opencv/modules/cudastereo/src/stereocsbp.cpp
Vladislav Vinogradov 0c7663eb3b Merge branch 'master' into gpu-cuda-rename
Conflicts:
	modules/core/include/opencv2/core/cuda.hpp
	modules/cudacodec/src/thread.cpp
	modules/cudacodec/src/thread.hpp
	modules/superres/perf/perf_superres.cpp
	modules/superres/src/btv_l1_cuda.cpp
	modules/superres/src/optical_flow.cpp
	modules/videostab/src/global_motion.cpp
	modules/videostab/src/inpainting.cpp
	samples/cpp/stitching_detailed.cpp
	samples/cpp/videostab.cpp
	samples/gpu/stereo_multi.cpp
2013-09-06 15:44:44 +04:00

388 lines
17 KiB
C++

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
using namespace cv;
using namespace cv::cuda;
#if !defined (HAVE_CUDA) || defined (CUDA_DISABLER)
void cv::cuda::StereoConstantSpaceBP::estimateRecommendedParams(int, int, int&, int&, int&, int&) { throw_no_cuda(); }
Ptr<cuda::StereoConstantSpaceBP> cv::cuda::createStereoConstantSpaceBP(int, int, int, int, int) { throw_no_cuda(); return Ptr<cuda::StereoConstantSpaceBP>(); }
#else /* !defined (HAVE_CUDA) */
namespace cv { namespace cuda { namespace device
{
namespace stereocsbp
{
void load_constants(int ndisp, float max_data_term, float data_weight, float max_disc_term, float disc_single_jump, int min_disp_th,
const PtrStepSzb& left, const PtrStepSzb& right, const PtrStepSzb& temp);
template<class T>
void init_data_cost(int rows, int cols, T* disp_selected_pyr, T* data_cost_selected, size_t msg_step,
int h, int w, int level, int nr_plane, int ndisp, int channels, bool use_local_init_data_cost, cudaStream_t stream);
template<class T>
void compute_data_cost(const T* disp_selected_pyr, T* data_cost, size_t msg_step,
int rows, int cols, int h, int w, int h2, int level, int nr_plane, int channels, cudaStream_t stream);
template<class T>
void init_message(T* u_new, T* d_new, T* l_new, T* r_new,
const T* u_cur, const T* d_cur, const T* l_cur, const T* r_cur,
T* selected_disp_pyr_new, const T* selected_disp_pyr_cur,
T* data_cost_selected, const T* data_cost, size_t msg_step,
int h, int w, int nr_plane, int h2, int w2, int nr_plane2, cudaStream_t stream);
template<class T>
void calc_all_iterations(T* u, T* d, T* l, T* r, const T* data_cost_selected,
const T* selected_disp_pyr_cur, size_t msg_step, int h, int w, int nr_plane, int iters, cudaStream_t stream);
template<class T>
void compute_disp(const T* u, const T* d, const T* l, const T* r, const T* data_cost_selected, const T* disp_selected, size_t msg_step,
const PtrStepSz<short>& disp, int nr_plane, cudaStream_t stream);
}
}}}
namespace
{
class StereoCSBPImpl : public cuda::StereoConstantSpaceBP
{
public:
StereoCSBPImpl(int ndisp, int iters, int levels, int nr_plane, int msg_type);
void compute(InputArray left, InputArray right, OutputArray disparity);
void compute(InputArray left, InputArray right, OutputArray disparity, Stream& stream);
void compute(InputArray data, OutputArray disparity, Stream& stream);
int getMinDisparity() const { return min_disp_th_; }
void setMinDisparity(int minDisparity) { min_disp_th_ = minDisparity; }
int getNumDisparities() const { return ndisp_; }
void setNumDisparities(int numDisparities) { ndisp_ = numDisparities; }
int getBlockSize() const { return 0; }
