450 lines
22 KiB
C++
450 lines
22 KiB
C++
/*#******************************************************************************
|
|
** IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
**
|
|
** By downloading, copying, installing or using the software you agree to this license.
|
|
** If you do not agree to this license, do not download, install,
|
|
** copy or use the software.
|
|
**
|
|
**
|
|
** HVStools : interfaces allowing OpenCV users to integrate Human Vision System models. Presented models originate from Jeanny Herault's original research and have been reused and adapted by the author&collaborators for computed vision applications since his thesis with Alice Caplier at Gipsa-Lab.
|
|
** Use: extract still images & image sequences features, from contours details to motion spatio-temporal features, etc. for high level visual scene analysis. Also contribute to image enhancement/compression such as tone mapping.
|
|
**
|
|
** Maintainers : Listic lab (code author current affiliation & applications) and Gipsa Lab (original research origins & applications)
|
|
**
|
|
** Creation - enhancement process 2007-2011
|
|
** Author: Alexandre Benoit (benoit.alexandre.vision@gmail.com), LISTIC lab, Annecy le vieux, France
|
|
**
|
|
** Theses algorithm have been developped by Alexandre BENOIT since his thesis with Alice Caplier at Gipsa-Lab (www.gipsa-lab.inpg.fr) and the research he pursues at LISTIC Lab (www.listic.univ-savoie.fr).
|
|
** Refer to the following research paper for more information:
|
|
** Benoit A., Caplier A., Durette B., Herault, J., "USING HUMAN VISUAL SYSTEM MODELING FOR BIO-INSPIRED LOW LEVEL IMAGE PROCESSING", Elsevier, Computer Vision and Image Understanding 114 (2010), pp. 758-773, DOI: http://dx.doi.org/10.1016/j.cviu.2010.01.011
|
|
** This work have been carried out thanks to Jeanny Herault who's research and great discussions are the basis of all this work, please take a look at his book:
|
|
** Vision: Images, Signals and Neural Networks: Models of Neural Processing in Visual Perception (Progress in Neural Processing),By: Jeanny Herault, ISBN: 9814273686. WAPI (Tower ID): 113266891.
|
|
**
|
|
** The retina filter includes the research contributions of phd/research collegues from which code has been redrawn by the author :
|
|
** _take a look at the retinacolor.hpp module to discover Brice Chaix de Lavarene color mosaicing/demosaicing and the reference paper:
|
|
** ====> B. Chaix de Lavarene, D. Alleysson, B. Durette, J. Herault (2007). "Efficient demosaicing through recursive filtering", IEEE International Conference on Image Processing ICIP 2007
|
|
** _take a look at imagelogpolprojection.hpp to discover retina spatial log sampling which originates from Barthelemy Durette phd with Jeanny Herault. A Retina / V1 cortex projection is also proposed and originates from Jeanny's discussions.
