350 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			350 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* slarrb.f -- translated by f2c (version 20061008).
 | |
|    You must link the resulting object file with libf2c:
 | |
| 	on Microsoft Windows system, link with libf2c.lib;
 | |
| 	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
 | |
| 	or, if you install libf2c.a in a standard place, with -lf2c -lm
 | |
| 	-- in that order, at the end of the command line, as in
 | |
| 		cc *.o -lf2c -lm
 | |
| 	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
 | |
| 
 | |
| 		http://www.netlib.org/f2c/libf2c.zip
 | |
| */
 | |
| 
 | |
| #include "clapack.h"
 | |
| 
 | |
| 
 | |
| /* Subroutine */ int slarrb_(integer *n, real *d__, real *lld, integer *
 | |
| 	ifirst, integer *ilast, real *rtol1, real *rtol2, integer *offset, 
 | |
| 	real *w, real *wgap, real *werr, real *work, integer *iwork, real *
 | |
| 	pivmin, real *spdiam, integer *twist, integer *info)
 | |
| {
 | |
|     /* System generated locals */
 | |
|     integer i__1;
 | |
|     real r__1, r__2;
 | |
| 
 | |
|     /* Builtin functions */
 | |
|     double log(doublereal);
 | |
| 
 | |
|     /* Local variables */
 | |
|     integer i__, k, r__, i1, ii, ip;
 | |
|     real gap, mid, tmp, back, lgap, rgap, left;
 | |
|     integer iter, nint, prev, next;
 | |
|     real cvrgd, right, width;
 | |
|     extern integer slaneg_(integer *, real *, real *, real *, real *, integer 
 | |
| 	    *);
 | |
|     integer negcnt;
 | |
|     real mnwdth;
 | |
|     integer olnint, maxitr;
 | |
| 
 | |
| 
 | |
| /*  -- LAPACK auxiliary routine (version 3.2) -- */
 | |
| /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
 | |
| /*     November 2006 */
 | |
| 
 | |
| /*     .. Scalar Arguments .. */
 | |
| /*     .. */
 | |
| /*     .. Array Arguments .. */
 | |
| /*     .. */
 | |
| 
 | |
| /*  Purpose */
 | |
| /*  ======= */
 | |
| 
 | |
| /*  Given the relatively robust representation(RRR) L D L^T, SLARRB */
 | |
| /*  does "limited" bisection to refine the eigenvalues of L D L^T, */
 | |
| /*  W( IFIRST-OFFSET ) through W( ILAST-OFFSET ), to more accuracy. Initial */
 | |
| /*  guesses for these eigenvalues are input in W, the corresponding estimate */
 | |
| /*  of the error in these guesses and their gaps are input in WERR */
 | |
| /*  and WGAP, respectively. During bisection, intervals */
 | |
| /*  [left, right] are maintained by storing their mid-points and */
 | |
| /*  semi-widths in the arrays W and WERR respectively. */
 | |
| 
 | |
| /*  Arguments */
 | |
| /*  ========= */
 | |
| 
 | |
| /*  N       (input) INTEGER */
 | |
| /*          The order of the matrix. */
 | |
| 
 | |
| /*  D       (input) REAL             array, dimension (N) */
 | |
| /*          The N diagonal elements of the diagonal matrix D. */
 | |
| 
 | |
| /*  LLD     (input) REAL             array, dimension (N-1) */
 | |
| /*          The (N-1) elements L(i)*L(i)*D(i). */
 | |
| 
 | |
| /*  IFIRST  (input) INTEGER */
 | |
| /*          The index of the first eigenvalue to be computed. */
 | |
| 
 | |
| /*  ILAST   (input) INTEGER */
 | |
| /*          The index of the last eigenvalue to be computed. */
 | |
| 
 | |
| /*  RTOL1   (input) REAL */
 | |
| /*  RTOL2   (input) REAL */
