318 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			318 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
/*M///////////////////////////////////////////////////////////////////////////////////////
 | 
						|
//
 | 
						|
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
 | 
						|
//
 | 
						|
//  By downloading, copying, installing or using the software you agree to this license.
 | 
						|
//  If you do not agree to this license, do not download, install,
 | 
						|
//  copy or use the software.
 | 
						|
//
 | 
						|
//
 | 
						|
//                           License Agreement
 | 
						|
//                For Open Source Computer Vision Library
 | 
						|
//
 | 
						|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
 | 
						|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
 | 
						|
// Third party copyrights are property of their respective owners.
 | 
						|
//
 | 
						|
// Redistribution and use in source and binary forms, with or without modification,
 | 
						|
// are permitted provided that the following conditions are met:
 | 
						|
//
 | 
						|
//   * Redistribution's of source code must retain the above copyright notice,
 | 
						|
//     this list of conditions and the following disclaimer.
 | 
						|
//
 | 
						|
//   * Redistribution's in binary form must reproduce the above copyright notice,
 | 
						|
//     this list of conditions and the following disclaimer in the documentation
 | 
						|
//     and/or other materials provided with the distribution.
 | 
						|
//
 | 
						|
//   * The name of the copyright holders may not be used to endorse or promote products
 | 
						|
//     derived from this software without specific prior written permission.
 | 
						|
//
 | 
						|
// This software is provided by the copyright holders and contributors "as is" and
 | 
						|
// any express or implied warranties, including, but not limited to, the implied
 | 
						|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
 | 
						|
// In no event shall the Intel Corporation or contributors be liable for any direct,
 | 
						|
// indirect, incidental, special, exemplary, or consequential damages
 | 
						|
// (including, but not limited to, procurement of substitute goods or services;
 | 
						|
// loss of use, data, or profits; or business interruption) however caused
 | 
						|
// and on any theory of liability, whether in contract, strict liability,
 | 
						|
// or tort (including negligence or otherwise) arising in any way out of
 | 
						|
// the use of this software, even if advised of the possibility of such damage.
 | 
						|
//
 | 
						|
//M*/
 | 
						|
 | 
						|
#include "test_precomp.hpp"
 | 
						|
 | 
						|
#include <string>
 | 
						|
#include <iostream>
 | 
						|
#include <iterator>
 | 
						|
#include <fstream>
 | 
						|
#include <numeric>
 | 
						|
#include <algorithm>
 | 
						|
#include <iterator>
 | 
						|
 | 
						|
using namespace cv;
 | 
						|
using namespace std;
 | 
						|
 | 
						|
class CV_DetectorsTest : public cvtest::BaseTest
 | 
						|
{
 | 
						|
public:
 | 
						|
    CV_DetectorsTest();
 | 
						|
    ~CV_DetectorsTest();    
 | 
						|
protected:    
 | 
						|
    void run(int);  
 | 
						|
    template <class T> bool testDetector(const Mat& img, const T& detector, vector<KeyPoint>& expected);
 | 
						|
 | 
						|
    void LoadExpected(const string& file, vector<KeyPoint>& out);
 | 
						|
};
 | 
						|
 | 
						|
CV_DetectorsTest::CV_DetectorsTest()
 | 
						|
{
 | 
						|
}
 | 
						|
CV_DetectorsTest::~CV_DetectorsTest() {}
 | 
						|
 | 
						|
void getRotation(const Mat& img, Mat& aff, Mat& out)
 | 
						|
{
 | 
						|
    Point center(img.cols/2, img.rows/2);
 | 
						|
    aff = getRotationMatrix2D(center, 30, 1);
 | 
						|
    warpAffine( img, out, aff, img.size());
 | 
						|
}
 | 
						|
 | 
						|
void getZoom(const Mat& img, Mat& aff, Mat& out)
 | 
						|
{
 | 
						|
    const double mult = 1.2;
 | 
						|
 | 
						|
    aff.create(2, 3, CV_64F);
 | 
						|
    double *data = aff.ptr<double>();
 | 
						|
    data[0] = mult; data[1] =    0; data[2] = 0;
 | 
						|
    data[3] =    0; data[4] = mult; data[5] = 0;
 | 
						|
    