void setBlockSize(int /*blockSize*/) {}
int getSpeckleWindowSize() const { return 0; }
void setSpeckleWindowSize(int /*speckleWindowSize*/) {}
int getSpeckleRange() const { return 0; }
void setSpeckleRange(int /*speckleRange*/) {}
int getDisp12MaxDiff() const { return 0; }
void setDisp12MaxDiff(int /*disp12MaxDiff*/) {}
int getNumIters() const { return iters_; }
void setNumIters(int iters) { iters_ = iters; }
int getNumLevels() const { return levels_; }
void setNumLevels(int levels) { levels_ = levels; }
double getMaxDataTerm() const { return max_data_term_; }
void setMaxDataTerm(double max_data_term) { max_data_term_ = (float) max_data_term; }
double getDataWeight() const { return data_weight_; }
void setDataWeight(double data_weight) { data_weight_ = (float) data_weight; }
double getMaxDiscTerm() const { return max_disc_term_; }
void setMaxDiscTerm(double max_disc_term) { max_disc_term_ = (float) max_disc_term; }
double getDiscSingleJump() const { return disc_single_jump_; }
void setDiscSingleJump(double disc_single_jump) { disc_single_jump_ = (float) disc_single_jump; }
int getMsgType() const { return msg_type_; }
void setMsgType(int msg_type) { msg_type_ = msg_type; }
int getNrPlane() const { return nr_plane_; }
void setNrPlane(int nr_plane) { nr_plane_ = nr_plane; }
bool getUseLocalInitDataCost() const { return use_local_init_data_cost_; }
void setUseLocalInitDataCost(bool use_local_init_data_cost) { use_local_init_data_cost_ = use_local_init_data_cost; }
private:
int min_disp_th_;
int ndisp_;
int iters_;
int levels_;
float max_data_term_;
float data_weight_;
float max_disc_term_;
float disc_single_jump_;
int msg_type_;
int nr_plane_;
bool use_local_init_data_cost_;
GpuMat mbuf_;
GpuMat temp_;
GpuMat outBuf_;
};
const float DEFAULT_MAX_DATA_TERM = 30.0f;
const float DEFAULT_DATA_WEIGHT = 1.0f;
const float DEFAULT_MAX_DISC_TERM = 160.0f;
const float DEFAULT_DISC_SINGLE_JUMP = 10.0f;
StereoCSBPImpl::StereoCSBPImpl(int ndisp, int iters, int levels, int nr_plane, int msg_type) :
min_disp_th_(0), ndisp_(ndisp), iters_(iters), levels_(levels),
max_data_term_(DEFAULT_MAX_DATA_TERM), data_weight_(DEFAULT_DATA_WEIGHT),
max_disc_term_(DEFAULT_MAX_DISC_TERM), disc_single_jump_(DEFAULT_DISC_SINGLE_JUMP),
msg_type_(msg_type), nr_plane_(nr_plane), use_local_init_data_cost_(true)
{
}
void StereoCSBPImpl::compute(InputArray left, InputArray right, OutputArray disparity)
{
compute(left, right, disparity, Stream::Null());
}
void StereoCSBPImpl::compute(InputArray _left, InputArray _right, OutputArray disp, Stream& _stream)
{
using namespace cv::cuda::device::stereocsbp;
CV_Assert( msg_type_ == CV_32F || msg_type_ == CV_16S );
CV_Assert( 0 < ndisp_ && 0 < iters_ && 0 < levels_ && 0 < nr_plane_ && levels_ <= 8 );
GpuMat left = _left.getGpuMat();
GpuMat right = _right.getGpuMat();
CV_Assert( left.type() == CV_8UC1 || left.type() == CV_8UC3 || left.type() == CV_8UC4 );
CV_Assert( left.size() == right.size() && left.type() == right.type() );
cudaStream_t stream = StreamAccessor::getStream(_stream);
////////////////////////////////////////////////////////////////////////////////////////////
// Init
int rows = left.rows;
int cols = left.cols;
