitFinder;
 | |
| }
 | |
| 
 | |
| class CvDTree : public CvStatModel
 | |
| {
 | |
| public:
 | |
|     CV_WRAP CvDTree();
 | |
|     virtual ~CvDTree();
 | |
| 
 | |
|     virtual bool train( const CvMat* trainData, int tflag,
 | |
|                         const CvMat* responses, const CvMat* varIdx=0,
 | |
|                         const CvMat* sampleIdx=0, const CvMat* varType=0,
 | |
|                         const CvMat* missingDataMask=0,
 | |
|                         CvDTreeParams params=CvDTreeParams() );
 | |
| 
 | |
|     virtual bool train( CvMLData* trainData, CvDTreeParams params=CvDTreeParams() );
 | |
| 
 | |
|     // type in {CV_TRAIN_ERROR, CV_TEST_ERROR}
 | |
|     virtual float calc_error( CvMLData* trainData, int type, std::vector<float> *resp = 0 );
 | |
| 
 | |
|     virtual bool train( CvDTreeTrainData* trainData, const CvMat* subsampleIdx );
 | |
| 
 | |
|     virtual CvDTreeNode* predict( const CvMat* sample, const CvMat* missingDataMask=0,
 | |
|                                   bool preprocessedInput=false ) const;
 | |
| 
 | |
|     CV_WRAP virtual bool train( const cv::Mat& trainData, int tflag,
 | |
|                        const cv::Mat& responses, const cv::Mat& varIdx=cv::Mat(),
 | |
|                        const cv::Mat& sampleIdx=cv::Mat(), const cv::Mat& varType=cv::Mat(),
 | |
|                        const cv::Mat& missingDataMask=cv::Mat(),
 | |
|                        CvDTreeParams params=CvDTreeParams() );
 | |
| 
 | |
|     CV_WRAP virtual CvDTreeNode* predict( const cv::Mat& sample, const cv::Mat& missingDataMask=cv::Mat(),
 | |
|                                   bool preprocessedInput=false ) const;
 | |
|     CV_WRAP virtual cv::Mat getVarImportance();
 | |
| 
 | |
|     virtual const CvMat* get_var_importance();
 | |
|     CV_WRAP virtual void clear();
 | |
| 
 | |
|     virtual void read( CvFileStorage* fs, CvFileNode* node );
 | |
|     virtual void write( CvFileStorage* fs, const char* name ) const;
 | |
| 
 | |
|     // special read & write methods for trees in the tree ensembles
 | |
|     virtual void read( CvFileStorage* fs, CvFileNode* node,
 | |
|                        CvDTreeTrainData* data );
 | |
|     virtual void write( CvFileStorage* fs ) const;
 | |
| 
 | |
|     const CvDTreeNode* get_root() const;
 | |
|     int get_pruned_tree_idx() const;
 | |
|     CvDTreeTrainData* get_data();
 | |
| 
 | |
| protected:
 | |
|     friend struct cv::DTreeBestSplitFinder;
 | |
| 
 | |
|     virtual bool do_train( const CvMat* _subsample_idx );
 | |
| 
 | |
|     virtual void try_split_node( CvDTreeNode* n );
 | |
|     virtual void split_node_data( CvDTreeNode* n );
 | |
|     virtual CvDTreeSplit* find_best_split( CvDTreeNode* n );
 | |
|     virtual CvDTreeSplit* find_split_ord_class( CvDTreeNode* n, int vi,
 | |
|                             float init_quality = 0, CvDTreeSplit* _split = 0, uchar* ext_buf = 0 );
 | |
|     virtual CvDTreeSplit* find_split_cat_class( CvDTreeNode* n, int vi,
 | |
|                             float init_quality = 0, CvDTreeSplit* _split = 0, uchar* ext_buf = 0 );
 | |
|     virtual CvDTreeSplit* find_split_ord_reg( CvDTreeNode* n, int vi,
 | |
|                             float init_quality = 0, CvDTreeSplit* _split = 0, uchar* ext_buf = 0 );
 | |
|     virtual CvDTreeSplit* find_split_cat_reg( CvDTreeNode* n, int vi,
 | |
|                             float init_quality = 0, CvDTreeSplit* _split = 0, uchar* ext_buf = 0 );
 | |
|     virtual CvDTreeSplit* find_surrogate_split_ord( CvDTreeNode* n, int vi, uchar* ext_buf = 0 );
 | |
|     virtual CvDTreeSplit* find_surrogate_split_cat( CvDTreeNode* n, int vi, uchar* ext_buf = 0 );
 | |
|     virtual double calc_node_dir( CvDTreeNode* node );
 | |
|     virtual void complete_node_dir( CvDTreeNode* node );
 | |
|     virtual void cluster_categories( const int* vectors, int vector_count,
 | |
|         int var_count, int* sums, int k, int* cluster_labels );
 | |
| 
 | |
|     virtual void calc_node_value( CvDTreeNode* node );
 | |
| 
 | |
|     virtual void prune_cv();
 | |
|     virtual double update_tree_rnc( int T, int fold );
 | |
|     virtual int cut_tree( int T, int fold, double min_alpha );
 | |
|     virtual void free_prune_data(bool cut_tree);
 | |
|     virtual void free_tree();
 | |
| 
 | |
|     virtual void write_node( CvFileStorage* fs, CvDTreeNode* node ) const;
 | |
|     virtual void write_split( CvFileStorage* fs, CvDTreeSplit* split ) const;
 | |
|     virtual CvDTreeNode* read_node( CvFileStorage* fs, CvFileNode* node, CvDTreeNode* parent );
 | |
|     virtual CvDTreeSplit* read_split( CvFileStorage* fs, CvFileNode* node );
 | |
|     virtual void write_tree_nodes( CvFileStorage* fs ) const;
 | |
|     virtual void read_tree_nodes( CvFileStorage* fs, CvFileNode* node );
 | |
| 
 | |
|     CvDTreeNode* root;
 | |
|     CvMat* var_importance;
 | |
|     CvDTreeTrainData* data;
 | |
|     CvMat train_data_hdr, responses_hdr;
 | |
|     cv::Mat train_data_mat, responses_mat;
 | |
| 
 | |
| public:
 | |
|     int pruned_tree_idx;
 | |
| };
 | |
| 
 | |
| 
 | |
| /****************************************************************************************\
 | |
| *                                   Random Trees Classifier                              *
 | |
| \****************************************************************************************/
 | |
| 
 | |
| class CvRTrees;
 | |
| 
 | |
| class CvForestTree: public CvDTree
 | |
| {
 | |
| public:
 | |
|     CvForestTree();
 | |
|     virtual ~CvForestTree();
 | |
| 
 | |
|     virtual bool train( CvDTreeTrainData* trainData, const CvMat* _subsample_idx, CvRTrees* forest );
 | |
| 
 | |
|     virtual int get_var_count() const {return data ? data->var_count : 0;}
 | |
|     virtual void read( CvFileStorage* fs, CvFileNode* node, CvRTrees* forest, CvDTreeTrainData* _data );
 | |
| 
 | |
|     /* dummy methods to avoid warnings: BEGIN */
 | |
|     virtual bool train( const CvMat* trainData, int tflag,
 | |
|                         const CvMat* responses, const CvMat* varIdx=0,
 | |
|                         const CvMat* sampleIdx=0, const CvMat* varType=0,
 | |
|                         const CvMat* missingDataMask=0,
 | |
|                         CvDTreeParams params=CvDTreeParams() );
 | |
| 
 | |
|     virtual bool train( CvDTreeTrainData* trainData, const CvMat* _subsample_idx );
 | |
|     virtual void read( CvFileStorage* fs, CvFileNode* node );
 | |
|     virtual void read( CvFileStorage* fs, CvFileNode* node,
 | |
|                        CvDTreeTrainData* data );
 | |
|     /* dummy methods to avoid warnings: END */
 | |
| 
 | |
| protected:
 | |
|     friend struct cv::ForestTreeBestSplitFinder;
 | |
| 
 | |
|     virtual CvDTreeSplit* find_best_split( CvDTreeNode* n );
 | |
|     CvRTrees* forest;
 | |
| };
 | |
| 
 | |
| 
 | |
| struct CvRTParams : public CvDTreeParams
 | |
| {
 | |
|     //Parameters for the forest
 | |
|     CV_PROP_RW bool calc_var_importance; // true <=> RF processes variable importance
 | |
|     CV_PROP_RW int nactive_vars;
 | |
|     CV_PROP_RW CvTermCriteria term_crit;
 | |
| 
 | |
|     CvRTParams();
 | |
|     CvRTParams( int max_depth, int min_sample_count,
 | |
|                 float regression_accuracy, bool use_surrogates,
 | |
