335 lines
9.0 KiB
C++
335 lines
9.0 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
|
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
#include "precomp.hpp"
|
|
#include <map>
|
|
|
|
using namespace cv;
|
|
using namespace cv::cuda;
|
|
|
|
#ifdef HAVE_CUDA
|
|
|
|
namespace {
|
|
|
|
class HostMemAllocator : public MatAllocator
|
|
{
|
|
public:
|
|
explicit HostMemAllocator(unsigned int flags) : flags_(flags)
|
|
{
|
|
}
|
|
|
|
UMatData* allocate(int dims, const int* sizes, int type,
|
|
void* data0, size_t* step,
|
|
int /*flags*/, UMatUsageFlags /*usageFlags*/) const
|
|
{
|
|
size_t total = CV_ELEM_SIZE(type);
|
|
for (int i = dims-1; i >= 0; i--)
|
|
{
|
|
if (step)
|
|
{
|
|
if (data0 && step[i] != CV_AUTOSTEP)
|
|
{
|
|
CV_Assert(total <= step[i]);
|
|
total = step[i];
|
|
}
|
|
else
|
|
{
|
|
step[i] = total;
|
|
}
|
|
}
|
|
|
|
total *= sizes[i];
|
|
}
|
|
|
|
UMatData* u = new UMatData(this);
|
|
u->size = total;
|
|
|
|
if (data0)
|
|
{
|
|
u->data = u->origdata = static_cast<uchar*>(data0);
|
|
u->flags |= UMatData::USER_ALLOCATED;
|
|
}
|
|
else
|
|
{
|
|
void* ptr = 0;
|
|
cudaSafeCall( cudaHostAlloc(&ptr, total, flags_) );
|
|
|
|
u->data = u->origdata = static_cast<uchar*>(ptr);
|
|
}
|
|
|
|
return u;
|
|
}
|
|
|
|
bool allocate(UMatData* u, int /*accessFlags*/, UMatUsageFlags /*usageFlags*/) const
|
|
{
|
|
return (u != NULL);
|
|
}
|
|
|
|
void deallocate(UMatData* u) const
|
|
{
|
|
if (!u)
|
|
return;
|
|
|
|
CV_Assert(u->urefcount >= 0);
|
|
CV_Assert(u->refcount >= 0);
|
|
|
|
if (u->refcount == 0)
|
|
{
|
|
if ( !(u->flags & UMatData::USER_ALLOCATED) )
|
|
{
|
|
cudaFreeHost(u->origdata);
|
|
u->origdata = 0;
|
|
}
|
|
|
|
delete u;
|
|
}
|
|
}
|
|
|
|
private:
|
|
unsigned int flags_;
|
|
};
|
|
|
|
} // namespace
|
|
|
|
#endif
|
|
|
|
MatAllocator* cv::cuda::HostMem::getAllocator(AllocType alloc_type)
|
|
{
|
|
#ifndef HAVE_CUDA
|
|
(void) alloc_type;
|
|
throw_no_cuda();
|
|
return NULL;
|
|
#else
|
|
static std::map<unsigned int, Ptr<MatAllocator> > allocators;
|
|
|
|
unsigned int flag = cudaHostAllocDefault;
|
|
|
|
switch (alloc_type)
|
|
{
|
|
case PAGE_LOCKED: flag = cudaHostAllocDefault; break;
|
|
case SHARED: flag = cudaHostAllocMapped; break;
|
|
case WRITE_COMBINED: flag = cudaHostAllocWriteCombined; break;
|
|
default: CV_Error(cv::Error::StsBadFlag, "Invalid alloc type");
|
|
}
|
|
|
|
Ptr<MatAllocator>& a = allocators[flag];
|
|
|
|
if (a.empty())
|
|
{
|
|
a = makePtr<HostMemAllocator>(flag);
|
|
}
|
|
|
|
return a.get();
|
|
#endif
|
|
}
|
|
|
|
#ifdef HAVE_CUDA
|
|
namespace
|
|
{
|
|
size_t alignUpStep(size_t what, size_t alignment)
|
|
{
|
|
size_t alignMask = alignment - 1;
|
|
size_t inverseAlignMask = ~alignMask;
|
|
size_t res = (what + alignMask) & inverseAlignMask;
|
|
return res;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
void cv::cuda::HostMem::create(int rows_, int cols_, int type_)
|
|
{
|
|
#ifndef HAVE_CUDA
|
|
(void) rows_;
|
|
(void) cols_;
|
|
(void) type_;
|
|
throw_no_cuda();
|
|
#else
|
|
if (alloc_type == SHARED)
|
|
{
|
|
DeviceInfo devInfo;
|
|
CV_Assert( devInfo.canMapHostMemory() );
|
|
}
|
|
|
|
type_ &= Mat::TYPE_MASK;
|
|
|
|
if (rows == rows_ && cols == cols_ && type() == type_ && data)
|
|
return;
|
|
|
|
if (data)
|
|
release();
|
|
|
|
CV_DbgAssert( rows_ >= 0 && cols_ >= 0 );
|
|
|
|
if (rows_ > 0 && cols_ > 0)
|
|
{
|
|
flags = Mat::MAGIC_VAL + Mat::CONTINUOUS_FLAG + type_;
|
|