levels_ = std::min(levels_, int(log((double)ndisp_) / log(2.0)));
// compute sizes
AutoBuffer<int> buf(levels_ * 3);
int* cols_pyr = buf;
int* rows_pyr = cols_pyr + levels_;
int* nr_plane_pyr = rows_pyr + levels_;
cols_pyr[0] = cols;
rows_pyr[0] = rows;
nr_plane_pyr[0] = nr_plane_;
for (int i = 1; i < levels_; i++)
{
cols_pyr[i] = cols_pyr[i-1] / 2;
rows_pyr[i] = rows_pyr[i-1] / 2;
nr_plane_pyr[i] = nr_plane_pyr[i-1] * 2;
}
GpuMat u[2], d[2], l[2], r[2], disp_selected_pyr[2], data_cost, data_cost_selected;
//allocate buffers
int buffers_count = 10; // (up + down + left + right + disp_selected_pyr) * 2
buffers_count += 2; // data_cost has twice more rows than other buffers, what's why +2, not +1;
buffers_count += 1; // data_cost_selected
mbuf_.create(rows * nr_plane_ * buffers_count, cols, msg_type_);
data_cost = mbuf_.rowRange(0, rows * nr_plane_ * 2);
data_cost_selected = mbuf_.rowRange(data_cost.rows, data_cost.rows + rows * nr_plane_);
for(int k = 0; k < 2; ++k) // in/out
{
GpuMat sub1 = mbuf_.rowRange(data_cost.rows + data_cost_selected.rows, mbuf_.rows);
GpuMat sub2 = sub1.rowRange((k+0)*sub1.rows/2, (k+1)*sub1.rows/2);
GpuMat *buf_ptrs[] = { &u[k], &d[k], &l[k], &r[k], &disp_selected_pyr[k] };
for(int _r = 0; _r < 5; ++_r)
{
*buf_ptrs[_r] = sub2.rowRange(_r * sub2.rows/5, (_r+1) * sub2.rows/5);
CV_DbgAssert( buf_ptrs[_r]->cols == cols && buf_ptrs[_r]->rows == rows * nr_plane_ );
}
};
size_t elem_step = mbuf_.step / mbuf_.elemSize();
Size temp_size = data_cost.size();
if ((size_t)temp_size.area() < elem_step * rows_pyr[levels_ - 1] * ndisp_)
temp_size = Size(static_cast<int>(elem_step), rows_pyr[levels_ - 1] * ndisp_);
temp_.create(temp_size, msg_type_);
////////////////////////////////////////////////////////////////////////////
// Compute
load_constants(ndisp_, max_data_term_, data_weight_, max_disc_term_, disc_single_jump_, min_disp_th_, left, right, temp_);
l[0].setTo(0, _stream);
d[0].setTo(0, _stream);
r[0].setTo(0, _stream);
u[0].setTo(0, _stream);
l[1].setTo(0, _stream);
d[1].setTo(0, _stream);
r[1].setTo(0, _stream);
u[1].setTo(0, _stream);
data_cost.setTo(0, _stream);
data_cost_selected.setTo(0, _stream);
int cur_idx = 0;
if (msg_type_ == CV_32F)
{
for (int i = levels_ - 1; i >= 0; i--)
{
if (i == levels_ - 1)
{
init_data_cost(left.rows, left.cols, disp_selected_pyr[cur_idx].ptr<float>(), data_cost_selected.ptr<float>(),
elem_step, rows_pyr[i], cols_pyr[i], i, nr_plane_pyr[i], ndisp_, left.channels(), use_local_init_data_cost_, stream);
}
else
{
compute_data_cost(disp_selected_pyr[cur_idx].ptr<float>(), data_cost.ptr<float>(), elem_step,
left.rows, left.cols, rows_pyr[i], cols_pyr[i], rows_pyr[i+1], i, nr_plane_pyr[i+1], left.channels(), stream);
int new_idx = (cur_idx + 1) & 1;
init_message(u[new_idx].ptr<float>(), d[new_idx].ptr<float>(), l[new_idx].ptr<float>(), r[new_idx].ptr<float>(),
u[cur_idx].ptr<float>(), d[cur_idx].ptr<float>(), l[cur_idx].ptr<float>(), r[cur_idx].ptr<float>(),
disp_selected_pyr[new_idx].ptr<float>(), disp_selected_pyr[cur_idx].ptr<float>(),
data_cost_selected.ptr<float>(), data_cost.ptr<float>(), elem_step, rows_pyr[i],
cols_pyr[i], nr_plane_pyr[i], rows_pyr[i+1], cols_pyr[i+1], nr_plane_pyr[i+1], stream);