 | 
						|
    warpAffine( img, out, aff, img.size());
 | 
						|
}
 | 
						|
 | 
						|
void getBlur(const Mat& img, Mat& aff, Mat& out)
 | 
						|
{        
 | 
						|
    aff.create(2, 3, CV_64F);
 | 
						|
    double *data = aff.ptr<double>();
 | 
						|
    data[0] = 1; data[1] = 0; data[2] = 0;
 | 
						|
    data[3] = 0; data[4] = 1; data[5] = 0;
 | 
						|
        
 | 
						|
    GaussianBlur(img, out, Size(5, 5), 2);    
 | 
						|
}
 | 
						|
 | 
						|
void getBrightness(const Mat& img, Mat& aff, Mat& out)
 | 
						|
{        
 | 
						|
    aff.create(2, 3, CV_64F);
 | 
						|
    double *data = aff.ptr<double>();
 | 
						|
    data[0] = 1; data[1] = 0; data[2] = 0;
 | 
						|
    data[3] = 0; data[4] = 1; data[5] = 0;
 | 
						|
        
 | 
						|
    add(img, Mat(img.size(), img.type(), Scalar(15)), out);    
 | 
						|
}
 | 
						|
 | 
						|
void showOrig(const Mat& img, const vector<KeyPoint>& orig_pts)
 | 
						|
{
 | 
						|
      
 | 
						|
    Mat img_color;
 | 
						|
    cvtColor(img, img_color, CV_GRAY2BGR); 
 | 
						|
    
 | 
						|
    for(size_t i = 0; i < orig_pts.size(); ++i)    
 | 
						|
        circle(img_color, orig_pts[i].pt, (int)orig_pts[i].size/2, CV_RGB(0, 255, 0));                        
 | 
						|
    
 | 
						|
    namedWindow("O"); imshow("O", img_color);     
 | 
						|
}
 | 
						|
 | 
						|
void show(const string& name, const Mat& new_img, const vector<KeyPoint>& new_pts, const vector<KeyPoint>& transf_pts)
 | 
						|
{
 | 
						|
      
 | 
						|
    Mat new_img_color;    
 | 
						|
    cvtColor(new_img, new_img_color, CV_GRAY2BGR); 
 | 
						|
 | 
						|
    for(size_t i = 0; i < transf_pts.size(); ++i)
 | 
						|
        circle(new_img_color, transf_pts[i].pt, (int)transf_pts[i].size/2, CV_RGB(255, 0, 0));
 | 
						|
 | 
						|
    for(size_t i = 0; i < new_pts.size(); ++i)    
 | 
						|
        circle(new_img_color, new_pts[i].pt, (int)new_pts[i].size/2, CV_RGB(0, 0, 255));
 | 
						|
    
 | 
						|
    namedWindow(name + "_T"); imshow(name + "_T", new_img_color); 
 | 
						|
}
 | 
						|
 | 
						|
struct WrapPoint
 | 
						|
{
 | 
						|
    const double* R;
 | 
						|
    WrapPoint(const Mat& rmat) : R(rmat.ptr<double>()) { };
 | 
						|
    