|                 int max_categories, const float* priors, bool calc_var_importance,
 | |
|                 int nactive_vars, int max_num_of_trees_in_the_forest,
 | |
|                 float forest_accuracy, int termcrit_type );
 | |
| };
 | |
| 
 | |
| 
 | |
| class CvRTrees : public CvStatModel
 | |
| {
 | |
| public:
 | |
|     CV_WRAP CvRTrees();
 | |
|     virtual ~CvRTrees();
 | |
|     virtual bool train( const CvMat* trainData, int tflag,
 | |
|                         const CvMat* responses, const CvMat* varIdx=0,
 | |
|                         const CvMat* sampleIdx=0, const CvMat* varType=0,
 | |
|                         const CvMat* missingDataMask=0,
 | |
|                         CvRTParams params=CvRTParams() );
 | |
| 
 | |
|     virtual bool train( CvMLData* data, CvRTParams params=CvRTParams() );
 | |
|     virtual float predict( const CvMat* sample, const CvMat* missing = 0 ) const;
 | |
|     virtual float predict_prob( const CvMat* sample, const CvMat* missing = 0 ) const;
 | |
| 
 | |
|     CV_WRAP virtual bool train( const cv::Mat& trainData, int tflag,
 | |
|                        const cv::Mat& responses, const cv::Mat& varIdx=cv::Mat(),
 | |
|                        const cv::Mat& sampleIdx=cv::Mat(), const cv::Mat& varType=cv::Mat(),
 | |
|                        const cv::Mat& missingDataMask=cv::Mat(),
 | |
|                        CvRTParams params=CvRTParams() );
 | |
|     CV_WRAP virtual float predict( const cv::Mat& sample, const cv::Mat& missing = cv::Mat() ) const;
 | |
|     CV_WRAP virtual float predict_prob( const cv::Mat& sample, const cv::Mat& missing = cv::Mat() ) const;
 | |
|     CV_WRAP virtual cv::Mat getVarImportance();
 | |
| 
 | |
|     CV_WRAP virtual void clear();
 | |
| 
 | |
|     virtual const CvMat* get_var_importance();
 | |
|     virtual float get_proximity( const CvMat* sample1, const CvMat* sample2,
 | |
|         const CvMat* missing1 = 0, const CvMat* missing2 = 0 ) const;
 | |
| 
 | |
|     virtual float calc_error( CvMLData* data, int type , std::vector<float>* resp = 0 ); // type in {CV_TRAIN_ERROR, CV_TEST_ERROR}
 | |
| 
 | |
|     virtual float get_train_error();
 | |
| 
 | |
|     virtual void read( CvFileStorage* fs, CvFileNode* node );
 | |
|     virtual void write( CvFileStorage* fs, const char* name ) const;
 | |
| 
 | |
|     CvMat* get_active_var_mask();
 | |
|     CvRNG* get_rng();
 | |
| 
 | |
|     int get_tree_count() const;
 | |
|     CvForestTree* get_tree(int i) const;
 | |
| 
 | |
| protected:
 | |
|     virtual cv::String getName() const;
 | |
| 
 | |
|     virtual bool grow_forest( const CvTermCriteria term_crit );
 | |
| 
 | |
|     // array of the trees of the forest
 | |
|     CvForestTree** trees;
 | |
|     CvDTreeTrainData* data;
 | |
|     CvMat train_data_hdr, responses_hdr;
 | |
|     cv::Mat train_data_mat, responses_mat;
 | |
|     int ntrees;
 | |
|     int nclasses;
 | |
|     double oob_error;
 | |
|     CvMat* var_importance;
 | |
|     int nsamples;
 | |
| 
 | |
|     cv::RNG* rng;
 | |
|     CvMat* active_var_mask;
 | |
| };
 | |
| 
 | |
| /****************************************************************************************\
 | |
| *                           Extremely randomized trees Classifier                        *
 | |
| \****************************************************************************************/
 | |
| struct CvERTreeTrainData : public CvDTreeTrainData
 | |
| {
 | |
|     virtual void set_data( const CvMat* trainData, int tflag,
 | |
|                           const CvMat* responses, const CvMat* varIdx=0,
 | |
|                           const CvMat* sampleIdx=0, const CvMat* varType=0,
 | |
|                           const CvMat* missingDataMask=0,
 | |
|                           const CvDTreeParams& params=CvDTreeParams(),
 | |
|                           bool _shared=false, bool _add_labels=false,
 | |
|                           bool _update_data=false );
 | |
|     virtual void get_ord_var_data( CvDTreeNode* n, int vi, float* ord_values_buf, int* missing_buf,
 | |
|                                    const float** ord_values, const int** missing, int* sample_buf = 0 );
 | |
|     virtual const int* get_sample_indices( CvDTreeNode* n, int* indices_buf );
 | |
|     virtual const int* get_cv_labels( CvDTreeNode* n, int* labels_buf );
 | |
|     virtual const int* get_cat_var_data( CvDTreeNode* n, int vi, int* cat_values_buf );
 | |
|     virtual void get_vectors( const CvMat* _subsample_idx, float* values, uchar* missing,
 | |
|                               float* responses, bool get_class_idx=false );
 | |
|     virtual CvDTreeNode* subsample_data( const CvMat* _subsample_idx );
 | |
|     const CvMat* missing_mask;
 | |
| };
 | |
| 
 | |
| class CvForestERTree : public CvForestTree
 | |
| {
 | |
| protected:
 | |
|     virtual double calc_node_dir( CvDTreeNode* node );
 | |
|     virtual CvDTreeSplit* find_split_ord_class( CvDTreeNode* n, int vi,
 | |
|         float init_quality = 0, CvDTreeSplit* _split = 0, uchar* ext_buf = 0 );
 | |
|     virtual CvDTreeSplit* find_split_cat_class( CvDTreeNode* n, int vi,
 | |
|         float init_quality = 0, CvDTreeSplit* _split = 0, uchar* ext_buf = 0 );
 | |
|     virtual CvDTreeSplit* find_split_ord_reg( CvDTreeNode* n, int vi,
 | |
|         float init_quality = 0, CvDTreeSplit* _split = 0, uchar* ext_buf = 0 );
 | |
|     virtual CvDTreeSplit* find_split_cat_reg( CvDTreeNode* n, int vi,
 | |
|         float init_quality = 0, CvDTreeSplit* _split = 0, uchar* ext_buf = 0 );
 | |
|     virtual void split_node_data( CvDTreeNode* n );
 | |
| };
 | |
| 
 | |
| class CvERTrees : public CvRTrees
 | |
| {
 | |
| public:
 | |
|     CV_WRAP CvERTrees();
 | |
|     virtual ~CvERTrees();
 | |
|     virtual bool train( const CvMat* trainData, int tflag,
 | |
|                         const CvMat* responses, const CvMat* varIdx=0,
 | |
|                         const CvMat* sampleIdx=0, const CvMat* varType=0,
 | |
|                         const CvMat* missingDataMask=0,
 | |
|                         CvRTParams params=CvRTParams());
 | |
|     CV_WRAP virtual bool train( const cv::Mat& trainData, int tflag,
 | |
|                        const cv::Mat& responses, const cv::Mat& varIdx=cv::Mat(),
 | |
|                        const cv::Mat& sampleIdx=cv::Mat(), const cv::Mat& varType=cv::Mat(),
 | |
|                        const cv::Mat& missingDataMask=cv::Mat(),
 | |
|                        CvRTParams params=CvRTParams());
 | |
|     virtual bool train( CvMLData* data, CvRTParams params=CvRTParams() );
 | |
| protected:
 | |
|     virtual cv::String getName() const;
 | |
|     virtual bool grow_forest( const CvTermCriteria term_crit );
 | |
| };
 | |
| 
 | |
| 
 | |
| /****************************************************************************************\
 | |
| *                                   Boosted tree classifier                              *
 | |
| \****************************************************************************************/
 | |
| 
 | |
| struct CvBoostParams : public CvDTreeParams
 | |
| {
 | |
|     CV_PROP_RW int boost_type;
 | |
|     CV_PROP_RW int weak_count;
 | |
|     CV_PROP_RW int split_criteria;
 | |
|     CV_PROP_RW double weight_trim_rate;
 | |
| 
 | |
|     CvBoostParams();
 | |
