718 lines
21 KiB
C++
718 lines
21 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
|
// Copyright (C) 2009-2011, Willow Garage Inc., all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
#include "precomp.hpp"
|
|
#include "opencv2/videostab/motion_stabilizing.hpp"
|
|
#include "opencv2/videostab/global_motion.hpp"
|
|
#include "opencv2/videostab/ring_buffer.hpp"
|
|
#include "clp.hpp"
|
|
|
|
using namespace std;
|
|
|
|
namespace cv
|
|
{
|
|
namespace videostab
|
|
{
|
|
|
|
void MotionStabilizationPipeline::stabilize(
|
|
int size, const vector<Mat> &motions, pair<int,int> range, Mat *stabilizationMotions)
|
|
{
|
|
vector<Mat> updatedMotions(motions.size());
|
|
for (size_t i = 0; i < motions.size(); ++i)
|
|
updatedMotions[i] = motions[i].clone();
|
|
|
|
vector<Mat> stabilizationMotions_(size);
|
|
|
|
for (int i = 0; i < size; ++i)
|
|
stabilizationMotions[i] = Mat::eye(3, 3, CV_32F);
|
|
|
|
for (size_t i = 0; i < stabilizers_.size(); ++i)
|
|
{
|
|
stabilizers_[i]->stabilize(size, updatedMotions, range, &stabilizationMotions_[0]);
|
|
|
|
for (int i = 0; i < size; ++i)
|
|
stabilizationMotions[i] = stabilizationMotions_[i] * stabilizationMotions[i];
|
|
|
|
for (int j = 0; j + 1 < size; ++j)
|
|
{
|
|
Mat S0 = stabilizationMotions[j];
|
|
Mat S1 = stabilizationMotions[j+1];
|
|
at(j, updatedMotions) = S1 * at(j, updatedMotions) * S0.inv();
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void MotionFilterBase::stabilize(
|
|
int size, const vector<Mat> &motions, pair<int,int> range, Mat *stabilizationMotions)
|
|
{
|
|
for (int i = 0; i < size; ++i)
|
|
stabilizationMotions[i] = stabilize(i, motions, range);
|
|
}
|
|
|
|
|
|
void GaussianMotionFilter::setParams(int radius, float stdev)
|
|
{
|
|
radius_ = radius;
|
|
stdev_ = stdev > 0.f ? stdev : sqrt(static_cast<float>(radius));
|
|
|
|
float sum = 0;
|
|
weight_.resize(2*radius_ + 1);
|
|
for (int i = -radius_; i <= radius_; ++i)
|
|
sum += weight_[radius_ + i] = std::exp(-i*i/(stdev_*stdev_));
|
|
for (int i = -radius_; i <= radius_; ++i)
|
|
weight_[radius_ + i] /= sum;
|
|
}
|
|
|
|
|
|
Mat GaussianMotionFilter::stabilize(int idx, const vector<Mat> &motions, pair<int,int> range)
|
|
{
|
|
const Mat &cur = at(idx, motions);
|
|
Mat res = Mat::zeros(cur.size(), cur.type());
|
|
float sum = 0.f;
|
|