 | 
						|
    KeyPoint operator()(const KeyPoint& kp) const 
 | 
						|
    {                
 | 
						|
        KeyPoint res = kp;
 | 
						|
        res.pt.x = static_cast<float>(kp.pt.x * R[0] + kp.pt.y * R[1] + R[2]);
 | 
						|
        res.pt.y = static_cast<float>(kp.pt.x * R[3] + kp.pt.y * R[4] + R[5]);                
 | 
						|
        return res;                             
 | 
						|
    }
 | 
						|
};
 | 
						|
 | 
						|
struct sortByR { bool operator()(const KeyPoint& kp1, const KeyPoint& kp2) { return norm(kp1.pt) < norm(kp2.pt); } };
 | 
						|
 | 
						|
template <class T> bool CV_DetectorsTest::testDetector(const Mat& img, const T& detector, vector<KeyPoint>& exp)
 | 
						|
{
 | 
						|
    vector<KeyPoint> orig_kpts;
 | 
						|
    detector(img, orig_kpts);
 | 
						|
 | 
						|
    typedef void (*TransfFunc )(const Mat&, Mat&, Mat& FransfFunc);    
 | 
						|
    const TransfFunc transfFunc[] = { getRotation, getZoom, getBlur, getBrightness };
 | 
						|
    //const string names[] =  { "Rotation", "Zoom", "Blur", "Brightness" };
 | 
						|
    const size_t case_num = sizeof(transfFunc)/sizeof(transfFunc[0]);
 | 
						|
 | 
						|
    vector<Mat> affs(case_num);
 | 
						|
    vector<Mat> new_imgs(case_num);
 | 
						|
 | 
						|
    vector< vector<KeyPoint> > new_kpts(case_num);
 | 
						|
    vector< vector<KeyPoint> > transf_kpts(case_num);
 | 
						|
 | 
						|
    //showOrig(img, orig_kpts);
 | 
						|
    for(size_t i = 0; i < case_num; ++i)   
 | 
						|
    {
 | 
						|
        transfFunc[i](img, affs[i], new_imgs[i]);
 | 
						|
        detector(new_imgs[i], new_kpts[i]);
 | 
						|
        transform(orig_kpts.begin(), orig_kpts.end(), back_inserter(transf_kpts[i]), WrapPoint(affs[i]));
 | 
						|
        //show(names[i], new_imgs[i], new_kpts[i], transf_kpts[i]);
 | 
						|
    }
 | 
						|
 | 
						|
    const float thres = 3;
 | 
						|
    const float nthres = 3;
 | 
						|
 | 
						|
    vector<KeyPoint> result;
 | 
						|
    for(size_t i = 0; i < orig_kpts.size(); ++i)
 | 
						|
    {
 | 
						|
        const KeyPoint& okp = orig_kpts[i];
 | 
						|
        int foundCounter = 0;
 | 
						|
        for(size_t j = 0; j < case_num; ++j)
 | 
						|
        {            
 | 
						|
            const KeyPoint& tkp = transf_kpts[j][i];
 | 
						|
 | 
						|
            size_t k = 0;
 | 
						|
            