|     CvBoostParams( int boost_type, int weak_count, double weight_trim_rate,
 | |
|                    int max_depth, bool use_surrogates, const float* priors );
 | |
| };
 | |
| 
 | |
| 
 | |
| class CvBoost;
 | |
| 
 | |
| class CvBoostTree: public CvDTree
 | |
| {
 | |
| public:
 | |
|     CvBoostTree();
 | |
|     virtual ~CvBoostTree();
 | |
| 
 | |
|     virtual bool train( CvDTreeTrainData* trainData,
 | |
|                         const CvMat* subsample_idx, CvBoost* ensemble );
 | |
| 
 | |
|     virtual void scale( double s );
 | |
|     virtual void read( CvFileStorage* fs, CvFileNode* node,
 | |
|                        CvBoost* ensemble, CvDTreeTrainData* _data );
 | |
|     virtual void clear();
 | |
| 
 | |
|     /* dummy methods to avoid warnings: BEGIN */
 | |
|     virtual bool train( const CvMat* trainData, int tflag,
 | |
|                         const CvMat* responses, const CvMat* varIdx=0,
 | |
|                         const CvMat* sampleIdx=0, const CvMat* varType=0,
 | |
|                         const CvMat* missingDataMask=0,
 | |
|                         CvDTreeParams params=CvDTreeParams() );
 | |
|     virtual bool train( CvDTreeTrainData* trainData, const CvMat* _subsample_idx );
 | |
| 
 | |
|     virtual void read( CvFileStorage* fs, CvFileNode* node );
 | |
|     virtual void read( CvFileStorage* fs, CvFileNode* node,
 | |
|                        CvDTreeTrainData* data );
 | |
|     /* dummy methods to avoid warnings: END */
 | |
| 
 | |
| protected:
 | |
| 
 | |
|     virtual void try_split_node( CvDTreeNode* n );
 | |
|     virtual CvDTreeSplit* find_surrogate_split_ord( CvDTreeNode* n, int vi, uchar* ext_buf = 0 );
 | |
|     virtual CvDTreeSplit* find_surrogate_split_cat( CvDTreeNode* n, int vi, uchar* ext_buf = 0 );
 | |
|     virtual CvDTreeSplit* find_split_ord_class( CvDTreeNode* n, int vi,
 | |
|         float init_quality = 0, CvDTreeSplit* _split = 0, uchar* ext_buf = 0 );
 | |
|     virtual CvDTreeSplit* find_split_cat_class( CvDTreeNode* n, int vi,
 | |
|         float init_quality = 0, CvDTreeSplit* _split = 0, uchar* ext_buf = 0 );
 | |
|     virtual CvDTreeSplit* find_split_ord_reg( CvDTreeNode* n, int vi,
 | |
|         float init_quality = 0, CvDTreeSplit* _split = 0, uchar* ext_buf = 0 );
 | |
|     virtual CvDTreeSplit* find_split_cat_reg( CvDTreeNode* n, int vi,
 | |
|         float init_quality = 0, CvDTreeSplit* _split = 0, uchar* ext_buf = 0 );
 | |
|     virtual void calc_node_value( CvDTreeNode* n );
 | |
|     virtual double calc_node_dir( CvDTreeNode* n );
 | |
| 
 | |
|     CvBoost* ensemble;
 | |
| };
 | |
| 
 | |
| 
 | |
| class CvBoost : public CvStatModel
 | |
| {
 | |
| public:
 | |
|     // Boosting type
 | |
|     enum { DISCRETE=0, REAL=1, LOGIT=2, GENTLE=3 };
 | |
| 
 | |
|     // Splitting criteria
 | |
|     enum { DEFAULT=0, GINI=1, MISCLASS=3, SQERR=4 };
 | |
| 
 | |
|     CV_WRAP CvBoost();
 | |
|     virtual ~CvBoost();
 | |
| 
 | |
|     CvBoost( const CvMat* trainData, int tflag,
 | |
|              const CvMat* responses, const CvMat* varIdx=0,
 | |
|              const CvMat* sampleIdx=0, const CvMat* varType=0,
 | |
|              const CvMat* missingDataMask=0,
 | |
|              CvBoostParams params=CvBoostParams() );
 | |
| 
 | |
|     virtual bool train( const CvMat* trainData, int tflag,
 | |
|              const CvMat* responses, const CvMat* varIdx=0,
 | |
|              const CvMat* sampleIdx=0, const CvMat* varType=0,
 | |
|              const CvMat* missingDataMask=0,
 | |
|              CvBoostParams params=CvBoostParams(),
 | |
|              bool update=false );
 | |
| 
 | |
|     virtual bool train( CvMLData* data,
 | |
|              CvBoostParams params=CvBoostParams(),
 | |
|              bool update=false );
 | |
| 
 | |
|     virtual float predict( const CvMat* sample, const CvMat* missing=0,
 | |
|                            CvMat* weak_responses=0, CvSlice slice=CV_WHOLE_SEQ,
 | |
|                            bool raw_mode=false, bool return_sum=false ) const;
 | |
| 
 | |
|     CV_WRAP CvBoost( const cv::Mat& trainData, int tflag,
 | |
|             const cv::Mat& responses, const cv::Mat& varIdx=cv::Mat(),
 | |
|             const cv::Mat& sampleIdx=cv::Mat(), const cv::Mat& varType=cv::Mat(),
 | |
|             const cv::Mat& missingDataMask=cv::Mat(),
 | |
|             CvBoostParams params=CvBoostParams() );
 | |
| 
 | |
|     CV_WRAP virtual bool train( const cv::Mat& trainData, int tflag,
 | |
|                        const cv::Mat& responses, const cv::Mat& varIdx=cv::Mat(),
 | |
|                        const cv::Mat& sampleIdx=cv::Mat(), const cv::Mat& varType=cv::Mat(),
 | |
|                        const cv::Mat& missingDataMask=cv::Mat(),
 | |
|                        CvBoostParams params=CvBoostParams(),
 | |
|                        bool update=false );
 | |
| 
 | |
|     CV_WRAP virtual float predict( const cv::Mat& sample, const cv::Mat& missing=cv::Mat(),
 | |
|                                    const cv::Range& slice=cv::Range::all(), bool rawMode=false,
 | |
|                                    bool returnSum=false ) const;
 | |
| 
 | |
|     virtual float calc_error( CvMLData* _data, int type , std::vector<float> *resp = 0 ); // type in {CV_TRAIN_ERROR, CV_TEST_ERROR}
 | |
| 
 | |
|     CV_WRAP virtual void prune( CvSlice slice );
 | |
| 
 | |
|     CV_WRAP virtual void clear();
 | |
| 
 | |
|     virtual void write( CvFileStorage* storage, const char* name ) const;
 | |
|     virtual void read( CvFileStorage* storage, CvFileNode* node );
 | |
|     virtual const CvMat* get_active_vars(bool absolute_idx=true);
 | |
| 
 | |
|     CvSeq* get_weak_predictors();
 | |
| 
 | |
|     CvMat* get_weights();
 | |
|     CvMat* get_subtree_weights();
 | |
|     CvMat* get_weak_response();
 | |
|     const CvBoostParams& get_params() const;
 | |
|     const CvDTreeTrainData* get_data() const;
 | |
| 
 | |
| protected:
 | |
| 
 | |
|     virtual bool set_params( const CvBoostParams& params );
 | |
|     virtual void update_weights( CvBoostTree* tree );
 | |
|     virtual void trim_weights();
 | |
|     virtual void write_params( CvFileStorage* fs ) const;
 | |
|     virtual void read_params( CvFileStorage* fs, CvFileNode* node );
 | |
| 
 | |
|     virtual void initialize_weights(double (&p)[2]);
 | |
| 
 | |
|     CvDTreeTrainData* data;
 | |
|     CvMat train_data_hdr, responses_hdr;
 | |
|     cv::Mat train_data_mat, responses_mat;
 | |
|     CvBoostParams params;
 | |
|     CvSeq* weak;
 | |
| 
 | |
|     CvMat* active_vars;
 | |
|     CvMat* active_vars_abs;
 | |
|     bool have_active_cat_vars;
 | |
| 
 | |
|     CvMat* orig_response;
 | |
|     CvMat* sum_response;
 | |
|     CvMat* weak_eval;
 | |
|     CvMat* subsample_mask;
 | |
|     CvMat* weights;
 | |
|     CvMat* subtree_weights;
 | |
|     bool have_subsample;
 | |
| };
 | |
| 
 | |
| 
 | |
| /****************************************************************************************\
 | |
| *                                   Gradient Boosted Trees                               *
 | |
| \****************************************************************************************/
 | |
| 
 | |
| // DataType: STRUCT CvGBTreesParams
 | |
| // Parameters of GBT (Gradient Boosted trees model), including single
 | |
| // tree settings and ensemble parameters.
