119 lines
		
	
	
		
			3.8 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			119 lines
		
	
	
		
			3.8 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*
 | |
|  *  one_way_sample.cpp
 | |
|  *  outlet_detection
 | |
|  *
 | |
|  *  Created by Victor  Eruhimov on 8/5/09.
 | |
|  *  Copyright 2009 Argus Corp. All rights reserved.
 | |
|  *
 | |
|  */
 | |
| 
 | |
| #include "opencv2/imgproc/imgproc.hpp"
 | |
| #include "opencv2/features2d/features2d.hpp"
 | |
| #include "opencv2/highgui/highgui.hpp"
 | |
| #include "opencv2/imgproc/imgproc_c.h"
 | |
| #include "opencv2/nonfree/nonfree.hpp"
 | |
| #include "opencv2/legacy/legacy.hpp"
 | |
| #include "opencv2/legacy/compat.hpp"
 | |
| 
 | |
| #include <string>
 | |
| #include <stdio.h>
 | |
| 
 | |
| static void help()
 | |
| {
 | |
|     printf("\nThis program demonstrates the one way interest point descriptor found in features2d.hpp\n"
 | |
|             "Correspondences are drawn\n");
 | |
|     printf("Format: \n./one_way_sample <path_to_samples> <image1> <image2>\n");
 | |
|     printf("For example: ./one_way_sample . ../c/scene_l.bmp ../c/scene_r.bmp\n");
 | |
| }
 | |
| 
 | |
| using namespace cv;
 | |
| 
 | |
| Mat DrawCorrespondences(const Mat& img1, const vector<KeyPoint>& features1, const Mat& img2,
 | |
|                         const vector<KeyPoint>& features2, const vector<int>& desc_idx);
 | |
| 
 | |
| int main(int argc, char** argv)
 | |
| {
 | |
|     const char images_list[] = "one_way_train_images.txt";
 | |
|     const CvSize patch_size = cvSize(24, 24);
 | |
|     const int pose_count = 50;
 | |
| 
 | |
|     if (argc != 4)
 | |
|     {
 | |
|         help();
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     std::string path_name = argv[1];
 | |
|     std::string img1_name = path_name + "/" + std::string(argv[2]);
 | |
|     std::string img2_name = path_name + "/" + std::string(argv[3]);
 | |
| 
 | |
|     printf("Reading the images...\n");
 | |
|     Mat img1 = imread(img1_name, CV_LOAD_IMAGE_GRAYSCALE);
 | |
|     Mat img2 = imread(img2_name, CV_LOAD_IMAGE_GRAYSCALE);
 | |
| 
 | |
|     // extract keypoints from the first image
 | |
|     SURF surf_extractor(5.0e3);
 | |
|     vector<KeyPoint> keypoints1;
 | |
| 
 | |
|     // printf("Extracting keypoints\n");
 | |
|     surf_extractor(img1, Mat(), keypoints1);
 | |
| 
 | |
|     printf("Extracted %d keypoints...\n", (int)keypoints1.size());
 | |
| 
 | |
|     printf("Training one way descriptors... \n");
 | |
|     // create descriptors
 | |
|     OneWayDescriptorBase descriptors(patch_size, pose_count, OneWayDescriptorBase::GetPCAFilename(), path_name,
 | |
|                                      images_list);
 | |
|     IplImage img1_c = img1;
 | |
|     IplImage img2_c = img2;
 | |
|     descriptors.CreateDescriptorsFromImage(&img1_c, keypoints1);
 | |
|     printf("done\n");
 | |
| 
 | |
|     // extract keypoints from the second image
 | |
|     vector<KeyPoint> keypoints2;
 | |
|     surf_extractor(img2, Mat(), keypoints2);
 | |
|     printf("Extracted %d keypoints from the second image...\n", (int)keypoints2.size());
 | |
| 
 | |
|     printf("Finding nearest neighbors...");
 | |
|     // find NN for each of keypoints2 in keypoints1
 | |
|     vector<int> desc_idx;
 | |
|     desc_idx.resize(keypoints2.size());
 | |
|     for (size_t i = 0; i < keypoints2.size(); i++)
 | |
|     {
 | |
|         int pose_idx = 0;
 | |
|         float distance = 0;
 | |
|         descriptors.FindDescriptor(&img2_c, keypoints2[i].pt, desc_idx[i], pose_idx, distance);
 | |
|     }
 | |
|     printf("done\n");
 | |
| 
 | |
|     Mat img_corr = DrawCorrespondences(img1, keypoints1, img2, keypoints2, desc_idx);
 | |
| 
 | |
|     imshow("correspondences", img_corr);
 | |
|     waitKey(0);
 | |
| }
 | |
| 
 | |
| Mat DrawCorrespondences(const Mat& img1, const vector<KeyPoint>& features1, const Mat& img2,
 | |
|                         const vector<KeyPoint>& features2, const vector<int>& desc_idx)
 | |
| {
 | |
|     Mat part, img_corr(Size(img1.cols + img2.cols, MAX(img1.rows, img2.rows)), CV_8UC3);
 | |
|     img_corr = Scalar::all(0);
 | |
|     part = img_corr(Rect(0, 0, img1.cols, img1.rows));
 | |
|     cvtColor(img1, part, COLOR_GRAY2RGB);
 | |
|     part = img_corr(Rect(img1.cols, 0, img2.cols, img2.rows));
 | |
|     cvtColor(img1, part, COLOR_GRAY2RGB);
 | |
| 
 | |
|     for (size_t i = 0; i < features1.size(); i++)
 | |
|     {
 | |
|         circle(img_corr, features1[i].pt, 3, CV_RGB(255, 0, 0));
 | |
|     }
 | |
| 
 | |
|     for (size_t i = 0; i < features2.size(); i++)
 | |
|     {
 | |
|         Point pt((int)features2[i].pt.x + img1.cols, (int)features2[i].pt.y);
 | |
|         circle(img_corr, pt, 3, Scalar(0, 0, 255));
 | |
|         line(img_corr, features1[desc_idx[i]].pt, pt, Scalar(0, 255, 0));
 | |
|     }
 | |
| 
 | |
|     return img_corr;
 | |
| }
 | 