rows = rows_;
|
|
cols = cols_;
|
|
step = elemSize() * cols;
|
|
|
|
if (alloc_type == SHARED)
|
|
{
|
|
DeviceInfo devInfo;
|
|
step = alignUpStep(step, devInfo.textureAlignment());
|
|
}
|
|
|
|
int64 _nettosize = (int64)step*rows;
|
|
size_t nettosize = (size_t)_nettosize;
|
|
|
|
if (_nettosize != (int64)nettosize)
|
|
CV_Error(cv::Error::StsNoMem, "Too big buffer is allocated");
|
|
|
|
size_t datasize = alignSize(nettosize, (int)sizeof(*refcount));
|
|
|
|
void* ptr = 0;
|
|
|
|
switch (alloc_type)
|
|
{
|
|
case PAGE_LOCKED: cudaSafeCall( cudaHostAlloc(&ptr, datasize, cudaHostAllocDefault) ); break;
|
|
case SHARED: cudaSafeCall( cudaHostAlloc(&ptr, datasize, cudaHostAllocMapped) ); break;
|
|
case WRITE_COMBINED: cudaSafeCall( cudaHostAlloc(&ptr, datasize, cudaHostAllocWriteCombined) ); break;
|
|
default: CV_Error(cv::Error::StsBadFlag, "Invalid alloc type");
|
|
}
|
|
|
|
datastart = data = (uchar*)ptr;
|
|
dataend = data + nettosize;
|
|
|
|
refcount = (int*)cv::fastMalloc(sizeof(*refcount));
|
|
*refcount = 1;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
HostMem cv::cuda::HostMem::reshape(int new_cn, int new_rows) const
|
|
{
|
|
HostMem hdr = *this;
|
|
|
|
int cn = channels();
|
|
if (new_cn == 0)
|
|
new_cn = cn;
|
|
|
|
int total_width = cols * cn;
|
|
|
|
if ((new_cn > total_width || total_width % new_cn != 0) && new_rows == 0)
|
|
new_rows = rows * total_width / new_cn;
|
|
|
|
if (new_rows != 0 && new_rows != rows)
|
|
{
|
|
int total_size = total_width * rows;
|
|
|
|
if (!isContinuous())
|
|
CV_Error(cv::Error::BadStep, "The matrix is not continuous, thus its number of rows can not be changed");
|
|
|
|
if ((unsigned)new_rows > (unsigned)total_size)
|
|
CV_Error(cv::Error::StsOutOfRange, "Bad new number of rows");
|
|
|
|
total_width = total_size / new_rows;
|
|
|
|
if (total_width * new_rows != total_size)
|
|
CV_Error(cv::Error::StsBadArg, "The total number of matrix elements is not divisible by the new number of rows");
|
|
|
|
hdr.rows = new_rows;
|
|
hdr.step = total_width * elemSize1();
|
|
}
|
|
|
|
int new_width = total_width / new_cn;
|
|
|
|
if (new_width * new_cn != total_width)
|
|
CV_Error(cv::Error::BadNumChannels, "The total width is not divisible by the new number of channels");
|
|
|
|
hdr.cols = new_width;
|
|
hdr.flags = (hdr.flags & ~CV_MAT_CN_MASK) | ((new_cn - 1) << CV_CN_SHIFT);
|
|
|
|
return hdr;
|
|
}
|
|
|
|
void cv::cuda::HostMem::release()
|
|
{
|
|
#ifdef HAVE_CUDA
|
|
if (refcount && CV_XADD(refcount, -1) == 1)
|
|
{
|
|
cudaFreeHost(datastart);
|
|
fastFree(refcount);
|
|
}
|
|
|
|
dataend = data = datastart = 0;
|
|
step = rows = cols = 0;
|
|
refcount = 0;
|
|
#endif
|
|
}
|
|
|
|
GpuMat cv::cuda::HostMem::createGpuMatHeader() const
|
|
{
|
|
#ifndef HAVE_CUDA
|
|
throw_no_cuda();
|
|
return GpuMat();
|
|
#else
|
|
CV_Assert( alloc_type == SHARED );
|
|
|
|
void *pdev;
|
|
cudaSafeCall( cudaHostGetDevicePointer(&pdev, data, 0) );
|
|
|
|
return GpuMat(rows, cols, type(), pdev, step);
|
|
#endif
|
|
}
|
|
|
|
void cv::cuda::registerPageLocked(Mat& m)
|
|
{
|
|
#ifndef HAVE_CUDA
|
|
(void) m;
|
|
throw_no_cuda();
|
|
#else
|
|
CV_Assert( m.isContinuous() );
|
|
cudaSafeCall( cudaHostRegister(m.data, m.step * m.rows, cudaHostRegisterPortable) );
|
|
#endif
|
|
}
|
|
|
|
void cv::cuda::unregisterPageLocked(Mat& m)
|
|
{
|
|
#ifndef HAVE_CUDA
|
|
(void) m;
|
|
#else
|
|
cudaSafeCall( cudaHostUnregister(m.data) );
|
|
#endif
|
|
}
|