 | |
| //
 | |
| // weak_count          - count of trees in the ensemble
 | |
| // loss_function_type  - loss function used for ensemble training
 | |
| // subsample_portion   - portion of whole training set used for
 | |
| //                       every single tree training.
 | |
| //                       subsample_portion value is in (0.0, 1.0].
 | |
| //                       subsample_portion == 1.0 when whole dataset is
 | |
| //                       used on each step. Count of sample used on each
 | |
| //                       step is computed as
 | |
| //                       int(total_samples_count * subsample_portion).
 | |
| // shrinkage           - regularization parameter.
 | |
| //                       Each tree prediction is multiplied on shrinkage value.
 | |
| 
 | |
| 
 | |
| struct CvGBTreesParams : public CvDTreeParams
 | |
| {
 | |
|     CV_PROP_RW int weak_count;
 | |
|     CV_PROP_RW int loss_function_type;
 | |
|     CV_PROP_RW float subsample_portion;
 | |
|     CV_PROP_RW float shrinkage;
 | |
| 
 | |
|     CvGBTreesParams();
 | |
|     CvGBTreesParams( int loss_function_type, int weak_count, float shrinkage,
 | |
|         float subsample_portion, int max_depth, bool use_surrogates );
 | |
| };
 | |
| 
 | |
| // DataType: CLASS CvGBTrees
 | |
| // Gradient Boosting Trees (GBT) algorithm implementation.
 | |
| //
 | |
| // data             - training dataset
 | |
| // params           - parameters of the CvGBTrees
 | |
| // weak             - array[0..(class_count-1)] of CvSeq
 | |
| //                    for storing tree ensembles
 | |
| // orig_response    - original responses of the training set samples
 | |
| // sum_response     - predicitons of the current model on the training dataset.
 | |
| //                    this matrix is updated on every iteration.
 | |
| // sum_response_tmp - predicitons of the model on the training set on the next
 | |
| //                    step. On every iteration values of sum_responses_tmp are
 | |
| //                    computed via sum_responses values. When the current
 | |
| //                    step is complete sum_response values become equal to
 | |
| //                    sum_responses_tmp.
 | |
| // sampleIdx       - indices of samples used for training the ensemble.
 | |
| //                    CvGBTrees training procedure takes a set of samples
 | |
| //                    (train_data) and a set of responses (responses).
 | |
| //                    Only pairs (train_data[i], responses[i]), where i is
 | |
| //                    in sample_idx are used for training the ensemble.
 | |
| // subsample_train  - indices of samples used for training a single decision
 | |
| //                    tree on the current step. This indices are countered
 | |
| //                    relatively to the sample_idx, so that pairs
 | |
| //                    (train_data[sample_idx[i]], responses[sample_idx[i]])
 | |
| //                    are used for training a decision tree.
 | |
| //                    Training set is randomly splited
 | |
| //                    in two parts (subsample_train and subsample_test)
 | |
| //                    on every iteration accordingly to the portion parameter.
 | |
| // subsample_test   - relative indices of samples from the training set,
 | |
| //                    which are not used for training a tree on the current
 | |
| //                    step.
 | |
| // missing          - mask of the missing values in the training set. This
 | |
| //                    matrix has the same size as train_data. 1 - missing
 | |
| //                    value, 0 - not a missing value.
 | |
| // class_labels     - output class labels map.
 | |
| // rng              - random number generator. Used for spliting the
 | |
| //                    training set.
 | |
| // class_count      - count of output classes.
 | |
| //                    class_count == 1 in the case of regression,
 | |
| //                    and > 1 in the case of classification.
 | |
| // delta            - Huber loss function parameter.
 | |
| // base_value       - start point of the gradient descent procedure.
 | |
| //                    model prediction is
 | |
| //                    f(x) = f_0 + sum_{i=1..weak_count-1}(f_i(x)), where
 | |
| //                    f_0 is the base value.
 | |
| 
 | |
| 
 | |
| 
 | |
| class CvGBTrees : public CvStatModel
 | |
| {
 | |
| public:
 | |
| 
 | |
|     /*
 | |
|     // DataType: ENUM
 | |
|     // Loss functions implemented in CvGBTrees.
 | |
|     //
 | |
|     // SQUARED_LOSS
 | |
|     // problem: regression
 | |
|     // loss = (x - x')^2
 | |
|     //
 | |
|     // ABSOLUTE_LOSS
 | |
|     // problem: regression
 | |
|     // loss = abs(x - x')
 | |
|     //
 | |
|     // HUBER_LOSS
 | |
|     // problem: regression
 | |
|     // loss = delta*( abs(x - x') - delta/2), if abs(x - x') > delta
 | |
|     //           1/2*(x - x')^2, if abs(x - x') <= delta,
 | |
|     //           where delta is the alpha-quantile of pseudo responses from
 | |
|     //           the training set.
 | |
|     //
 | |
|     // DEVIANCE_LOSS
 | |
|     // problem: classification
 | |
|     //
 | |
|     */
 | |
|     enum {SQUARED_LOSS=0, ABSOLUTE_LOSS, HUBER_LOSS=3, DEVIANCE_LOSS};
 | |
| 
 | |
| 
 | |
|     /*
 | |
|     // Default constructor. Creates a model only (without training).
 | |
|     // Should be followed by one form of the train(...) function.
 | |
|     //
 | |
|     // API
 | |
|     // CvGBTrees();
 | |
| 
 | |
|     // INPUT
 | |
|     // OUTPUT
 | |
|     // RESULT
 | |
|     */
 | |
|     CV_WRAP CvGBTrees();
 | |
| 
 | |
| 
 | |
|     /*
 | |
|     // Full form constructor. Creates a gradient boosting model and does the
 | |
|     // train.
 | |
|     //
 | |
|     // API
 | |
|     // CvGBTrees( const CvMat* trainData, int tflag,
 | |
|              const CvMat* responses, const CvMat* varIdx=0,
 | |
|              const CvMat* sampleIdx=0, const CvMat* varType=0,
 | |
|              const CvMat* missingDataMask=0,
 | |
|              CvGBTreesParams params=CvGBTreesParams() );
 | |
| 
 | |
|     // INPUT
 | |
|     // trainData    - a set of input feature vectors.
 | |
|     //                  size of matrix is
 | |
|     //                  <count of samples> x <variables count>
 | |
|     //                  or <variables count> x <count of samples>
 | |
|     //                  depending on the tflag parameter.
 | |
|     //                  matrix values are float.
 | |
|     // tflag         - a flag showing how do samples stored in the
 | |
|     //                  trainData matrix row by row (tflag=CV_ROW_SAMPLE)
 | |
|     //                  or column by column (tflag=CV_COL_SAMPLE).