 | |
| /*          Tolerance for the convergence of the bisection intervals. */
 | |
| /*          An interval [LEFT,RIGHT] has converged if */
 | |
| /*          RIGHT-LEFT.LT.MAX( RTOL1*GAP, RTOL2*MAX(|LEFT|,|RIGHT|) ) */
 | |
| /*          where GAP is the (estimated) distance to the nearest */
 | |
| /*          eigenvalue. */
 | |
| 
 | |
| /*  OFFSET  (input) INTEGER */
 | |
| /*          Offset for the arrays W, WGAP and WERR, i.e., the IFIRST-OFFSET */
 | |
| /*          through ILAST-OFFSET elements of these arrays are to be used. */
 | |
| 
 | |
| /*  W       (input/output) REAL             array, dimension (N) */
 | |
| /*          On input, W( IFIRST-OFFSET ) through W( ILAST-OFFSET ) are */
 | |
| /*          estimates of the eigenvalues of L D L^T indexed IFIRST throug */
 | |
| /*          ILAST. */
 | |
| /*          On output, these estimates are refined. */
 | |
| 
 | |
| /*  WGAP    (input/output) REAL             array, dimension (N-1) */
 | |
| /*          On input, the (estimated) gaps between consecutive */
 | |
| /*          eigenvalues of L D L^T, i.e., WGAP(I-OFFSET) is the gap between */
 | |
| /*          eigenvalues I and I+1. Note that if IFIRST.EQ.ILAST */
 | |
| /*          then WGAP(IFIRST-OFFSET) must be set to ZERO. */
 | |
| /*          On output, these gaps are refined. */
 | |
| 
 | |
| /*  WERR    (input/output) REAL             array, dimension (N) */
 | |
| /*          On input, WERR( IFIRST-OFFSET ) through WERR( ILAST-OFFSET ) are */
 | |
| /*          the errors in the estimates of the corresponding elements in W. */
 | |
| /*          On output, these errors are refined. */
 | |
| 
 | |
| /*  WORK    (workspace) REAL             array, dimension (2*N) */
 | |
| /*          Workspace. */
 | |
| 
 | |
| /*  IWORK   (workspace) INTEGER array, dimension (2*N) */
 | |
| /*          Workspace. */
 | |
| 
 | |
| /*  PIVMIN  (input) DOUBLE PRECISION */
 | |
| /*          The minimum pivot in the Sturm sequence. */
 | |
| 
 | |
| /*  SPDIAM  (input) DOUBLE PRECISION */
 | |
| /*          The spectral diameter of the matrix. */
 | |
| 
 | |
| /*  TWIST   (input) INTEGER */
 | |
| /*          The twist index for the twisted factorization that is used */
 | |
| /*          for the negcount. */
 | |
| /*          TWIST = N: Compute negcount from L D L^T - LAMBDA I = L+ D+ L+^T */
 | |
| /*          TWIST = 1: Compute negcount from L D L^T - LAMBDA I = U- D- U-^T */
 | |
| /*          TWIST = R: Compute negcount from L D L^T - LAMBDA I = N(r) D(r) N(r) */
 | |
| 
 | |
| /*  INFO    (output) INTEGER */
 | |
| /*          Error flag. */
 | |
| 
 | |
| /*  Further Details */
 | |
| /*  =============== */
 | |
| 
 | |
| /*  Based on contributions by */
 | |
| /*     Beresford Parlett, University of California, Berkeley, USA */
 | |
| /*     Jim Demmel, University of California, Berkeley, USA */
 | |
| /*     Inderjit Dhillon, University of Texas, Austin, USA */
 | |
| /*     Osni Marques, LBNL/NERSC, USA */
 | |
| /*     Christof Voemel, University of California, Berkeley, USA */
 | |
| 
 | |
| /*  ===================================================================== */
 | |
| 
 | |
| /*     .. Parameters .. */
 | |
| /*     .. */
 | |
| /*     .. Local Scalars .. */
 | |
| /*     .. */
 | |