cur_idx = new_idx;
}
calc_all_iterations(u[cur_idx].ptr<float>(), d[cur_idx].ptr<float>(), l[cur_idx].ptr<float>(), r[cur_idx].ptr<float>(),
data_cost_selected.ptr<float>(), disp_selected_pyr[cur_idx].ptr<float>(), elem_step,
rows_pyr[i], cols_pyr[i], nr_plane_pyr[i], iters_, stream);
}
}
else
{
for (int i = levels_ - 1; i >= 0; i--)
{
if (i == levels_ - 1)
{
init_data_cost(left.rows, left.cols, disp_selected_pyr[cur_idx].ptr<short>(), data_cost_selected.ptr<short>(),
elem_step, rows_pyr[i], cols_pyr[i], i, nr_plane_pyr[i], ndisp_, left.channels(), use_local_init_data_cost_, stream);
}
else
{
compute_data_cost(disp_selected_pyr[cur_idx].ptr<short>(), data_cost.ptr<short>(), elem_step,
left.rows, left.cols, rows_pyr[i], cols_pyr[i], rows_pyr[i+1], i, nr_plane_pyr[i+1], left.channels(), stream);
int new_idx = (cur_idx + 1) & 1;
init_message(u[new_idx].ptr<short>(), d[new_idx].ptr<short>(), l[new_idx].ptr<short>(), r[new_idx].ptr<short>(),
u[cur_idx].ptr<short>(), d[cur_idx].ptr<short>(), l[cur_idx].ptr<short>(), r[cur_idx].ptr<short>(),
disp_selected_pyr[new_idx].ptr<short>(), disp_selected_pyr[cur_idx].ptr<short>(),
data_cost_selected.ptr<short>(), data_cost.ptr<short>(), elem_step, rows_pyr[i],
cols_pyr[i], nr_plane_pyr[i], rows_pyr[i+1], cols_pyr[i+1], nr_plane_pyr[i+1], stream);
cur_idx = new_idx;
}
calc_all_iterations(u[cur_idx].ptr<short>(), d[cur_idx].ptr<short>(), l[cur_idx].ptr<short>(), r[cur_idx].ptr<short>(),
data_cost_selected.ptr<short>(), disp_selected_pyr[cur_idx].ptr<short>(), elem_step,
rows_pyr[i], cols_pyr[i], nr_plane_pyr[i], iters_, stream);
}
}
const int dtype = disp.fixedType() ? disp.type() : CV_16SC1;
disp.create(rows, cols, dtype);
GpuMat out = disp.getGpuMat();
if (dtype != CV_16SC1)
{
outBuf_.create(rows, cols, CV_16SC1);
out = outBuf_;
}
out.setTo(0, _stream);
if (msg_type_ == CV_32F)
{
compute_disp(u[cur_idx].ptr<float>(), d[cur_idx].ptr<float>(), l[cur_idx].ptr<float>(), r[cur_idx].ptr<float>(),
data_cost_selected.ptr<float>(), disp_selected_pyr[cur_idx].ptr<float>(), elem_step, out, nr_plane_pyr[0], stream);
}
else
{
compute_disp(u[cur_idx].ptr<short>(), d[cur_idx].ptr<short>(), l[cur_idx].ptr<short>(), r[cur_idx].ptr<short>(),
data_cost_selected.ptr<short>(), disp_selected_pyr[cur_idx].ptr<short>(), elem_step, out, nr_plane_pyr[0], stream);
}
if (dtype != CV_16SC1)
out.convertTo(disp, dtype, _stream);
}
void StereoCSBPImpl::compute(InputArray /*data*/, OutputArray /*disparity*/, Stream& /*stream*/)
{
CV_Error(Error::StsNotImplemented, "Not implemented");
}
}
Ptr<cuda::StereoConstantSpaceBP> cv::cuda::createStereoConstantSpaceBP(int ndisp, int iters, int levels, int nr_plane, int msg_type)
{
return makePtr<StereoCSBPImpl>(ndisp, iters, levels, nr_plane, msg_type);
}
void cv::cuda::StereoConstantSpaceBP::estimateRecommendedParams(int width, int height, int& ndisp, int& iters, int& levels, int& nr_plane)
{
ndisp = (int) ((float) width / 3.14f);
if ((ndisp & 1) != 0)
ndisp++;
int mm = std::max(width, height);
iters = mm / 100 + ((mm > 1200)? - 4 : 4);
levels = (int)::log(static_cast<double>(mm)) * 2 / 3;
if (levels == 0) levels++;
nr_plane = (int) ((float) ndisp / std::pow(2.0, levels + 1));
}
#endif /* !defined (HAVE_CUDA) */