 | 
						|
            for(; k < new_kpts[j].size(); ++k)
 | 
						|
                if (norm(new_kpts[j][k].pt - tkp.pt) < nthres && fabs(new_kpts[j][k].size - tkp.size) < thres)
 | 
						|
                    break;
 | 
						|
 | 
						|
            if (k != new_kpts[j].size())
 | 
						|
                ++foundCounter;
 | 
						|
 | 
						|
        }
 | 
						|
        if (foundCounter == (int)case_num)
 | 
						|
            result.push_back(okp);
 | 
						|
    }
 | 
						|
 | 
						|
    sort(result.begin(), result.end(), sortByR());
 | 
						|
    sort(exp.begin(), exp.end(), sortByR());
 | 
						|
 | 
						|
    if (result.size() != exp.size())
 | 
						|
    {
 | 
						|
      ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_TEST_DATA);
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
 | 
						|
    int foundCounter1 = 0;
 | 
						|
    for(size_t i = 0; i < exp.size(); ++i)
 | 
						|
    {
 | 
						|
        const KeyPoint& e = exp[i];                
 | 
						|
        size_t j = 0;
 | 
						|
        for(; j < result.size(); ++j)
 | 
						|
        {
 | 
						|
            const KeyPoint& r = result[i];
 | 
						|
            if (norm(r.pt-e.pt) < nthres && fabs(r.size - e.size) < thres)
 | 
						|
                break;
 | 
						|
        }
 | 
						|
        if (j != result.size())
 | 
						|
            ++foundCounter1;
 | 
						|
    }
 | 
						|
 | 
						|
    int foundCounter2 = 0;
 | 
						|
    for(size_t i = 0; i < result.size(); ++i)
 | 
						|
    {
 | 
						|
        const KeyPoint& r = result[i];                
 | 
						|
        size_t j = 0;
 | 
						|
        for(; j < exp.size(); ++j)
 | 
						|
        {
 | 
						|
            const KeyPoint& e = exp[i];
 | 
						|
            if (norm(r.pt-e.pt) < nthres && fabs(r.size - e.size) < thres)
 | 
						|
                break;
 | 
						|
        }
 | 
						|
        if (j != exp.size())
 | 
						|
            ++foundCounter2;
 | 
						|
    }
 | 
						|
    //showOrig(img, result); waitKey();
 | 
						|
 | 
						|
    const float errorRate = 0.9f;
 | 
						|
    if (float(foundCounter1)/exp.size() < errorRate || float(foundCounter2)/result.size() < errorRate)
 | 
						|
    {
 | 
						|
        ts->set_failed_test_info( cvtest::TS::FAIL_MISMATCH);
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
    return true;        
 | 
						|
}
 | 
						|
 | 
						|
struct SurfNoMaskWrap 
 | 
						|
{
 | 
						|
    const SURF& detector;
 | 
						|
    SurfNoMaskWrap(const SURF& surf) : detector(surf) {}
 | 
						|
    SurfNoMaskWrap& operator=(const SurfNoMaskWrap&);
 | 
						|
    void operator()(const Mat& img, vector<KeyPoint>& kpts) const { detector(img, Mat(), kpts); }
 | 
						|
};
 | 
						|
 | 
						|
void CV_DetectorsTest::LoadExpected(const string& file, vector<KeyPoint>& out)
 | 
						|
{     
 | 
						|
    Mat mat_exp;
 | 
						|
    FileStorage fs(file, FileStorage::READ);    
 | 
						|
    if (fs.isOpened())
 | 
						|
    {
 | 
						|
        read( fs["ResultVectorData"], mat_exp, Mat() );           
 | 
						|
        out.resize(mat_exp.cols / sizeof(KeyPoint));
 | 
						|
        copy(mat_exp.ptr<KeyPoint>(), mat_exp.ptr<KeyPoint>() + out.size(), out.begin());            
 | 
						|
    }
 | 
						|
    else
 | 
						|
    {
 | 
						|
        ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA);
 | 
						|
        out.clear();
 | 
						|
    }    
 | 
						|
}
 | 
						|
 | 
						|
void CV_DetectorsTest::run( int /*start_from*/ )
 | 
						|
{	         
 | 
						|
    Mat img = imread(string(ts->get_data_path()) + "shared/graffiti.png", 0);
 | 
						|
 | 
						|
    if (img.empty())
 | 
						|
    {
 | 
						|
        ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA );
 | 
						|
        return;
 | 
						|
    }
 | 
						|
            
 | 
						|
    Mat to_test(img.size() * 2, img.type(), Scalar(0));
 | 
						|
    Mat roi = to_test(Rect(img.rows/2, img.cols/2, img.cols, img.rows));
 | 
						|
    img.copyTo(roi);
 | 
						|
    GaussianBlur(to_test, to_test, Size(3, 3), 1.5);
 | 
						|
        
 | 
						|
    vector<KeyPoint> exp;
 | 
						|
    LoadExpected(string(ts->get_data_path()) + "detectors/surf.xml", exp);        
 | 
						|
    if (exp.empty())
 | 
						|
        return;
 | 
						|
 | 
						|
    if (!testDetector(to_test, SurfNoMaskWrap(SURF(1536+512+512, 2)), exp))
 | 
						|
        return;
 | 
						|
    
 | 
						|
    LoadExpected(string(ts->get_data_path()) + "detectors/star.xml", exp);
 | 
						|
    if (exp.empty())
 | 
						|
        return;
 | 
						|
 | 
						|
    if (!testDetector(to_test, StarDetector(45, 30, 10, 8, 5), exp))
 | 
						|
        return;
 | 
						|
 | 
						|
    ts->set_failed_test_info( cvtest::TS::OK);		   
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
TEST(Features2d_Detectors, regression) { CV_DetectorsTest test; test.safe_run(); }
 | 
						|
 | 
						|
 | 
						|
 |