|
|
** ====> more informations in the above cited Jeanny Heraults's book.
|
|
**
|
|
** License Agreement
|
|
** For Open Source Computer Vision Library
|
|
**
|
|
** Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
|
** Copyright (C) 2008-2011, Willow Garage Inc., all rights reserved.
|
|
**
|
|
** For Human Visual System tools (hvstools)
|
|
** Copyright (C) 2007-2011, LISTIC Lab, Annecy le Vieux and GIPSA Lab, Grenoble, France, all rights reserved.
|
|
**
|
|
** Third party copyrights are property of their respective owners.
|
|
**
|
|
** Redistribution and use in source and binary forms, with or without modification,
|
|
** are permitted provided that the following conditions are met:
|
|
**
|
|
** * Redistributions of source code must retain the above copyright notice,
|
|
** this list of conditions and the following disclaimer.
|
|
**
|
|
** * Redistributions in binary form must reproduce the above copyright notice,
|
|
** this list of conditions and the following disclaimer in the documentation
|
|
** and/or other materials provided with the distribution.
|
|
**
|
|
** * The name of the copyright holders may not be used to endorse or promote products
|
|
** derived from this software without specific prior written permission.
|
|
**
|
|
** This software is provided by the copyright holders and contributors "as is" and
|
|
** any express or implied warranties, including, but not limited to, the implied
|
|
** warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
** In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
** indirect, incidental, special, exemplary, or consequential damages
|
|
** (including, but not limited to, procurement of substitute goods or services;
|
|
** loss of use, data, or profits; or business interruption) however caused
|
|
** and on any theory of liability, whether in contract, strict liability,
|
|
** or tort (including negligence or otherwise) arising in any way out of
|
|
** the use of this software, even if advised of the possibility of such damage.
|
|
*******************************************************************************/
|
|
|
|
#include "precomp.hpp"
|
|
#include "imagelogpolprojection.hpp"
|
|
|
|
#include <cmath>
|
|
#include <iostream>
|
|
|
|
// @author Alexandre BENOIT, benoit.alexandre.vision@gmail.com, LISTIC : www.listic.univ-savoie.fr, Gipsa-Lab, France: www.gipsa-lab.inpg.fr/
|
|
|
|
namespace cv
|
|
{
|
|
|
|
// constructor
|
|
ImageLogPolProjection::ImageLogPolProjection(const unsigned int nbRows, const unsigned int nbColumns, const PROJECTIONTYPE projection, const bool colorModeCapable)
|
|
:BasicRetinaFilter(nbRows, nbColumns),
|
|
_sampledFrame(0),
|
|
_tempBuffer(_localBuffer),
|
|
_transformTable(0),
|
|
_irregularLPfilteredFrame(_filterOutput)
|
|
{
|
|
_inputDoubleNBpixels=nbRows*nbColumns*2;
|
|
_selectedProjection = projection;
|
|
_reductionFactor=0;
|
|
_initOK=false;
|
|
_usefullpixelIndex=0;
|
|
_colorModeCapable=colorModeCapable;
|
|
#ifdef IMAGELOGPOLPROJECTION_DEBUG
|
|
std::cout<<"ImageLogPolProjection::allocating"<<std::endl;
|
|
#endif
|
|
if (_colorModeCapable)
|
|
{
|
|
_tempBuffer.resize(nbRows*nbColumns*3);
|
|
}
|
|
#ifdef IMAGELOGPOLPROJECTION_DEBUG
|
|
std::cout<<"ImageLogPolProjection::done"<<std::endl;
|
|
#endif
|
|
|
|
clearAllBuffers();
|
|
}
|
|
|
|
// destructor
|
|
ImageLogPolProjection::~ImageLogPolProjection()
|
|
{
|
|
|
|
}
|
|
|
|
|
|
// reset buffers method
|
|
void ImageLogPolProjection::clearAllBuffers()
|
|
{
|
|
_sampledFrame=0;
