163 lines
4.8 KiB
C++
163 lines
4.8 KiB
C++
/***********************************************************************
|
|
* Software License Agreement (BSD License)
|
|
*
|
|
* Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
|
|
* Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
|
|
*
|
|
* THE BSD LICENSE
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
|
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
|
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
|
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*************************************************************************/
|
|
|
|
#ifndef _OPENCV_COMPOSITETREE_H_
|
|
#define _OPENCV_COMPOSITETREE_H_
|
|
|
|
#include "opencv2/flann/general.h"
|
|
#include "opencv2/flann/nn_index.h"
|
|
|
|
namespace cvflann
|
|
{
|
|
|
|
|
|
struct CompositeIndexParams : public IndexParams {
|
|
CompositeIndexParams(int trees_ = 4, int branching_ = 32, int iterations_ = 11,
|
|
flann_centers_init_t centers_init_ = FLANN_CENTERS_RANDOM, float cb_index_ = 0.2 ) :
|
|
IndexParams(FLANN_INDEX_COMPOSITE),
|
|
trees(trees_),
|
|
branching(branching_),
|
|
iterations(iterations_),
|
|
centers_init(centers_init_),
|
|
cb_index(cb_index_) {};
|
|
|
|
int trees; // number of randomized trees to use (for kdtree)
|
|
int branching; // branching factor (for kmeans tree)
|
|
int iterations; // max iterations to perform in one kmeans clustering (kmeans tree)
|
|
flann_centers_init_t centers_init; // algorithm used for picking the initial cluster centers for kmeans tree
|
|
float cb_index; // cluster boundary index. Used when searching the kmeans tree
|
|
|
|
void print() const
|
|
{
|
|
logger().info("Index type: %d\n",(int)algorithm);
|
|
logger().info("Trees: %d\n", trees);
|
|
logger().info("Branching: %d\n", branching);
|
|
logger().info("Iterations: %d\n", iterations);
|
|
logger().info("Centres initialisation: %d\n", centers_init);
|
|
logger().info("Cluster boundary weight: %g\n", cb_index);
|
|
}
|
|
};
|
|
|
|
|
|
|
|
template <typename ELEM_TYPE, typename DIST_TYPE = typename DistType<ELEM_TYPE>::type >
|
|
class CompositeIndex : public NNIndex<ELEM_TYPE>
|
|
{
|
|
KMeansIndex<ELEM_TYPE, DIST_TYPE>* kmeans;
|
|
KDTreeIndex<ELEM_TYPE, DIST_TYPE>* kdtree;
|
|
|
|
const Matrix<ELEM_TYPE> dataset;
|
|
|
|
const IndexParams& index_params;
|
|
|
|
CompositeIndex& operator=(const CompositeIndex&);
|
|
CompositeIndex(const CompositeIndex&);
|
|
public:
|
|
|
|
CompositeIndex(const Matrix<ELEM_TYPE>& inputData, const CompositeIndexParams& params = CompositeIndexParams() ) :
|
|
dataset(inputData), index_params(params)
|
|
{
|
|
KDTreeIndexParams kdtree_params(params.trees);
|
|
KMeansIndexParams kmeans_params(params.branching, params.iterations, params.centers_init, params.cb_index);
|
|
|
|
kdtree = new KDTreeIndex<ELEM_TYPE, DIST_TYPE>(inputData,kdtree_params);
|
|
kmeans = new KMeansIndex<ELEM_TYPE, DIST_TYPE>(inputData,kmeans_params);
|
|
|
|
}
|
|
|
|
virtual ~CompositeIndex()
|
|
{
|
|
delete kdtree;
|
|
delete kmeans;
|
|
}
|
|
|
|
|
|
flann_algorithm_t getType() const
|
|
{
|
|
return FLANN_INDEX_COMPOSITE;
|
|
}
|
|
|
|
|
|
size_t size() const
|
|
{
|
|
return dataset.rows;
|
|
}
|
|
|
|
size_t veclen() const
|
|
{
|
|
return dataset.cols;
|
|
}
|
|
|
|
|
|
int usedMemory() const
|
|
{
|
|
return kmeans->usedMemory()+kdtree->usedMemory();
|
|
}
|
|
|
|
void buildIndex()
|
|
{
|
|
logger().info("Building kmeans tree...\n");
|
|
kmeans->buildIndex();
|
|
logger().info("Building kdtree tree...\n");
|
|
kdtree->buildIndex();
|
|
}
|
|
|
|
|
|
void saveIndex(FILE* stream)
|
|
{
|
|
kmeans->saveIndex(stream);
|
|
kdtree->saveIndex(stream);
|
|
}
|
|
|
|
|
|
void loadIndex(FILE* stream)
|
|
{
|
|
kmeans->loadIndex(stream);
|
|
kdtree->loadIndex(stream);
|
|
}
|
|
|
|
void findNeighbors(ResultSet<ELEM_TYPE>& result, const ELEM_TYPE* vec, const SearchParams& searchParams)
|
|
{
|
|
kmeans->findNeighbors(result,vec,searchParams);
|
|
kdtree->findNeighbors(result,vec,searchParams);
|
|
}
|
|
|
|
const IndexParams* getParameters() const
|
|
{
|
|
return &index_params;
|
|
}
|
|
|
|
|
|
};
|
|
|
|
} // namespace cvflann
|
|
|
|
#endif //_OPENCV_COMPOSITETREE_H_
|