int iMin = max(idx - radius_, range.first);
|
|
int iMax = min(idx + radius_, range.second);
|
|
for (int i = iMin; i <= iMax; ++i)
|
|
{
|
|
res += weight_[radius_ + i - idx] * getMotion(idx, i, motions);
|
|
sum += weight_[radius_ + i - idx];
|
|
}
|
|
return sum > 0.f ? res / sum : Mat::eye(cur.size(), cur.type());
|
|
}
|
|
|
|
|
|
LpMotionStabilizer::LpMotionStabilizer(MotionModel model)
|
|
{
|
|
setMotionModel(model);
|
|
setFrameSize(Size(0,0));
|
|
setTrimRatio(0.1f);
|
|
setWeight1(1);
|
|
setWeight2(10);
|
|
setWeight3(100);
|
|
setWeight4(100);
|
|
}
|
|
|
|
|
|
#ifndef HAVE_CLP
|
|
|
|
void LpMotionStabilizer::stabilize(int, const vector<Mat>&, pair<int,int>, Mat*)
|
|
{
|
|
CV_Error(CV_StsError, "The library is built without Clp support");
|
|
}
|
|
|
|
#else
|
|
|
|
void LpMotionStabilizer::stabilize(
|
|
int size, const vector<Mat> &motions, pair<int,int> range, Mat *stabilizationMotions)
|
|
{
|
|
CV_Assert(model_ <= MM_AFFINE);
|
|
|
|
int N = size;
|
|
const vector<Mat> &M = motions;
|
|
Mat *S = stabilizationMotions;
|
|
|
|
double w = frameSize_.width, h = frameSize_.height;
|
|
double tw = w * trimRatio_, th = h * trimRatio_;
|
|
|
|
int ncols = 4*N + 6*(N-1) + 6*(N-2) + 6*(N-3);
|
|
int nrows = 8*N + 2*6*(N-1) + 2*6*(N-2) + 2*6*(N-3);
|
|
|
|
rows_.clear();
|
|
cols_.clear();
|
|
elems_.clear();
|
|
|
|
obj_.assign(ncols, 0);
|
|
collb_.assign(ncols, -INF);
|
|
colub_.assign(ncols, INF);
|
|
int c = 4*N;
|
|
|
|
// for each slack variable e[t] (error bound)
|
|
for (int t = 0; t < N-1; ++t, c += 6)
|
|
{
|
|
// e[t](0,0)
|
|
obj_[c] = w4_*w1_;
|
|
collb_[c] = 0;
|
|
|
|
// e[t](0,1)
|
|
obj_[c+1] = w4_*w1_;
|
|
collb_[c+1] = 0;
|
|
|
|
// e[t](0,2)
|
|
obj_[c+2] = w1_;
|
|
collb_[c+2] = 0;
|
|
|
|
// e[t](1,0)
|
|
obj_[c+3] = w4_*w1_;
|
|
collb_[c+3] = 0;
|
|
|
|
// e[t](1,1)
|
|
obj_[c+4] = w4_*w1_;
|
|
collb_[c+4] = 0;
|
|
|
|
// e[t](1,2)
|
|
obj_[c+5] = w1_;
|
|
collb_[c+5] = 0;
|
|
}
|
|
for (int t = 0; t < N-2; ++t, c += 6)
|
|
{
|
|
// e[t](0,0)
|
|
obj_[c] = w4_*w2_;
|
|
collb_[c] = 0;
|
|
|
|
// e[t](0,1)
|
|
obj_[c+1] = w4_*w2_;
|
|
collb_[c+1] = 0;
|
|
|
|
// e[t](0,2)
|
|
obj_[c+2] = w2_;
|
|
collb_[c+2] = 0;
|
|
|
|
// e[t](1,0)
|
|
obj_[c+3] = w4_*w2_;
|
|
collb_[c+3] = 0;
|
|
|
|
// e[t](1,1)
|
|
obj_[c+4] = w4_*w2_;
|
|
collb_[c+4] = 0;
|
|
|
|