|
|
_tempBuffer=0;
|
|
BasicRetinaFilter::clearAllBuffers();
|
|
}
|
|
|
|
/**
|
|
* resize retina color filter object (resize all allocated buffers)
|
|
* @param NBrows: the new height size
|
|
* @param NBcolumns: the new width size
|
|
*/
|
|
void ImageLogPolProjection::resize(const unsigned int NBrows, const unsigned int NBcolumns)
|
|
{
|
|
BasicRetinaFilter::resize(NBrows, NBcolumns);
|
|
initProjection(_reductionFactor, _samplingStrenght);
|
|
|
|
// reset buffers method
|
|
clearAllBuffers();
|
|
|
|
}
|
|
|
|
// init functions depending on the projection type
|
|
bool ImageLogPolProjection::initProjection(const double reductionFactor, const double samplingStrenght)
|
|
{
|
|
switch(_selectedProjection)
|
|
{
|
|
case RETINALOGPROJECTION:
|
|
return _initLogRetinaSampling(reductionFactor, samplingStrenght);
|
|
break;
|
|
case CORTEXLOGPOLARPROJECTION:
|
|
return _initLogPolarCortexSampling(reductionFactor, samplingStrenght);
|
|
break;
|
|
default:
|
|
std::cout<<"ImageLogPolProjection::no projection setted up... performing default retina projection... take care"<<std::endl;
|
|
return _initLogRetinaSampling(reductionFactor, samplingStrenght);
|
|
break;
|
|
}
|
|
}
|
|
|
|
// -> private init functions dedicated to each projection
|
|
bool ImageLogPolProjection::_initLogRetinaSampling(const double reductionFactor, const double samplingStrenght)
|
|
{
|
|
_initOK=false;
|
|
|
|
if (_selectedProjection!=RETINALOGPROJECTION)
|
|
{
|
|
std::cerr<<"ImageLogPolProjection::initLogRetinaSampling: could not initialize logPolar projection for a log projection system\n -> you probably chose the wrong init function, use initLogPolarCortexSampling() instead"<<std::endl;
|
|
return false;
|
|
}
|
|
if (reductionFactor<1.0)
|
|
{
|
|
std::cerr<<"ImageLogPolProjection::initLogRetinaSampling: reduction factor must be superior to 0, skeeping initialisation..."<<std::endl;
|
|
return false;
|
|
}
|
|
|
|
// compute image output size
|
|
_outputNBrows=predictOutputSize(this->getNBrows(), reductionFactor);
|
|
_outputNBcolumns=predictOutputSize(this->getNBcolumns(), reductionFactor);
|
|
_outputNBpixels=_outputNBrows*_outputNBcolumns;
|
|
_outputDoubleNBpixels=_outputNBrows*_outputNBcolumns*2;
|
|
|
|
#ifdef IMAGELOGPOLPROJECTION_DEBUG
|
|
std::cout<<"ImageLogPolProjection::initLogRetinaSampling: Log resampled image resampling factor: "<<reductionFactor<<", strenght:"<<samplingStrenght<<std::endl;
|
|
std::cout<<"ImageLogPolProjection::initLogRetinaSampling: Log resampled image size: "<<_outputNBrows<<"*"<<_outputNBcolumns<<std::endl;
|
|
#endif
|
|
|
|
// setup progressive prefilter that will be applied BEFORE log sampling
|
|
setProgressiveFilterConstants_CentredAccuracy(0.f, 0.f, 0.99f);
|
|
|
|
// (re)create the image output buffer and transform table if the reduction factor changed
|
|
_sampledFrame.resize(_outputNBpixels*(1+(unsigned int)_colorModeCapable*2));
|
|
|
|
// specifiying new reduction factor after preliminar checks
|
|
_reductionFactor=reductionFactor;
|
|
_samplingStrenght=samplingStrenght;
|
|
|
|
// compute the rlim for symetric rows/columns sampling, then, the rlim is based on the smallest dimension
|
|
_minDimension=(double)(_filterOutput.getNBrows() < _filterOutput.getNBcolumns() ? _filterOutput.getNBrows() : _filterOutput.getNBcolumns());
|
|
|
|
// input frame dimensions dependent log sampling:
|
|
//double rlim=1.0/reductionFactor*(minDimension/2.0+samplingStrenght);
|
|
|
|
// input frame dimensions INdependent log sampling:
|
|
_azero=(1.0+reductionFactor*sqrt(samplingStrenght))/(reductionFactor*reductionFactor*samplingStrenght-1.0);
|
|
_alim=(1.0+_azero)/reductionFactor;
|
|
#ifdef IMAGELOGPOLPROJECTION_DEBUG
|
|
std::cout<<"ImageLogPolProjection::initLogRetinaSampling: rlim= "<<rlim<<std::endl;
|
|
std::cout<<"ImageLogPolProjection::initLogRetinaSampling: alim= "<<alim<<std::endl;
|
|
#endif
|
|
|
|
// get half frame size
|
|
unsigned int halfOutputRows = _outputNBrows/2-1;
|
|
unsigned int halfOutputColumns = _outputNBcolumns/2-1;
|
|
unsigned int halfInputRows = _filterOutput.getNBrows()/2-1;
|
|
unsigned int halfInputColumns = _filterOutput.getNBcolumns()/2-1;
|
|
|
|
// computing log sampling matrix by computing quarters of images
|
|
// the original new image center (_filterOutput.getNBrows()/2, _filterOutput.getNBcolumns()/2) being at coordinate (_filterOutput.getNBrows()/(2*_reductionFactor), _filterOutput.getNBcolumns()/(2*_reductionFactor))
|
|
|
|
// -> use a temporary transform table which is bigger than the final one, we only report pixels coordinates that are included in the sampled picture
|
|
std::valarray<unsigned int> tempTransformTable(2*_outputNBpixels); // the structure would be: (pixelInputCoordinate n)(pixelOutputCoordinate n)(pixelInputCoordinate n+1)(pixelOutputCoordinate n+1)
|
|
_usefullpixelIndex=0;
|
|
|
|
double rMax=0;
|
|
halfInputRows<halfInputColumns ? rMax=(double)(halfInputRows*halfInputRows):rMax=(double)(halfInputColumns*halfInputColumns);
|
|
|
|
for (unsigned int idRow=0;idRow<halfOutputRows; ++idRow)
|
|
{
|
|
for (unsigned int idColumn=0;idColumn<halfOutputColumns; ++idColumn)
|
|
{
|
|
// get the pixel position in the original picture
|
|
|
|
// -> input frame dimensions dependent log sampling:
|
|
//double scale = samplingStrenght/(rlim-(double)sqrt(idRow*idRow+idColumn*idColumn));
|
|
|
|
// -> input frame dimensions INdependent log sampling:
|
|
double scale=getOriginalRadiusLength((double)sqrt((double)(idRow*idRow+idColumn*idColumn)));
|
|
#ifdef IMAGELOGPOLPROJECTION_DEBUG
|
|
std::cout<<"ImageLogPolProjection::initLogRetinaSampling: scale= "<<scale<<std::endl;
|
|
std::cout<<"ImageLogPolProjection::initLogRetinaSampling: scale2= "<<scale2<<std::endl;
|
|
#endif
|
|
if (scale < 0) ///check it later
|
|
scale = 10000;
|
|
|
|
#ifdef IMAGELOGPOLPROJECTION_DEBUG
|
|
// std::cout<<"ImageLogPolProjection::initLogRetinaSampling: scale= "<<scale<<std::endl;
|
|
#endif
|
|
|
|
unsigned int u=(unsigned int)floor((double)idRow*scale);
|
|
unsigned int v=(unsigned int)floor((double)idColumn*scale);
|
|
|
|
// manage border effects
|
|
double length=u*u+v*v;
|
|
double radiusRatio=sqrt(rMax/length);
|
|
|
|
#ifdef IMAGELOGPOLPROJECTION_DEBUG
|
|
std::cout<<"ImageLogPolProjection::(inputH, inputW)="<<halfInputRows<<", "<<halfInputColumns<<", Rmax2="<<rMax<<std::endl;
|
|
std::cout<<"before ==> ImageLogPolProjection::(u, v)="<<u<<", "<<v<<", r="<<u*u+v*v<<std::endl;
|
|
std::cout<<"ratio ="<<radiusRatio<<std::endl;
|
|
#endif
|
|
|
|
if (radiusRatio < 1.0)
|
|
{
|
|
u=(unsigned int)floor(radiusRatio*double(u));
|
|
v=(unsigned int)floor(radiusRatio*double(v));
|
|
}
|
|
#ifdef IMAGELOGPOLPROJECTION_DEBUG
|
|
std::cout<<"after ==> ImageLogPolProjection::(u, v)="<<u<<", "<<v<<", r="<<u*u+v*v<<std::endl;
|
|
std::cout<<"ImageLogPolProjection::("<<(halfOutputRows-idRow)<<", "<<idColumn+halfOutputColumns<<") <- ("<<halfInputRows-u<<", "<<v+halfInputColumns<<")"<<std::endl;
|
|