| /*     .. External Functions .. */
 | |
| 
 | |
| /*     .. */
 | |
| /*     .. Intrinsic Functions .. */
 | |
| /*     .. */
 | |
| /*     .. Executable Statements .. */
 | |
| 
 | |
|     /* Parameter adjustments */
 | |
|     --iwork;
 | |
|     --work;
 | |
|     --werr;
 | |
|     --wgap;
 | |
|     --w;
 | |
|     --lld;
 | |
|     --d__;
 | |
| 
 | |
|     /* Function Body */
 | |
|     *info = 0;
 | |
| 
 | |
|     maxitr = (integer) ((log(*spdiam + *pivmin) - log(*pivmin)) / log(2.f)) + 
 | |
| 	    2;
 | |
|     mnwdth = *pivmin * 2.f;
 | |
| 
 | |
|     r__ = *twist;
 | |
|     if (r__ < 1 || r__ > *n) {
 | |
| 	r__ = *n;
 | |
|     }
 | |
| 
 | |
| /*     Initialize unconverged intervals in [ WORK(2*I-1), WORK(2*I) ]. */
 | |
| /*     The Sturm Count, Count( WORK(2*I-1) ) is arranged to be I-1, while */
 | |
| /*     Count( WORK(2*I) ) is stored in IWORK( 2*I ). The integer IWORK( 2*I-1 ) */
 | |
| /*     for an unconverged interval is set to the index of the next unconverged */
 | |
| /*     interval, and is -1 or 0 for a converged interval. Thus a linked */
 | |
| /*     list of unconverged intervals is set up. */
 | |
| 
 | |
|     i1 = *ifirst;
 | |
| /*     The number of unconverged intervals */
 | |
|     nint = 0;
 | |
| /*     The last unconverged interval found */
 | |
|     prev = 0;
 | |
|     rgap = wgap[i1 - *offset];
 | |
|     i__1 = *ilast;
 | |
|     for (i__ = i1; i__ <= i__1; ++i__) {
 | |
| 	k = i__ << 1;
 | |
| 	ii = i__ - *offset;
 | |
| 	left = w[ii] - werr[ii];
 | |
| 	right = w[ii] + werr[ii];
 | |
| 	lgap = rgap;
 | |
| 	rgap = wgap[ii];
 | |
| 	gap = dmin(lgap,rgap);
 | |
| /*        Make sure that [LEFT,RIGHT] contains the desired eigenvalue */
 | |
| /*        Compute negcount from dstqds facto L+D+L+^T = L D L^T - LEFT */
 | |
| 
 | |
| /*        Do while( NEGCNT(LEFT).GT.I-1 ) */
 | |
| 
 | |
| 	back = werr[ii];
 | |
| L20:
 | |
| 	negcnt = slaneg_(n, &d__[1], &lld[1], &left, pivmin, &r__);
 | |
| 	if (negcnt > i__ - 1) {
 | |
| 	    left -= back;
 | |
| 	    back *= 2.f;
 | |
| 	    goto L20;
 | |
| 	}
 | |
| 
 | |
| /*        Do while( NEGCNT(RIGHT).LT.I ) */
 | |
| /*        Compute negcount from dstqds facto L+D+L+^T = L D L^T - RIGHT */
 | |
| 
 | |
| 	back = werr[ii];
 | |
| L50:
 | |
| 	negcnt = slaneg_(n, &d__[1], &lld[1], &right, pivmin, &r__);
 | |
| 	if (negcnt < i__) {
 | |
| 	    right += back;
 | |
| 	    back *= 2.f;
 | |
| 	    goto L50;
 | |
| 	}
 | |
| 	width = (r__1 = left - right, dabs(r__1)) * .5f;
 | |
| /* Computing MAX */
 | |
| 	r__1 = dabs(left), r__2 = dabs(right);
 | |
| 	tmp = dmax(r__1,r__2);
 | |
| /* Computing MAX */
 | |
| 	r__1 = *rtol1 * gap, r__2 = *rtol2 * tmp;
 | |
| 	cvrgd = dmax(r__1,r__2);
 | |
| 	if (width <= cvrgd || width <= mnwdth) {
 | |
| /*           This interval has already converged and does not need refinement. */
 | |
| /*           (Note that the gaps might change through refining the */
 | |
| /*            eigenvalues, however, they can only get bigger.) */
 | |
| /*           Remove it from the list. */
 | |
| 	    iwork[k - 1] = -1;
 | |
| /*           Make sure that I1 always points to the first unconverged interval */
 | |
| 	    if (i__ == i1 && i__ < *ilast) {
 | |
| 		i1 = i__ + 1;
 | |
| 	    }
 | |