// e[t](1,2)
|
|
obj_[c+5] = w2_;
|
|
collb_[c+5] = 0;
|
|
}
|
|
for (int t = 0; t < N-3; ++t, c += 6)
|
|
{
|
|
// e[t](0,0)
|
|
obj_[c] = w4_*w3_;
|
|
collb_[c] = 0;
|
|
|
|
// e[t](0,1)
|
|
obj_[c+1] = w4_*w3_;
|
|
collb_[c+1] = 0;
|
|
|
|
// e[t](0,2)
|
|
obj_[c+2] = w3_;
|
|
collb_[c+2] = 0;
|
|
|
|
// e[t](1,0)
|
|
obj_[c+3] = w4_*w3_;
|
|
collb_[c+3] = 0;
|
|
|
|
// e[t](1,1)
|
|
obj_[c+4] = w4_*w3_;
|
|
collb_[c+4] = 0;
|
|
|
|
// e[t](1,2)
|
|
obj_[c+5] = w3_;
|
|
collb_[c+5] = 0;
|
|
}
|
|
|
|
elems_.clear();
|
|
rowlb_.assign(nrows, -INF);
|
|
rowub_.assign(nrows, INF);
|
|
|
|
int r = 0;
|
|
|
|
// frame corners
|
|
const Point2d pt[] = {Point2d(0,0), Point2d(w,0), Point2d(w,h), Point2d(0,h)};
|
|
|
|
// for each frame
|
|
for (int t = 0; t < N; ++t)
|
|
{
|
|
c = 4*t;
|
|
|
|
// for each frame corner
|
|
for (int i = 0; i < 4; ++i, r += 2)
|
|
{
|
|
set(r, c, pt[i].x); set(r, c+1, pt[i].y); set(r, c+2, 1);
|
|
set(r+1, c, pt[i].y); set(r+1, c+1, -pt[i].x); set(r+1, c+3, 1);
|
|
rowlb_[r] = pt[i].x-tw;
|
|
rowub_[r] = pt[i].x+tw;
|
|
rowlb_[r+1] = pt[i].y-th;
|
|
rowub_[r+1] = pt[i].y+th;
|
|
}
|
|
}
|
|
|
|
// for each S[t+1]M[t] - S[t] - e[t] <= 0 condition
|
|
for (int t = 0; t < N-1; ++t, r += 6)
|
|
{
|
|
Mat_<float> M0 = at(t,M);
|
|
|
|
c = 4*t;
|
|
set(r, c, -1);
|
|
set(r+1, c+1, -1);
|
|
set(r+2, c+2, -1);
|
|
set(r+3, c+1, 1);
|
|
set(r+4, c, -1);
|
|
set(r+5, c+3, -1);
|
|
|
|
c = 4*(t+1);
|
|
set(r, c, M0(0,0)); set(r, c+1, M0(1,0));
|
|
set(r+1, c, M0(0,1)); set(r+1, c+1, M0(1,1));
|
|
set(r+2, c, M0(0,2)); set(r+2, c+1, M0(1,2)); set(r+2, c+2, 1);
|
|
set(r+3, c, M0(1,0)); set(r+3, c+1, -M0(0,0));
|
|
set(r+4, c, M0(1,1)); set(r+4, c+1, -M0(0,1));
|
|
set(r+5, c, M0(1,2)); set(r+5, c+1, -M0(0,2)); set(r+5, c+3, 1);
|
|
|
|
c = 4*N + 6*t;
|
|
for (int i = 0; i < 6; ++i)
|
|
set(r+i, c+i, -1);
|
|
|
|
rowub_[r] = 0;
|
|
rowub_[r+1] = 0;
|
|
rowub_[r+2] = 0;
|
|
rowub_[r+3] = 0;
|
|
rowub_[r+4] = 0;
|
|
rowub_[r+5] = 0;
|
|
}
|
|
|
|
// for each 0 <= S[t+1]M[t] - S[t] + e[t] condition
|
|
for (int t = 0; t < N-1; ++t, r += 6)
|
|
{
|
|
Mat_<float> M0 = at(t,M);
|
|
|
|
c = 4*t;
|
|
set(r, c, -1);
|
|
set(r+1, c+1, -1);
|
|
set(r+2, c+2, -1);
|
|
set(r+3, c+1, 1);
|
|
set(r+4, c, -1);
|
|
set(r+5, c+3, -1);
|
|
|
|
c = 4*(t+1);
|
|
set(r, c, M0(0,0)); set(r, c+1, M0(1,0));