std::cout<<(halfOutputRows-idRow)+(halfOutputColumns+idColumn)*_outputNBrows<<" -> "<<(halfInputRows-u)+_filterOutput.getNBrows()*(halfInputColumns+v)<<std::endl;
|
|
#endif
|
|
|
|
if ((u<halfInputRows)&&(v<halfInputColumns))
|
|
{
|
|
|
|
#ifdef IMAGELOGPOLPROJECTION_DEBUG
|
|
std::cout<<"*** VALID ***"<<std::endl;
|
|
#endif
|
|
|
|
// set pixel coordinate of the input picture in the transform table at the current log sampled pixel
|
|
// 1st quadrant
|
|
tempTransformTable[_usefullpixelIndex++]=(halfOutputColumns+idColumn)+(halfOutputRows-idRow)*_outputNBcolumns;
|
|
tempTransformTable[_usefullpixelIndex++]=_filterOutput.getNBcolumns()*(halfInputRows-u)+(halfInputColumns+v);
|
|
// 2nd quadrant
|
|
tempTransformTable[_usefullpixelIndex++]=(halfOutputColumns+idColumn)+(halfOutputRows+idRow)*_outputNBcolumns;
|
|
tempTransformTable[_usefullpixelIndex++]=_filterOutput.getNBcolumns()*(halfInputRows+u)+(halfInputColumns+v);
|
|
// 3rd quadrant
|
|
tempTransformTable[_usefullpixelIndex++]=(halfOutputColumns-idColumn)+(halfOutputRows-idRow)*_outputNBcolumns;
|
|
tempTransformTable[_usefullpixelIndex++]=_filterOutput.getNBcolumns()*(halfInputRows-u)+(halfInputColumns-v);
|
|
// 4td quadrant
|
|
tempTransformTable[_usefullpixelIndex++]=(halfOutputColumns-idColumn)+(halfOutputRows+idRow)*_outputNBcolumns;
|
|
tempTransformTable[_usefullpixelIndex++]=_filterOutput.getNBcolumns()*(halfInputRows+u)+(halfInputColumns-v);
|
|
}
|
|
}
|
|
}
|
|
|
|
// (re)creating and filling the transform table
|
|
_transformTable.resize(_usefullpixelIndex);
|
|
memcpy(&_transformTable[0], &tempTransformTable[0], sizeof(unsigned int)*_usefullpixelIndex);
|
|
|
|
// reset all buffers
|
|
clearAllBuffers();
|
|
|
|
#ifdef IMAGELOGPOLPROJECTION_DEBUG
|
|
std::cout<<"ImageLogPolProjection::initLogRetinaSampling: init done successfully"<<std::endl;
|
|
#endif
|
|
_initOK=true;
|
|
return _initOK;
|
|
}
|
|
|
|
bool ImageLogPolProjection::_initLogPolarCortexSampling(const double reductionFactor, const double)
|
|
{
|
|
_initOK=false;
|
|
|
|
if (_selectedProjection!=CORTEXLOGPOLARPROJECTION)
|
|
{
|
|
std::cerr<<"ImageLogPolProjection::could not initialize log projection for a logPolar projection system\n -> you probably chose the wrong init function, use initLogRetinaSampling() instead"<<std::endl;
|
|
return false;
|
|
}
|
|
|
|
if (reductionFactor<1.0)
|
|
{
|
|
std::cerr<<"ImageLogPolProjection::reduction factor must be superior to 0, skeeping initialisation..."<<std::endl;
|
|
return false;
|
|
}
|
|
|
|
// compute the smallest image size
|
|
unsigned int minDimension=(_filterOutput.getNBrows() < _filterOutput.getNBcolumns() ? _filterOutput.getNBrows() : _filterOutput.getNBcolumns());
|
|
// specifiying new reduction factor after preliminar checks
|
|
_reductionFactor=reductionFactor;
|
|
// compute image output size
|
|
_outputNBrows=(unsigned int)((double)minDimension/reductionFactor);
|
|
_outputNBcolumns=(unsigned int)((double)minDimension/reductionFactor);
|
|
_outputNBpixels=_outputNBrows*_outputNBcolumns;
|
|
_outputDoubleNBpixels=_outputNBrows*_outputNBcolumns*2;
|
|
|
|
// get half frame size
|
|
//unsigned int halfOutputRows = _outputNBrows/2-1;
|
|
//unsigned int halfOutputColumns = _outputNBcolumns/2-1;
|
|
unsigned int halfInputRows = _filterOutput.getNBrows()/2-1;
|
|
unsigned int halfInputColumns = _filterOutput.getNBcolumns()/2-1;
|
|
|
|
|
|
#ifdef IMAGELOGPOLPROJECTION_DEBUG
|
|
std::cout<<"ImageLogPolProjection::Log resampled image size: "<<_outputNBrows<<"*"<<_outputNBcolumns<<std::endl;
|
|
#endif
|
|
|