 | |
|     // responses     - a vector of responses corresponding to the samples
 | |
|     //                  in trainData.
 | |
|     // varIdx       - indices of used variables. zero value means that all
 | |
|     //                  variables are active.
 | |
|     // sampleIdx    - indices of used samples. zero value means that all
 | |
|     //                  samples from trainData are in the training set.
 | |
|     // varType      - vector of <variables count> length. gives every
 | |
|     //                  variable type CV_VAR_CATEGORICAL or CV_VAR_ORDERED.
 | |
|     //                  varType = 0 means all variables are numerical.
 | |
|     // missingDataMask  - a mask of misiing values in trainData.
 | |
|     //                  missingDataMask = 0 means that there are no missing
 | |
|     //                  values.
 | |
|     // params         - parameters of GTB algorithm.
 | |
|     // OUTPUT
 | |
|     // RESULT
 | |
|     */
 | |
|     CvGBTrees( const CvMat* trainData, int tflag,
 | |
|              const CvMat* responses, const CvMat* varIdx=0,
 | |
|              const CvMat* sampleIdx=0, const CvMat* varType=0,
 | |
|              const CvMat* missingDataMask=0,
 | |
|              CvGBTreesParams params=CvGBTreesParams() );
 | |
| 
 | |
| 
 | |
|     /*
 | |
|     // Destructor.
 | |
|     */
 | |
|     virtual ~CvGBTrees();
 | |
| 
 | |
| 
 | |
|     /*
 | |
|     // Gradient tree boosting model training
 | |
|     //
 | |
|     // API
 | |
|     // virtual bool train( const CvMat* trainData, int tflag,
 | |
|              const CvMat* responses, const CvMat* varIdx=0,
 | |
|              const CvMat* sampleIdx=0, const CvMat* varType=0,
 | |
|              const CvMat* missingDataMask=0,
 | |
|              CvGBTreesParams params=CvGBTreesParams(),
 | |
|              bool update=false );
 | |
| 
 | |
|     // INPUT
 | |
|     // trainData    - a set of input feature vectors.
 | |
|     //                  size of matrix is
 | |
|     //                  <count of samples> x <variables count>
 | |
|     //                  or <variables count> x <count of samples>
 | |
|     //                  depending on the tflag parameter.
 | |
|     //                  matrix values are float.
 | |
|     // tflag         - a flag showing how do samples stored in the
 | |
|     //                  trainData matrix row by row (tflag=CV_ROW_SAMPLE)
 | |
|     //                  or column by column (tflag=CV_COL_SAMPLE).
 | |
|     // responses     - a vector of responses corresponding to the samples
 | |
|     //                  in trainData.
 | |
|     // varIdx       - indices of used variables. zero value means that all
 | |
|     //                  variables are active.
 | |
|     // sampleIdx    - indices of used samples. zero value means that all
 | |
|     //                  samples from trainData are in the training set.
 | |
|     // varType      - vector of <variables count> length. gives every
 | |
|     //                  variable type CV_VAR_CATEGORICAL or CV_VAR_ORDERED.
 | |
|     //                  varType = 0 means all variables are numerical.
 | |
|     // missingDataMask  - a mask of misiing values in trainData.
 | |
|     //                  missingDataMask = 0 means that there are no missing
 | |
|     //                  values.
 | |
|     // params         - parameters of GTB algorithm.
 | |
|     // update         - is not supported now. (!)
 | |
|     // OUTPUT
 | |
|     // RESULT
 | |
|     // Error state.
 | |
|     */
 | |
|     virtual bool train( const CvMat* trainData, int tflag,
 | |
|              const CvMat* responses, const CvMat* varIdx=0,
 | |
|              const CvMat* sampleIdx=0, const CvMat* varType=0,
 | |
|              const CvMat* missingDataMask=0,
 | |
|              CvGBTreesParams params=CvGBTreesParams(),
 | |
|              bool update=false );
 | |
| 
 | |
| 
 | |
|     /*
 | |
|     // Gradient tree boosting model training
 | |
|     //
 | |
|     // API
 | |
|     // virtual bool train( CvMLData* data,
 | |
|              CvGBTreesParams params=CvGBTreesParams(),
 | |
|              bool update=false ) {return false;}
 | |
| 
 | |
|     // INPUT
 | |
|     // data          - training set.
 | |
|     // params        - parameters of GTB algorithm.
 | |
|     // update        - is not supported now. (!)
 | |
|     // OUTPUT
 | |
|     // RESULT
 | |
|     // Error state.
 | |
|     */
 | |
|     virtual bool train( CvMLData* data,
 | |
|              CvGBTreesParams params=CvGBTreesParams(),
 | |
|              bool update=false );
 | |
| 
 | |
| 
 | |
|     /*
 | |
|     // Response value prediction
 | |
|     //
 | |
|     // API
 | |
|     // virtual float predict_serial( const CvMat* sample, const CvMat* missing=0,
 | |
|              CvMat* weak_responses=0, CvSlice slice = CV_WHOLE_SEQ,
 | |
|              int k=-1 ) const;
 | |
| 
 | |
|     // INPUT
 | |
|     // sample         - input sample of the same type as in the training set.
 | |
|     // missing        - missing values mask. missing=0 if there are no
 | |
|     //                   missing values in sample vector.
 | |
|     // weak_responses  - predictions of all of the trees.
 | |
|     //                   not implemented (!)
 | |
|     // slice           - part of the ensemble used for prediction.
 | |
|     //                   slice = CV_WHOLE_SEQ when all trees are used.
 | |
|     // k               - number of ensemble used.
 | |
|     //                   k is in {-1,0,1,..,<count of output classes-1>}.
 | |
|     //                   in the case of classification problem
 | |
|     //                   <count of output classes-1> ensembles are built.
 | |
|     //                   If k = -1 ordinary prediction is the result,
 | |
|     //                   otherwise function gives the prediction of the
 | |
|     //                   k-th ensemble only.
 | |
|     // OUTPUT
 | |
|     // RESULT
 | |
|     // Predicted value.
 | |
|     */
 | |
|     virtual float predict_serial( const CvMat* sample, const CvMat* missing=0,
 | |
|             CvMat* weakResponses=0, CvSlice slice = CV_WHOLE_SEQ,
 | |
|             int k=-1 ) const;
 | |
| 
 | |
|     /*
 | |
|     // Response value prediction.
 | |
|     // Parallel version (in the case of TBB existence)
 | |
|     //
 | |
|     // API
 | |
|     // virtual float predict( const CvMat* sample, const CvMat* missing=0,
 | |
|              CvMat* weak_responses=0, CvSlice slice = CV_WHOLE_SEQ,
 | |
|              int k=-1 ) const;
 | |
| 
 | |
|     // INPUT
 | |
|     // sample         - input sample of the same type as in the training set.
 | |
|     // missing        - missing values mask. missing=0 if there are no
 | |
|     //                   missing values in sample vector.
 | |
|     // weak_responses  - predictions of all of the trees.
 | |
|     //                   not implemented (!)
 | |
|     // slice           - part of the ensemble used for prediction.
 | |
|     //                   slice = CV_WHOLE_SEQ when all trees are used.
 | |
|     // k               - number of ensemble used.
 | |
|     //                   k is in {-1,0,1,..,<count of output classes-1>}.
 | |
|     //                   in the case of classification problem
 | |
|     //                   <count of output classes-1> ensembles are built.
 | |
|     //                   If k = -1 ordinary prediction is the result,
 | |
|     //                   otherwise function gives the prediction of the
 | |
|     //                   k-th ensemble only.
 | |
|     // OUTPUT
 | |
|     // RESULT
 | |
|     // Predicted value.
 | |
|     */
 | |
|     virtual float predict( const CvMat* sample, const CvMat* missing=0,
 | |
|             CvMat* weakResponses=0, CvSlice slice = CV_WHOLE_SEQ,
 | |
|             int k=-1 ) const;
 | |
| 
 | |
|     /*
 | |
|     // Deletes all the data.