|
|
set(r+1, c, M0(0,1)); set(r+1, c+1, M0(1,1));
|
|
set(r+2, c, M0(0,2)); set(r+2, c+1, M0(1,2)); set(r+2, c+2, 1);
|
|
set(r+3, c, M0(1,0)); set(r+3, c+1, -M0(0,0));
|
|
set(r+4, c, M0(1,1)); set(r+4, c+1, -M0(0,1));
|
|
set(r+5, c, M0(1,2)); set(r+5, c+1, -M0(0,2)); set(r+5, c+3, 1);
|
|
|
|
c = 4*N + 6*t;
|
|
for (int i = 0; i < 6; ++i)
|
|
set(r+i, c+i, 1);
|
|
|
|
rowlb_[r] = 0;
|
|
rowlb_[r+1] = 0;
|
|
rowlb_[r+2] = 0;
|
|
rowlb_[r+3] = 0;
|
|
rowlb_[r+4] = 0;
|
|
rowlb_[r+5] = 0;
|
|
}
|
|
|
|
// for each S[t+2]M[t+1] - S[t+1]*(I+M[t]) + S[t] - e[t] <= 0 condition
|
|
for (int t = 0; t < N-2; ++t, r += 6)
|
|
{
|
|
Mat_<float> M0 = at(t,M), M1 = at(t+1,M);
|
|
|
|
c = 4*t;
|
|
set(r, c, 1);
|
|
set(r+1, c+1, 1);
|
|
set(r+2, c+2, 1);
|
|
set(r+3, c+1, -1);
|
|
set(r+4, c, 1);
|
|
set(r+5, c+3, 1);
|
|
|
|
c = 4*(t+1);
|
|
set(r, c, -M0(0,0)-1); set(r, c+1, -M0(1,0));
|
|
set(r+1, c, -M0(0,1)); set(r+1, c+1, -M0(1,1)-1);
|
|
set(r+2, c, -M0(0,2)); set(r+2, c+1, -M0(1,2)); set(r+2, c+2, -2);
|
|
set(r+3, c, -M0(1,0)); set(r+3, c+1, M0(0,0)+1);
|
|
set(r+4, c, -M0(1,1)-1); set(r+4, c+1, M0(0,1));
|
|
set(r+5, c, -M0(1,2)); set(r+5, c+1, M0(0,2)); set(r+5, c+3, -2);
|
|
|
|
c = 4*(t+2);
|
|
set(r, c, M1(0,0)); set(r, c+1, M1(1,0));
|
|
set(r+1, c, M1(0,1)); set(r+1, c+1, M1(1,1));
|
|
set(r+2, c, M1(0,2)); set(r+2, c+1, M1(1,2)); set(r+2, c+2, 1);
|
|
set(r+3, c, M1(1,0)); set(r+3, c+1, -M1(0,0));
|
|
set(r+4, c, M1(1,1)); set(r+4, c+1, -M1(0,1));
|
|
set(r+5, c, M1(1,2)); set(r+5, c+1, -M1(0,2)); set(r+5, c+3, 1);
|
|
|
|
c = 4*N + 6*(N-1) + 6*t;
|
|
for (int i = 0; i < 6; ++i)
|
|
set(r+i, c+i, -1);
|
|
|
|
rowub_[r] = 0;
|
|
rowub_[r+1] = 0;
|
|
rowub_[r+2] = 0;
|
|
rowub_[r+3] = 0;
|
|
rowub_[r+4] = 0;
|
|
rowub_[r+5] = 0;
|
|
}
|
|
|
|
// for each 0 <= S[t+2]M[t+1]] - S[t+1]*(I+M[t]) + S[t] + e[t] condition
|
|
for (int t = 0; t < N-2; ++t, r += 6)
|
|
{
|
|
Mat_<float> M0 = at(t,M), M1 = at(t+1,M);
|
|
|
|
c = 4*t;
|
|
set(r, c, 1);
|
|
set(r+1, c+1, 1);
|
|
set(r+2, c+2, 1);
|
|
set(r+3, c+1, -1);
|
|
set(r+4, c, 1);
|
|
set(r+5, c+3, 1);
|
|
|
|
c = 4*(t+1);
|
|
set(r, c, -M0(0,0)-1); set(r, c+1, -M0(1,0));
|
|
set(r+1, c, -M0(0,1)); set(r+1, c+1, -M0(1,1)-1);
|
|
set(r+2, c, -M0(0,2)); set(r+2, c+1, -M0(1,2)); set(r+2, c+2, -2);
|
|
set(r+3, c, -M0(1,0)); set(r+3, c+1, M0(0,0)+1);