|
// setup progressive prefilter that will be applied BEFORE log sampling
|
|
setProgressiveFilterConstants_CentredAccuracy(0.f, 0.f, 0.99f);
|
|
|
|
// (re)create the image output buffer and transform table if the reduction factor changed
|
|
_sampledFrame.resize(_outputNBpixels*(1+(unsigned int)_colorModeCapable*2));
|
|
|
|
// create the radius and orientation axis and fill them, radius E [0;1], orientation E[-pi, pi]
|
|
std::valarray<double> radiusAxis(_outputNBcolumns);
|
|
double radiusStep=2.30/(double)_outputNBcolumns;
|
|
for (unsigned int i=0;i<_outputNBcolumns;++i)
|
|
{
|
|
radiusAxis[i]=i*radiusStep;
|
|
}
|
|
std::valarray<double> orientationAxis(_outputNBrows);
|
|
double orientationStep=-2.0*CV_PI/(double)_outputNBrows;
|
|
for (unsigned int io=0;io<_outputNBrows;++io)
|
|
{
|
|
orientationAxis[io]=io*orientationStep;
|
|
}
|
|
// -> use a temporay transform table which is bigger than the final one, we only report pixels coordinates that are included in the sampled picture
|
|
std::valarray<unsigned int> tempTransformTable(2*_outputNBpixels); // the structure would be: (pixelInputCoordinate n)(pixelOutputCoordinate n)(pixelInputCoordinate n+1)(pixelOutputCoordinate n+1)
|
|
_usefullpixelIndex=0;
|
|
|
|
//std::cout<<"ImageLogPolProjection::Starting cortex projection"<<std::endl;
|
|
// compute transformation, get theta and Radius in reagrd of the output sampled pixel
|
|
double diagonalLenght=sqrt((double)(_outputNBcolumns*_outputNBcolumns+_outputNBrows*_outputNBrows));
|
|
for (unsigned int radiusIndex=0;radiusIndex<_outputNBcolumns;++radiusIndex)
|
|
for(unsigned int orientationIndex=0;orientationIndex<_outputNBrows;++orientationIndex)
|
|
{
|
|
double x=1.0+sinh(radiusAxis[radiusIndex])*cos(orientationAxis[orientationIndex]);
|
|
double y=sinh(radiusAxis[radiusIndex])*sin(orientationAxis[orientationIndex]);
|
|
// get the input picture coordinate
|
|
double R=diagonalLenght*sqrt(x*x+y*y)/(5.0+sqrt(x*x+y*y));
|
|
double theta=atan2(y,x);
|
|
// convert input polar coord into cartesian/C compatble coordinate
|
|
unsigned int columnIndex=(unsigned int)(cos(theta)*R)+halfInputColumns;
|
|
unsigned int rowIndex=(unsigned int)(sin(theta)*R)+halfInputRows;
|
|
//std::cout<<"ImageLogPolProjection::R="<<R<<" / Theta="<<theta<<" / (x, y)="<<columnIndex<<", "<<rowIndex<<std::endl;
|
|
if ((columnIndex<_filterOutput.getNBcolumns())&&(columnIndex>0)&&(rowIndex<_filterOutput.getNBrows())&&(rowIndex>0))
|
|
{
|
|
// set coordinate
|
|
tempTransformTable[_usefullpixelIndex++]=radiusIndex+orientationIndex*_outputNBcolumns;
|
|
tempTransformTable[_usefullpixelIndex++]= columnIndex+rowIndex*_filterOutput.getNBcolumns();
|
|
}
|
|
}
|
|
|
|
// (re)creating and filling the transform table
|
|
_transformTable.resize(_usefullpixelIndex);
|
|
memcpy(&_transformTable[0], &tempTransformTable[0], sizeof(unsigned int)*_usefullpixelIndex);
|
|
|
|
// reset all buffers
|
|
clearAllBuffers();
|
|
_initOK=true;
|
|
return true;
|
|
}
|
|
|
|
// action function
|
|
std::valarray<float> &ImageLogPolProjection::runProjection(const std::valarray<float> &inputFrame, const bool colorMode)
|
|
{
|
|
if (_colorModeCapable&&colorMode)
|
|
{
|
|
// progressive filtering and storage of the result in _tempBuffer
|
|
_spatiotemporalLPfilter_Irregular(get_data(inputFrame), &_irregularLPfilteredFrame[0]);
|
|
_spatiotemporalLPfilter_Irregular(&_irregularLPfilteredFrame[0], &_tempBuffer[0]); // warning, temporal issue may occur, if the temporal constant is not NULL !!!