 | |
|     //
 | |
|     // API
 | |
|     // virtual void clear();
 | |
| 
 | |
|     // INPUT
 | |
|     // OUTPUT
 | |
|     // delete data, weak, orig_response, sum_response,
 | |
|     //        weak_eval, subsample_train, subsample_test,
 | |
|     //        sample_idx, missing, lass_labels
 | |
|     // delta = 0.0
 | |
|     // RESULT
 | |
|     */
 | |
|     CV_WRAP virtual void clear();
 | |
| 
 | |
|     /*
 | |
|     // Compute error on the train/test set.
 | |
|     //
 | |
|     // API
 | |
|     // virtual float calc_error( CvMLData* _data, int type,
 | |
|     //        std::vector<float> *resp = 0 );
 | |
|     //
 | |
|     // INPUT
 | |
|     // data  - dataset
 | |
|     // type  - defines which error is to compute: train (CV_TRAIN_ERROR) or
 | |
|     //         test (CV_TEST_ERROR).
 | |
|     // OUTPUT
 | |
|     // resp  - vector of predicitons
 | |
|     // RESULT
 | |
|     // Error value.
 | |
|     */
 | |
|     virtual float calc_error( CvMLData* _data, int type,
 | |
|             std::vector<float> *resp = 0 );
 | |
| 
 | |
|     /*
 | |
|     //
 | |
|     // Write parameters of the gtb model and data. Write learned model.
 | |
|     //
 | |
|     // API
 | |
|     // virtual void write( CvFileStorage* fs, const char* name ) const;
 | |
|     //
 | |
|     // INPUT
 | |
|     // fs     - file storage to read parameters from.
 | |
|     // name   - model name.
 | |
|     // OUTPUT
 | |
|     // RESULT
 | |
|     */
 | |
|     virtual void write( CvFileStorage* fs, const char* name ) const;
 | |
| 
 | |
| 
 | |
|     /*
 | |
|     //
 | |
|     // Read parameters of the gtb model and data. Read learned model.
 | |
|     //
 | |
|     // API
 | |
|     // virtual void read( CvFileStorage* fs, CvFileNode* node );
 | |
|     //
 | |
|     // INPUT
 | |
|     // fs     - file storage to read parameters from.
 | |
|     // node   - file node.
 | |
|     // OUTPUT
 | |
|     // RESULT
 | |
|     */
 | |
|     virtual void read( CvFileStorage* fs, CvFileNode* node );
 | |
| 
 | |
| 
 | |
|     // new-style C++ interface
 | |
|     CV_WRAP CvGBTrees( const cv::Mat& trainData, int tflag,
 | |
|               const cv::Mat& responses, const cv::Mat& varIdx=cv::Mat(),
 | |
|               const cv::Mat& sampleIdx=cv::Mat(), const cv::Mat& varType=cv::Mat(),
 | |
|               const cv::Mat& missingDataMask=cv::Mat(),
 | |
|               CvGBTreesParams params=CvGBTreesParams() );
 | |
| 
 | |
|     CV_WRAP virtual bool train( const cv::Mat& trainData, int tflag,
 | |
|                        const cv::Mat& responses, const cv::Mat& varIdx=cv::Mat(),
 | |
|                        const cv::Mat& sampleIdx=cv::Mat(), const cv::Mat& varType=cv::Mat(),
 | |
|                        const cv::Mat& missingDataMask=cv::Mat(),
 | |
|                        CvGBTreesParams params=CvGBTreesParams(),
 | |
|                        bool update=false );
 | |
| 
 | |
|     CV_WRAP virtual float predict( const cv::Mat& sample, const cv::Mat& missing=cv::Mat(),
 | |
|                            const cv::Range& slice = cv::Range::all(),
 | |
|                            int k=-1 ) const;
 | |
| 
 | |
| protected:
 | |
| 
 | |
|     /*
 | |
|     // Compute the gradient vector components.
 | |
|     //
 | |
|     // API
 | |
|     // virtual void find_gradient( const int k = 0);
 | |
| 
 | |
|     // INPUT
 | |
|     // k        - used for classification problem, determining current
 | |
|     //            tree ensemble.
 | |
|     // OUTPUT
 | |
|     // changes components of data->responses
 | |
|     // which correspond to samples used for training
 | |
|     // on the current step.
 | |
|     // RESULT
 | |
|     */
 | |
|     virtual void find_gradient( const int k = 0);
 | |
| 
 | |
| 
 | |
|     /*
 | |
|     //
 | |
|     // Change values in tree leaves according to the used loss function.
 | |
|     //
 | |
|     // API
 | |
|     // virtual void change_values(CvDTree* tree, const int k = 0);
 | |
|     //
 | |
|     // INPUT
 | |
|     // tree      - decision tree to change.
 | |
|     // k         - used for classification problem, determining current
 | |
|     //             tree ensemble.
 | |
|     // OUTPUT
 | |
|     // changes 'value' fields of the trees' leaves.
 | |
|     // changes sum_response_tmp.
 | |
|     // RESULT
 | |
|     */
 | |
|     virtual void change_values(CvDTree* tree, const int k = 0);
 | |
| 
 | |
| 
 | |
|     /*
 | |
|     //
 | |
|     // Find optimal constant prediction value according to the used loss
 | |
|     // function.
 | |
|     // The goal is to find a constant which gives the minimal summary loss
 | |
|     // on the _Idx samples.
 | |
|     //
 | |
|     // API
 | |
|     // virtual float find_optimal_value( const CvMat* _Idx );
 | |
|     //
 | |
|     // INPUT
 | |
|     // _Idx        - indices of the samples from the training set.
 | |
|     // OUTPUT
 | |
|     // RESULT
 | |
|     // optimal constant value.
 | |
|     */
 | |
|     virtual float find_optimal_value( const CvMat* _Idx );
 | |
| 
 | |
| 
 | |
|     /*
 | |
|     //
 | |
|     // Randomly split the whole training set in two parts according
 | |
|     // to params.portion.
 | |
|     //
 | |
|     // API
 | |
|     // virtual void do_subsample();
 | |
|     //
 | |
|     // INPUT
 | |
|     // OUTPUT
 | |
|     // subsample_train - indices of samples used for training
 | |
|     // subsample_test  - indices of samples used for test
 | |
|     // RESULT
 | |
|     */
 | |
|     virtual void do_subsample();
 | |
| 
 | |
| 
 | |
|     /*
 | |
|     //
 | |
|     // Internal recursive function giving an array of subtree tree leaves.
 | |
|     //
 | |
|     // API
 | |
|     // void leaves_get( CvDTreeNode** leaves, int& count, CvDTreeNode* node );
 | |
|     //
 | |
|     // INPUT
 | |
|     // node         - current leaf.
 | |
|     // OUTPUT
 | |
|     // count        - count of leaves in the subtree.
 | |
|     // leaves       - array of pointers to leaves.
 | |
|     // RESULT
 | |
|     */
 | |
|     void leaves_get( CvDTreeNode** leaves, int& count, CvDTreeNode* node );
 | |
| 
 | |
| 
 | |
|     /*
 | |
|     //
 | |
|     // Get leaves of the tree.
 | |
|     //
 | |
|     // API
 | |
|     // CvDTreeNode** GetLeaves( const CvDTree* dtree, int& len );
 | |
|     //
 | |
|     // INPUT
 | |
|     // dtree            - decision tree.
 | |
|     // OUTPUT
 | |
|     // len              - count of the leaves.
 | |
|     // RESULT
 | |
|     // CvDTreeNode**    - array of pointers to leaves.
 | |
|     */
 | |
|     CvDTreeNode** GetLeaves( const CvDTree* dtree, int& len );
 | |
| 
 | |
| 
 | |
|     /*
 | |
|     //
 | |
|     // Is it a regression or a classification.
 | |
|     //
 | |
|     // API
 | |
|     // bool problem_type();
 | |
|     //
 | |
|     // INPUT
 | |
|     // OUTPUT
 | |
|     // RESULT
 | |
|     // false if it is a classification problem,
 | |
|     // true - if regression.
 | |
|     */
 | |
|     virtual bool problem_type() const;
 | |
| 
 | |
| 
 | |
|     /*
 | |
|     //
 | |
|     // Write parameters of the gtb model.