|
|
set(r+4, c, -M0(1,1)-1); set(r+4, c+1, M0(0,1));
|
|
set(r+5, c, -M0(1,2)); set(r+5, c+1, M0(0,2)); set(r+5, c+3, -2);
|
|
|
|
c = 4*(t+2);
|
|
set(r, c, M1(0,0)); set(r, c+1, M1(1,0));
|
|
set(r+1, c, M1(0,1)); set(r+1, c+1, M1(1,1));
|
|
set(r+2, c, M1(0,2)); set(r+2, c+1, M1(1,2)); set(r+2, c+2, 1);
|
|
set(r+3, c, M1(1,0)); set(r+3, c+1, -M1(0,0));
|
|
set(r+4, c, M1(1,1)); set(r+4, c+1, -M1(0,1));
|
|
set(r+5, c, M1(1,2)); set(r+5, c+1, -M1(0,2)); set(r+5, c+3, 1);
|
|
|
|
c = 4*N + 6*(N-1) + 6*t;
|
|
for (int i = 0; i < 6; ++i)
|
|
set(r+i, c+i, 1);
|
|
|
|
rowlb_[r] = 0;
|
|
rowlb_[r+1] = 0;
|
|
rowlb_[r+2] = 0;
|
|
rowlb_[r+3] = 0;
|
|
rowlb_[r+4] = 0;
|
|
rowlb_[r+5] = 0;
|
|
}
|
|
|
|
// for each S[t+3]M[t+2] - S[t+2]*(I+2M[t+1]) + S[t+1]*(2*I+M[t]) - S[t] - e[t] <= 0 condition
|
|
for (int t = 0; t < N-3; ++t, r += 6)
|
|
{
|
|
Mat_<float> M0 = at(t,M), M1 = at(t+1,M), M2 = at(t+2,M);
|
|
|
|
c = 4*t;
|
|
set(r, c, -1);
|
|
set(r+1, c+1, -1);
|
|
set(r+2, c+2, -1);
|
|
set(r+3, c+1, 1);
|
|
set(r+4, c, -1);
|
|
set(r+5, c+3, -1);
|
|
|
|
c = 4*(t+1);
|
|
set(r, c, M0(0,0)+2); set(r, c+1, M0(1,0));
|
|
set(r+1, c, M0(0,1)); set(r+1, c+1, M0(1,1)+2);
|
|
set(r+2, c, M0(0,2)); set(r+2, c+1, M0(1,2)); set(r+2, c+2, 3);
|
|
set(r+3, c, M0(1,0)); set(r+3, c+1, -M0(0,0)-2);
|
|
set(r+4, c, M0(1,1)+2); set(r+4, c+1, -M0(0,1));
|
|
set(r+5, c, M0(1,2)); set(r+5, c+1, -M0(0,2)); set(r+5, c+3, 3);
|
|
|
|
c = 4*(t+2);
|
|
set(r, c, -2*M1(0,0)-1); set(r, c+1, -2*M1(1,0));
|
|
set(r+1, c, -2*M1(0,1)); set(r+1, c+1, -2*M1(1,1)-1);
|
|
set(r+2, c, -2*M1(0,2)); set(r+2, c+1, -2*M1(1,2)); set(r+2, c+2, -3);
|
|
set(r+3, c, -2*M1(1,0)); set(r+3, c+1, 2*M1(0,0)+1);
|
|
set(r+4, c, -2*M1(1,1)-1); set(r+4, c+1, 2*M1(0,1));
|
|
set(r+5, c, -2*M1(1,2)); set(r+5, c+1, 2*M1(0,2)); set(r+5, c+3, -3);
|
|
|
|
c = 4*(t+3);
|
|
set(r, c, M2(0,0)); set(r, c+1, M2(1,0));
|
|
set(r+1, c, M2(0,1)); set(r+1, c+1, M2(1,1));
|
|
set(r+2, c, M2(0,2)); set(r+2, c+1, M2(1,2)); set(r+2, c+2, 1);
|
|
set(r+3, c, M2(1,0)); set(r+3, c+1, -M2(0,0));
|
|
set(r+4, c, M2(1,1)); set(r+4, c+1, -M2(0,1));
|
|
set(r+5, c, M2(1,2)); set(r+5, c+1, -M2(0,2)); set(r+5, c+3, 1);
|
|
|
|
c = 4*N + 6*(N-1) + 6*(N-2) + 6*t;
|
|
for (int i = 0; i < 6; ++i)
|
|
set(r+i, c+i, -1);
|
|
|
|
rowub_[r] = 0;
|
|