|
|
|
|
_spatiotemporalLPfilter_Irregular(get_data(inputFrame)+_filterOutput.getNBpixels(), &_irregularLPfilteredFrame[0]);
|
|
_spatiotemporalLPfilter_Irregular(&_irregularLPfilteredFrame[0], &_tempBuffer[0]+_filterOutput.getNBpixels());
|
|
|
|
_spatiotemporalLPfilter_Irregular(get_data(inputFrame)+_filterOutput.getNBpixels()*2, &_irregularLPfilteredFrame[0]);
|
|
_spatiotemporalLPfilter_Irregular(&_irregularLPfilteredFrame[0], &_tempBuffer[0]+_filterOutput.getNBpixels()*2);
|
|
|
|
// applying image projection/resampling
|
|
register unsigned int *transformTablePTR=&_transformTable[0];
|
|
for (unsigned int i=0 ; i<_usefullpixelIndex ; i+=2, transformTablePTR+=2)
|
|
{
|
|
#ifdef IMAGELOGPOLPROJECTION_DEBUG
|
|
std::cout<<"ImageLogPolProjection::i:"<<i<<"output(max="<<_outputNBpixels<<")="<<_transformTable[i]<<" / intput(max="<<_filterOutput.getNBpixels()<<")="<<_transformTable[i+1]<<std::endl;
|
|
#endif
|
|
_sampledFrame[*(transformTablePTR)]=_tempBuffer[*(transformTablePTR+1)];
|
|
_sampledFrame[*(transformTablePTR)+_outputNBpixels]=_tempBuffer[*(transformTablePTR+1)+_filterOutput.getNBpixels()];
|
|
_sampledFrame[*(transformTablePTR)+_outputDoubleNBpixels]=_tempBuffer[*(transformTablePTR+1)+_inputDoubleNBpixels];
|
|
}
|
|
|
|
#ifdef IMAGELOGPOLPROJECTION_DEBUG
|
|
std::cout<<"ImageLogPolProjection::runProjection: color image projection OK"<<std::endl;
|
|
#endif
|
|
//normalizeGrayOutput_0_maxOutputValue(_sampledFrame, _outputNBpixels);
|
|
}else
|
|
{
|
|
_spatiotemporalLPfilter_Irregular(get_data(inputFrame), &_irregularLPfilteredFrame[0]);
|
|
_spatiotemporalLPfilter_Irregular(&_irregularLPfilteredFrame[0], &_irregularLPfilteredFrame[0]);
|
|
// applying image projection/resampling
|
|
register unsigned int *transformTablePTR=&_transformTable[0];
|
|
for (unsigned int i=0 ; i<_usefullpixelIndex ; i+=2, transformTablePTR+=2)
|
|
{
|
|
#ifdef IMAGELOGPOLPROJECTION_DEBUG
|
|
std::cout<<"i:"<<i<<"output(max="<<_outputNBpixels<<")="<<_transformTable[i]<<" / intput(max="<<_filterOutput.getNBpixels()<<")="<<_transformTable[i+1]<<std::endl;
|
|
#endif
|
|
_sampledFrame[*(transformTablePTR)]=_irregularLPfilteredFrame[*(transformTablePTR+1)];
|
|
}
|
|
//normalizeGrayOutput_0_maxOutputValue(_sampledFrame, _outputNBpixels);
|
|
#ifdef IMAGELOGPOLPROJECTION_DEBUG
|
|
std::cout<<"ImageLogPolProjection::runProjection: gray level image projection OK"<<std::endl;
|
|
#endif
|
|
}
|
|
|
|
return _sampledFrame;
|
|
}
|
|
|
|
}
|