 | |
|     //
 | |
|     // API
 | |
|     // virtual void write_params( CvFileStorage* fs ) const;
 | |
|     //
 | |
|     // INPUT
 | |
|     // fs           - file storage to write parameters to.
 | |
|     // OUTPUT
 | |
|     // RESULT
 | |
|     */
 | |
|     virtual void write_params( CvFileStorage* fs ) const;
 | |
| 
 | |
| 
 | |
|     /*
 | |
|     //
 | |
|     // Read parameters of the gtb model and data.
 | |
|     //
 | |
|     // API
 | |
|     // virtual void read_params( CvFileStorage* fs );
 | |
|     //
 | |
|     // INPUT
 | |
|     // fs           - file storage to read parameters from.
 | |
|     // OUTPUT
 | |
|     // params       - parameters of the gtb model.
 | |
|     // data         - contains information about the structure
 | |
|     //                of the data set (count of variables,
 | |
|     //                their types, etc.).
 | |
|     // class_labels - output class labels map.
 | |
|     // RESULT
 | |
|     */
 | |
|     virtual void read_params( CvFileStorage* fs, CvFileNode* fnode );
 | |
|     int get_len(const CvMat* mat) const;
 | |
| 
 | |
| 
 | |
|     CvDTreeTrainData* data;
 | |
|     CvGBTreesParams params;
 | |
| 
 | |
|     CvSeq** weak;
 | |
|     CvMat* orig_response;
 | |
|     CvMat* sum_response;
 | |
|     CvMat* sum_response_tmp;
 | |
|     CvMat* sample_idx;
 | |
|     CvMat* subsample_train;
 | |
|     CvMat* subsample_test;
 | |
|     CvMat* missing;
 | |
|     CvMat* class_labels;
 | |
| 
 | |
|     cv::RNG* rng;
 | |
| 
 | |
|     int class_count;
 | |
|     float delta;
 | |
|     float base_value;
 | |
| 
 | |
| };
 | |
| 
 | |
| 
 | |
| 
 | |
| /****************************************************************************************\
 | |
| *                              Artificial Neural Networks (ANN)                          *
 | |
| \****************************************************************************************/
 | |
| 
 | |
| /////////////////////////////////// Multi-Layer Perceptrons //////////////////////////////
 | |
| 
 | |
| struct CvANN_MLP_TrainParams
 | |
| {
 | |
|     CvANN_MLP_TrainParams();
 | |
|     CvANN_MLP_TrainParams( CvTermCriteria term_crit, int train_method,
 | |
|                            double param1, double param2=0 );
 | |
|     ~CvANN_MLP_TrainParams();
 | |
| 
 | |
|     enum { BACKPROP=0, RPROP=1 };
 | |
| 
 | |
|     CV_PROP_RW CvTermCriteria term_crit;
 | |
|     CV_PROP_RW int train_method;
 | |
| 
 | |
|     // backpropagation parameters
 | |
|     CV_PROP_RW double bp_dw_scale, bp_moment_scale;
 | |
| 
 | |
|     // rprop parameters
 | |
|     CV_PROP_RW double rp_dw0, rp_dw_plus, rp_dw_minus, rp_dw_min, rp_dw_max;
 | |
| };
 | |
| 
 | |
| 
 | |
| class CvANN_MLP : public CvStatModel
 | |
| {
 | |
| public:
 | |
|     CV_WRAP CvANN_MLP();
 | |
|     CvANN_MLP( const CvMat* layerSizes,
 | |
|                int activateFunc=CvANN_MLP::SIGMOID_SYM,
 | |
|                double fparam1=0, double fparam2=0 );
 | |
| 
 | |
|     virtual ~CvANN_MLP();
 | |
| 
 | |
|     virtual void create( const CvMat* layerSizes,
 | |
|                          int activateFunc=CvANN_MLP::SIGMOID_SYM,
 | |
|                          double fparam1=0, double fparam2=0 );
 | |
| 
 | |
|     virtual int train( const CvMat* inputs, const CvMat* outputs,
 | |
|                        const CvMat* sampleWeights, const CvMat* sampleIdx=0,
 | |
|                        CvANN_MLP_TrainParams params = CvANN_MLP_TrainParams(),
 | |
|                        int flags=0 );
 | |
|     virtual float predict( const CvMat* inputs, CV_OUT CvMat* outputs ) const;
 | |
| 
 | |
|     CV_WRAP CvANN_MLP( const cv::Mat& layerSizes,
 | |
|               int activateFunc=CvANN_MLP::SIGMOID_SYM,
 | |
|               double fparam1=0, double fparam2=0 );
 | |
| 
 | |
|     CV_WRAP virtual void create( const cv::Mat& layerSizes,
 | |
|                         int activateFunc=CvANN_MLP::SIGMOID_SYM,
 | |
|                         double fparam1=0, double fparam2=0 );
 | |
| 
 | |
|     CV_WRAP virtual int train( const cv::Mat& inputs, const cv::Mat& outputs,
 | |
|                       const cv::Mat& sampleWeights, const cv::Mat& sampleIdx=cv::Mat(),
 | |
|                       CvANN_MLP_TrainParams params = CvANN_MLP_TrainParams(),
 | |
|                       int flags=0 );
 | |
| 
 | |
|     CV_WRAP virtual float predict( const cv::Mat& inputs, CV_OUT cv::Mat& outputs ) const;
 | |
| 
 | |
|     CV_WRAP virtual void clear();
 | |
| 
 | |
|     // possible activation functions
 | |
|     enum { IDENTITY = 0, SIGMOID_SYM = 1, GAUSSIAN = 2 };
 | |
| 
 | |
|     // available training flags
 | |
|     enum { UPDATE_WEIGHTS = 1, NO_INPUT_SCALE = 2, NO_OUTPUT_SCALE = 4 };
 | |
| 
 | |
|     virtual void read( CvFileStorage* fs, CvFileNode* node );
 | |
|     virtual void write( CvFileStorage* storage, const char* name ) const;
 | |
| 
 | |
|     int get_layer_count() { return layer_sizes ? layer_sizes->cols : 0; }
 | |
|     const CvMat* get_layer_sizes() { return layer_sizes; }
 | |
|     double* get_weights(int layer)
 | |
|     {
 | |
|         return layer_sizes && weights &&
 | |
|             (unsigned)layer <= (unsigned)layer_sizes->cols ? weights[layer] : 0;
 | |
|     }
 | |
| 
 | |
|     virtual void calc_activ_func_deriv( CvMat* xf, CvMat* deriv, const double* bias ) const;
 | |
| 
 | |
| protected:
 | |
| 
 | |
|     virtual bool prepare_to_train( const CvMat* _inputs, const CvMat* _outputs,
 | |
|             const CvMat* _sample_weights, const CvMat* sampleIdx,
 | |
|             CvVectors* _ivecs, CvVectors* _ovecs, double** _sw, int _flags );
 | |
| 
 | |
|     // sequential random backpropagation
 | |
|     virtual int train_backprop( CvVectors _ivecs, CvVectors _ovecs, const double* _sw );
 | |
| 
 | |
|     // RPROP algorithm
 | |
|     virtual int train_rprop( CvVectors _ivecs, CvVectors _ovecs, const double* _sw );
 | |
| 
 | |
|     virtual void calc_activ_func( CvMat* xf, const double* bias ) const;
 | |
|     virtual void set_activ_func( int _activ_func=SIGMOID_SYM,
 | |
|                                  double _f_param1=0, double _f_param2=0 );
 | |
|     virtual void init_weights();
 | |
|     virtual void scale_input( const CvMat* _src, CvMat* _dst ) const;
 | |
|     virtual void scale_output( const CvMat* _src, CvMat* _dst ) const;
 | |
|     virtual void calc_input_scale( const CvVectors* vecs, int flags );
 | |
|     virtual void calc_output_scale( const CvVectors* vecs, int flags );
 | |
| 
 | |
|     virtual void write_params( CvFileStorage* fs ) const;
 | |
|     virtual void read_params( CvFileStorage* fs, CvFileNode* node );
 | |
| 
 | |
|     CvMat* layer_sizes;
 | |
|     CvMat* wbuf;
 | |
|     CvMat* sample_weights;
 | |
|     double** weights;
 | |
|     double f_param1, f_param2;
 | |