rowub_[r+1] = 0;
|
|
rowub_[r+2] = 0;
|
|
rowub_[r+3] = 0;
|
|
rowub_[r+4] = 0;
|
|
rowub_[r+5] = 0;
|
|
}
|
|
|
|
// for each 0 <= S[t+3]M[t+2] - S[t+2]*(I+2M[t+1]) + S[t+1]*(2*I+M[t]) + e[t] condition
|
|
for (int t = 0; t < N-3; ++t, r += 6)
|
|
{
|
|
Mat_<float> M0 = at(t,M), M1 = at(t+1,M), M2 = at(t+2,M);
|
|
|
|
c = 4*t;
|
|
set(r, c, -1);
|
|
set(r+1, c+1, -1);
|
|
set(r+2, c+2, -1);
|
|
set(r+3, c+1, 1);
|
|
set(r+4, c, -1);
|
|
set(r+5, c+3, -1);
|
|
|
|
c = 4*(t+1);
|
|
set(r, c, M0(0,0)+2); set(r, c+1, M0(1,0));
|
|
set(r+1, c, M0(0,1)); set(r+1, c+1, M0(1,1)+2);
|
|
set(r+2, c, M0(0,2)); set(r+2, c+1, M0(1,2)); set(r+2, c+2, 3);
|
|
set(r+3, c, M0(1,0)); set(r+3, c+1, -M0(0,0)-2);
|
|
set(r+4, c, M0(1,1)+2); set(r+4, c+1, -M0(0,1));
|
|
set(r+5, c, M0(1,2)); set(r+5, c+1, -M0(0,2)); set(r+5, c+3, 3);
|
|
|
|
c = 4*(t+2);
|
|
set(r, c, -2*M1(0,0)-1); set(r, c+1, -2*M1(1,0));
|
|
set(r+1, c, -2*M1(0,1)); set(r+1, c+1, -2*M1(1,1)-1);
|
|
set(r+2, c, -2*M1(0,2)); set(r+2, c+1, -2*M1(1,2)); set(r+2, c+2, -3);
|
|
set(r+3, c, -2*M1(1,0)); set(r+3, c+1, 2*M1(0,0)+1);
|
|
set(r+4, c, -2*M1(1,1)-1); set(r+4, c+1, 2*M1(0,1));
|
|
set(r+5, c, -2*M1(1,2)); set(r+5, c+1, 2*M1(0,2)); set(r+5, c+3, -3);
|
|
|
|
c = 4*(t+3);
|
|
set(r, c, M2(0,0)); set(r, c+1, M2(1,0));
|
|
set(r+1, c, M2(0,1)); set(r+1, c+1, M2(1,1));
|
|
set(r+2, c, M2(0,2)); set(r+2, c+1, M2(1,2)); set(r+2, c+2, 1);
|
|
set(r+3, c, M2(1,0)); set(r+3, c+1, -M2(0,0));
|
|
set(r+4, c, M2(1,1)); set(r+4, c+1, -M2(0,1));
|
|
set(r+5, c, M2(1,2)); set(r+5, c+1, -M2(0,2)); set(r+5, c+3, 1);
|
|
|
|
c = 4*N + 6*(N-1) + 6*(N-2) + 6*t;
|
|
for (int i = 0; i < 6; ++i)
|
|
set(r+i, c+i, 1);
|
|
|
|
rowlb_[r] = 0;
|
|
rowlb_[r+1] = 0;
|
|
rowlb_[r+2] = 0;
|
|
rowlb_[r+3] = 0;
|
|
rowlb_[r+4] = 0;
|
|
rowlb_[r+5] = 0;
|
|
}
|
|
|
|
// solve
|
|
|
|
CoinPackedMatrix A(true, &rows_[0], &cols_[0], &elems_[0], elems_.size());
|
|
A.setDimensions(nrows, ncols);
|
|
|
|
ClpSimplex model(false);
|
|
model.loadProblem(A, &collb_[0], &colub_[0], &obj_[0], &rowlb_[0], &rowub_[0]);
|
|
|
|
ClpDualRowSteepest dualSteep(1);
|
|
model.setDualRowPivotAlgorithm(dualSteep);
|
|
|
|
ClpPrimalColumnSteepest primalSteep(1);
|
|
model.setPrimalColumnPivotAlgorithm(primalSteep);
|
|
|
|
model.scaling(1);
|
|
|
|
ClpPresolve presolveInfo;
|
|