| 	    if (prev >= i1 && i__ <= *ilast) {
 | |
| 		iwork[(prev << 1) - 1] = i__ + 1;
 | |
| 	    }
 | |
| 	} else {
 | |
| /*           unconverged interval found */
 | |
| 	    prev = i__;
 | |
| 	    ++nint;
 | |
| 	    iwork[k - 1] = i__ + 1;
 | |
| 	    iwork[k] = negcnt;
 | |
| 	}
 | |
| 	work[k - 1] = left;
 | |
| 	work[k] = right;
 | |
| /* L75: */
 | |
|     }
 | |
| 
 | |
| /*     Do while( NINT.GT.0 ), i.e. there are still unconverged intervals */
 | |
| /*     and while (ITER.LT.MAXITR) */
 | |
| 
 | |
|     iter = 0;
 | |
| L80:
 | |
|     prev = i1 - 1;
 | |
|     i__ = i1;
 | |
|     olnint = nint;
 | |
|     i__1 = olnint;
 | |
|     for (ip = 1; ip <= i__1; ++ip) {
 | |
| 	k = i__ << 1;
 | |
| 	ii = i__ - *offset;
 | |
| 	rgap = wgap[ii];
 | |
| 	lgap = rgap;
 | |
| 	if (ii > 1) {
 | |
| 	    lgap = wgap[ii - 1];
 | |
| 	}
 | |
| 	gap = dmin(lgap,rgap);
 | |
| 	next = iwork[k - 1];
 | |
| 	left = work[k - 1];
 | |
| 	right = work[k];
 | |
| 	mid = (left + right) * .5f;
 | |
| /*        semiwidth of interval */
 | |
| 	width = right - mid;
 | |
| /* Computing MAX */
 | |
| 	r__1 = dabs(left), r__2 = dabs(right);
 | |
| 	tmp = dmax(r__1,r__2);
 | |
| /* Computing MAX */
 | |
| 	r__1 = *rtol1 * gap, r__2 = *rtol2 * tmp;
 | |
| 	cvrgd = dmax(r__1,r__2);
 | |
| 	if (width <= cvrgd || width <= mnwdth || iter == maxitr) {
 | |
| /*           reduce number of unconverged intervals */
 | |
| 	    --nint;
 | |
| /*           Mark interval as converged. */
 | |
| 	    iwork[k - 1] = 0;
 | |
| 	    if (i1 == i__) {
 | |
| 		i1 = next;
 | |
| 	    } else {
 | |
| /*              Prev holds the last unconverged interval previously examined */
 | |
| 		if (prev >= i1) {
 | |
| 		    iwork[(prev << 1) - 1] = next;
 | |
| 		}
 | |
| 	    }
 | |
| 	    i__ = next;
 | |
| 	    goto L100;
 | |
| 	}
 | |
| 	prev = i__;
 | |
| 
 | |
| /*        Perform one bisection step */
 | |
| 
 | |
| 	negcnt = slaneg_(n, &d__[1], &lld[1], &mid, pivmin, &r__);
 | |
| 	if (negcnt <= i__ - 1) {
 | |
| 	    work[k - 1] = mid;
 | |
| 	} else {
 | |
| 	    work[k] = mid;
 | |
| 	}
 | |
| 	i__ = next;
 | |
| L100:
 | |
| 	;
 | |
|     }
 | |
|     ++iter;
 | |
| /*     do another loop if there are still unconverged intervals */
 | |
| /*     However, in the last iteration, all intervals are accepted */
 | |
| /*     since this is the best we can do. */
 | |
|     if (nint > 0 && iter <= maxitr) {
 | |
| 	goto L80;
 | |
|     }
 | |
| 
 | |
| 
 | |
| /*     At this point, all the intervals have converged */
 | |
|     i__1 = *ilast;
 | |
|     for (i__ = *ifirst; i__ <= i__1; ++i__) {
 | |
| 	k = i__ << 1;
 | |
| 	ii = i__ - *offset;
 | |
| /*        All intervals marked by '0' have been refined. */
 | |
| 	if (iwork[k - 1] == 0) {
 | |
| 	    w[ii] = (work[k - 1] + work[k]) * .5f;
 | |
| 	    werr[ii] = work[k] - w[ii];
 | |
| 	}
 | |
| /* L110: */
 | |
|     }
 | |
| 
 | |
|     i__1 = *ilast;
 | |
|     for (i__ = *ifirst + 1; i__ <= i__1; ++i__) {
 | |
| 	k = i__ << 1;
 | |
| 	ii = i__ - *offset;
 | |
| /* Computing MAX */
 | |
| 	r__1 = 0.f, r__2 = w[ii] - werr[ii] - w[ii - 1] - werr[ii - 1];
 | |
| 	wgap[ii - 1] = dmax(r__1,r__2);
 | |
| /* L111: */
 | |
|     }
 | |
|     return 0;
 | |
| 
 | |
| /*     End of SLARRB */
 | |
| 
 | |
| } /* slarrb_ */
 | 