|     double min_val, max_val, min_val1, max_val1;
 | |
|     int activ_func;
 | |
|     int max_count, max_buf_sz;
 | |
|     CvANN_MLP_TrainParams params;
 | |
|     cv::RNG* rng;
 | |
| };
 | |
| 
 | |
| /****************************************************************************************\
 | |
| *                           Auxilary functions declarations                              *
 | |
| \****************************************************************************************/
 | |
| 
 | |
| /* Generates <sample> from multivariate normal distribution, where <mean> - is an
 | |
|    average row vector, <cov> - symmetric covariation matrix */
 | |
| CVAPI(void) cvRandMVNormal( CvMat* mean, CvMat* cov, CvMat* sample,
 | |
|                            CvRNG* rng CV_DEFAULT(0) );
 | |
| 
 | |
| /* Generates sample from gaussian mixture distribution */
 | |
| CVAPI(void) cvRandGaussMixture( CvMat* means[],
 | |
|                                CvMat* covs[],
 | |
|                                float weights[],
 | |
|                                int clsnum,
 | |
|                                CvMat* sample,
 | |
|                                CvMat* sampClasses CV_DEFAULT(0) );
 | |
| 
 | |
| #define CV_TS_CONCENTRIC_SPHERES 0
 | |
| 
 | |
| /* creates test set */
 | |
| CVAPI(void) cvCreateTestSet( int type, CvMat** samples,
 | |
|                  int num_samples,
 | |
|                  int num_features,
 | |
|                  CvMat** responses,
 | |
|                  int num_classes, ... );
 | |
| 
 | |
| /****************************************************************************************\
 | |
| *                                      Data                                             *
 | |
| \****************************************************************************************/
 | |
| 
 | |
| #define CV_COUNT     0
 | |
| #define CV_PORTION   1
 | |
| 
 | |
| struct CvTrainTestSplit
 | |
| {
 | |
|     CvTrainTestSplit();
 | |
|     CvTrainTestSplit( int train_sample_count, bool mix = true);
 | |
|     CvTrainTestSplit( float train_sample_portion, bool mix = true);
 | |
| 
 | |
|     union
 | |
|     {
 | |
|         int count;
 | |
|         float portion;
 | |
|     } train_sample_part;
 | |
|     int train_sample_part_mode;
 | |
| 
 | |
|     bool mix;
 | |
| };
 | |
| 
 | |
| class CvMLData
 | |
| {
 | |
| public:
 | |
|     CvMLData();
 | |
|     virtual ~CvMLData();
 | |
| 
 | |
|     // returns:
 | |
|     // 0 - OK
 | |
|     // -1 - file can not be opened or is not correct
 | |
|     int read_csv( const char* filename );
 | |
| 
 | |
|     const CvMat* get_values() const;
 | |
|     const CvMat* get_responses();
 | |
|     const CvMat* get_missing() const;
 | |
| 
 | |
|     void set_header_lines_number( int n );
 | |
|     int get_header_lines_number() const;
 | |
| 
 | |
|     void set_response_idx( int idx ); // old response become predictors, new response_idx = idx
 | |
|                                       // if idx < 0 there will be no response
 | |
|     int get_response_idx() const;
 | |
| 
 | |
|     void set_train_test_split( const CvTrainTestSplit * spl );
 | |
|     const CvMat* get_train_sample_idx() const;
 | |
|     const CvMat* get_test_sample_idx() const;
 | |
|     void mix_train_and_test_idx();
 | |
| 
 | |
|     const CvMat* get_var_idx();
 | |
|     void chahge_var_idx( int vi, bool state ); // misspelled (saved for back compitability),
 | |
|                                                // use change_var_idx
 | |
|     void change_var_idx( int vi, bool state ); // state == true to set vi-variable as predictor
 | |
| 
 | |
|     const CvMat* get_var_types();
 | |
|     int get_var_type( int var_idx ) const;
 | |
|     // following 2 methods enable to change vars type
 | |
|     // use these methods to assign CV_VAR_CATEGORICAL type for categorical variable
 | |
|     // with numerical labels; in the other cases var types are correctly determined automatically
 | |
|     void set_var_types( const char* str );  // str examples:
 | |
|                                             // "ord[0-17],cat[18]", "ord[0,2,4,10-12], cat[1,3,5-9,13,14]",
 | |
|                                             // "cat", "ord" (all vars are categorical/ordered)
 | |
|     void change_var_type( int var_idx, int type); // type in { CV_VAR_ORDERED, CV_VAR_CATEGORICAL }
 | |
| 
 | |
|     void set_delimiter( char ch );
 | |
|     char get_delimiter() const;
 | |
| 
 | |
|     void set_miss_ch( char ch );
 | |
|     char get_miss_ch() const;
 | |
| 
 | |
|     const std::map<cv::String, int>& get_class_labels_map() const;
 | |
| 
 | |
| protected:
 | |
|     virtual void clear();
 | |
| 
 | |
|     void str_to_flt_elem( const char* token, float& flt_elem, int& type);
 | |
|     void free_train_test_idx();
 | |
| 
 | |
|     char delimiter;
 | |
|     char miss_ch;
 | |
|     //char flt_separator;
 | |
| 
 | |
|     CvMat* values;
 | |
|     CvMat* missing;
 | |
|     CvMat* var_types;
 | |
|     CvMat* var_idx_mask;
 | |
| 
 | |
|     CvMat* response_out; // header
 | |
|     CvMat* var_idx_out; // mat
 | |
|     CvMat* var_types_out; // mat
 | |
| 
 | |
|     int header_lines_number;
 | |
| 
 | |
|     int response_idx;
 | |
| 
 | |
|     int train_sample_count;
 | |
|     bool mix;
 | |
| 
 | |
|     int total_class_count;
 | |
|     std::map<cv::String, int> class_map;
 | |
| 
 | |
|     CvMat* train_sample_idx;
 | |
|     CvMat* test_sample_idx;
 | |
|     int* sample_idx; // data of train_sample_idx and test_sample_idx
 | |
| 
 | |
|     cv::RNG* rng;
 | |
| };
 | |
| 
 | |
| 
 | |
| namespace cv
 | |
| {
 | |
| 
 | |
| typedef CvStatModel StatModel;
 | |
| typedef CvParamGrid ParamGrid;
 | |
| typedef CvNormalBayesClassifier NormalBayesClassifier;
 | |
| typedef CvKNearest KNearest;
 | |
| typedef CvSVMParams SVMParams;
 | |
| typedef CvSVMKernel SVMKernel;
 | |
| typedef CvSVMSolver SVMSolver;
 | |
| typedef CvSVM SVM;
 | |
| typedef CvDTreeParams DTreeParams;
 | |
| typedef CvMLData TrainData;
 | |
| typedef CvDTree DecisionTree;
 | |
| typedef CvForestTree ForestTree;
 | |
| typedef CvRTParams RandomTreeParams;
 | |
| typedef CvRTrees RandomTrees;
 | |
| typedef CvERTreeTrainData ERTreeTRainData;
 | |
| typedef CvForestERTree ERTree;
 | |
| typedef CvERTrees ERTrees;
 | |
| typedef CvBoostParams BoostParams;
 | |
| typedef CvBoostTree BoostTree;
 | |
| typedef CvBoost Boost;
 | |
| typedef CvANN_MLP_TrainParams ANN_MLP_TrainParams;
 | |
| typedef CvANN_MLP NeuralNet_MLP;
 | |
| typedef CvGBTreesParams GradientBoostingTreeParams;
 | |
| typedef CvGBTrees GradientBoostingTrees;
 | |
| 
 | |
| template<> void DefaultDeleter<CvDTreeSplit>::operator ()(CvDTreeSplit* obj) const;
 | |
| }
 | |
| 
 | |
| #endif // __cplusplus
 | |
| #endif // __OPENCV_ML_HPP__
 | |
| 
 | |
| /* End of file. */
 | 