Ptr<ClpSimplex> presolvedModel = presolveInfo.presolvedModel(model);
|
|
|
|
if (!presolvedModel.empty())
|
|
{
|
|
presolvedModel->dual();
|
|
presolveInfo.postsolve(true);
|
|
model.checkSolution();
|
|
model.primal(1);
|
|
}
|
|
else
|
|
{
|
|
model.dual();
|
|
model.checkSolution();
|
|
model.primal(1);
|
|
}
|
|
|
|
// save results
|
|
|
|
const double *sol = model.getColSolution();
|
|
c = 0;
|
|
|
|
for (int t = 0; t < N; ++t, c += 4)
|
|
{
|
|
Mat_<float> S0 = Mat::eye(3, 3, CV_32F);
|
|
S0(1,1) = S0(0,0) = sol[c];
|
|
S0(0,1) = sol[c+1];
|
|
S0(1,0) = -sol[c+1];
|
|
S0(0,2) = sol[c+2];
|
|
S0(1,2) = sol[c+3];
|
|
S[t] = S0;
|
|
}
|
|
}
|
|
#endif // #ifndef HAVE_CLP
|
|
|
|
|
|
static inline int areaSign(Point2f a, Point2f b, Point2f c)
|
|
{
|
|
double area = (b-a).cross(c-a);
|
|
if (area < -1e-5) return -1;
|
|
if (area > 1e-5) return 1;
|
|
return 0;
|
|
}
|
|
|
|
|
|
static inline bool segmentsIntersect(Point2f a, Point2f b, Point2f c, Point2f d)
|
|
{
|
|
return areaSign(a,b,c) * areaSign(a,b,d) < 0 &&
|
|
areaSign(c,d,a) * areaSign(c,d,b) < 0;
|
|
}
|
|
|
|
|
|
// Checks if rect a (with sides parallel to axis) is inside rect b (arbitrary).
|
|
// Rects must be passed in the [(0,0), (w,0), (w,h), (0,h)] order.
|
|
static inline bool isRectInside(const Point2f a[4], const Point2f b[4])
|
|
{
|
|
for (int i = 0; i < 4; ++i)
|
|
if (b[i].x > a[0].x && b[i].x < a[2].x && b[i].y > a[0].y && b[i].y < a[2].y)
|
|
return false;
|
|
for (int i = 0; i < 4; ++i)
|
|
for (int j = 0; j < 4; ++j)
|
|
if (segmentsIntersect(a[i], a[(i+1)%4], b[j], b[(j+1)%4]))
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
|
|
static inline bool isGoodMotion(const float M[], float w, float h, float dx, float dy)
|
|
{
|
|
Point2f pt[4] = {Point2f(0,0), Point2f(w,0), Point2f(w,h), Point2f(0,h)};
|
|
Point2f Mpt[4];
|
|
float z;
|
|
|
|
for (int i = 0; i < 4; ++i)
|
|
{
|
|
Mpt[i].x = M[0]*pt[i].x + M[1]*pt[i].y + M[2];
|
|
Mpt[i].y = M[3]*pt[i].x + M[4]*pt[i].y + M[5];
|
|
z = M[6]*pt[i].x + M[7]*pt[i].y + M[8];
|
|
Mpt[i].x /= z;
|
|
Mpt[i].y /= z;
|
|
}
|
|
|
|
pt[0] = Point2f(dx, dy);
|
|
pt[1] = Point2f(w - dx, dy);
|
|
pt[2] = Point2f(w - dx, h - dy);
|
|
pt[3] = Point2f(dx, h - dy);
|
|
|
|
return isRectInside(pt, Mpt);
|
|
}
|
|
|
|
|
|
static inline void relaxMotion(const float M[], float t, float res[])
|
|
{
|
|
res[0] = M[0]*(1.f-t) + t;
|
|
res[1] = M[1]*(1.f-t);
|
|
res[2] = M[2]*(1.f-t);
|
|
res[3] = M[3]*(1.f-t);
|
|
res[4] = M[4]*(1.f-t) + t;
|
|
res[5] = M[5]*(1.f-t);
|
|
res[6] = M[6]*(1.f-t);
|
|
res[7] = M[7]*(1.f-t);
|
|
res[8] = M[8]*(1.f-t) + t;
|
|
}
|
|
|
|
|
|
Mat ensureInclusionConstraint(const Mat &M, Size size, float trimRatio)
|
|
{
|
|
CV_Assert(M.size() == Size(3,3) && M.type() == CV_32F);
|
|
|
|
const float w = static_cast<float>(size.width);
|
|
const float h = static_cast<float>(size.height);
|
|
const float dx = floor(w * trimRatio);
|
|
const float dy = floor(h * trimRatio);
|
|
const float srcM[] =
|
|
{M.at<float>(0,0), M.at<float>(0,1), M.at<float>(0,2),
|
|
M.at<float>(1,0), M.at<float>(1,1), M.at<float>(1,2),
|
|
M.at<float>(2,0), M.at<float>(2,1), M.at<float>(2,2)};
|
|
|
|
float curM[9];
|
|
float t = 0;
|
|
relaxMotion(srcM, t, curM);
|
|
if (isGoodMotion(curM, w, h, dx, dy))
|
|
return M;
|
|
|
|
float l = 0, r = 1;
|
|
while (r - l > 1e-3f)
|
|
{
|
|
t = (l + r) * 0.5f;
|
|
relaxMotion(srcM, t, curM);
|
|
if (isGoodMotion(curM, w, h, dx, dy))
|
|
r = t;
|
|
else
|
|
l = t;
|
|
}
|
|
|
|
return (1 - r) * M + r * Mat::eye(3, 3, CV_32F);
|
|
}
|
|
|
|
|
|
// TODO can be estimated for O(1) time
|
|
float estimateOptimalTrimRatio(const Mat &M, Size size)
|
|
{
|
|
CV_Assert(M.size() == Size(3,3) && M.type() == CV_32F);
|
|
|
|
const float w = static_cast<float>(size.width);
|
|
const float h = static_cast<float>(size.height);
|
|
Mat_<float> M_(M);
|
|
|
|
Point2f pt[4] = {Point2f(0,0), Point2f(w,0), Point2f(w,h), Point2f(0,h)};
|
|
Point2f Mpt[4];
|
|
float z;
|
|
|
|
for (int i = 0; i < 4; ++i)
|
|
{
|
|
Mpt[i].x = M_(0,0)*pt[i].x + M_(0,1)*pt[i].y + M_(0,2);
|
|
Mpt[i].y = M_(1,0)*pt[i].x + M_(1,1)*pt[i].y + M_(1,2);
|
|
z = M_(2,0)*pt[i].x + M_(2,1)*pt[i].y + M_(2,2);
|
|
Mpt[i].x /= z;
|
|
Mpt[i].y /= z;
|
|
}
|
|
|
|
float l = 0, r = 0.5f;
|
|
while (r - l > 1e-3f)
|
|
{
|
|
float t = (l + r) * 0.5f;
|
|
float dx = floor(w * t);
|
|
float dy = floor(h * t);
|
|
pt[0] = Point2f(dx, dy);
|
|
pt[1] = Point2f(w - dx, dy);
|
|
pt[2] = Point2f(w - dx, h - dy);
|
|
pt[3] = Point2f(dx, h - dy);
|
|
if (isRectInside(pt, Mpt))
|
|
r = t;
|
|
else
|
|
l = t;
|
|
}
|
|
|
|
return r;
|
|
}
|
|
|
|
} // namespace videostab
|
|
} // namespace cv
|