340 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			340 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*M///////////////////////////////////////////////////////////////////////////////////////
 | |
| //
 | |
| //  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
 | |
| //
 | |
| //  By downloading, copying, installing or using the software you agree to this license.
 | |
| //  If you do not agree to this license, do not download, install,
 | |
| //  copy or use the software.
 | |
| //
 | |
| //
 | |
| //                        Intel License Agreement
 | |
| //                For Open Source Computer Vision Library
 | |
| //
 | |
| // Copyright (C) 2000, Intel Corporation, all rights reserved.
 | |
| // Third party copyrights are property of their respective owners.
 | |
| //
 | |
| // Redistribution and use in source and binary forms, with or without modification,
 | |
| // are permitted provided that the following conditions are met:
 | |
| //
 | |
| //   * Redistribution's of source code must retain the above copyright notice,
 | |
| //     this list of conditions and the following disclaimer.
 | |
| //
 | |
| //   * Redistribution's in binary form must reproduce the above copyright notice,
 | |
| //     this list of conditions and the following disclaimer in the documentation
 | |
| //     and/or other materials provided with the distribution.
 | |
| //
 | |
| //   * The name of Intel Corporation may not be used to endorse or promote products
 | |
| //     derived from this software without specific prior written permission.
 | |
| //
 | |
| // This software is provided by the copyright holders and contributors "as is" and
 | |
| // any express or implied warranties, including, but not limited to, the implied
 | |
| // warranties of merchantability and fitness for a particular purpose are disclaimed.
 | |
| // In no event shall the Intel Corporation or contributors be liable for any direct,
 | |
| // indirect, incidental, special, exemplary, or consequential damages
 | |
| // (including, but not limited to, procurement of substitute goods or services;
 | |
| // loss of use, data, or profits; or business interruption) however caused
 | |
| // and on any theory of liability, whether in contract, strict liability,
 | |
| // or tort (including negligence or otherwise) arising in any way out of
 | |
| // the use of this software, even if advised of the possibility of such damage.
 | |
| //
 | |
| //M*/
 | |
| 
 | |
| #include "test_precomp.hpp"
 | |
| #include "opencv2/highgui/highgui.hpp"
 | |
| 
 | |
| using namespace std;
 | |
| using namespace cv;
 | |
| 
 | |
| const string FEATURES2D_DIR = "features2d";
 | |
| const string IMAGE_FILENAME = "tsukuba.png";
 | |
| const string DESCRIPTOR_DIR = FEATURES2D_DIR + "/descriptor_extractors";
 | |
| 
 | |
| /****************************************************************************************\
 | |
| *                     Regression tests for descriptor extractors.                        *
 | |
| \****************************************************************************************/
 | |
| static void writeMatInBin( const Mat& mat, const string& filename )
 | |
| {
 | |
|     FILE* f = fopen( filename.c_str(), "wb");
 | |
|     if( f )
 | |
|     {
 | |
|         int type = mat.type();
 | |
|         fwrite( (void*)&mat.rows, sizeof(int), 1, f );
 | |
|         fwrite( (void*)&mat.cols, sizeof(int), 1, f );
 | |
|         fwrite( (void*)&type, sizeof(int), 1, f );
 | |
|         int dataSize = (int)(mat.step * mat.rows * mat.channels());
 | |
|         fwrite( (void*)&dataSize, sizeof(int), 1, f );
 | |
|         fwrite( (void*)mat.data, 1, dataSize, f );
 | |
|         fclose(f);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static Mat readMatFromBin( const string& filename )
 | |
| {
 | |
|     FILE* f = fopen( filename.c_str(), "rb" );
 | |
|     if( f )
 | |
|     {
 | |
|         int rows, cols, type, dataSize;
 | |
|         size_t elements_read1 = fread( (void*)&rows, sizeof(int), 1, f );
 | |
|         size_t elements_read2 = fread( (void*)&cols, sizeof(int), 1, f );
 | |
|         size_t elements_read3 = fread( (void*)&type, sizeof(int), 1, f );
 | |
|         size_t elements_read4 = fread( (void*)&dataSize, sizeof(int), 1, f );
 | |
|         CV_Assert(elements_read1 == 1 && elements_read2 == 1 && elements_read3 == 1 && elements_read4 == 1);
 | |
| 
 | |
|         uchar* data = (uchar*)cvAlloc(dataSize);
 | |
|         size_t elements_read = fread( (void*)data, 1, dataSize, f );
 | |
|         CV_Assert(elements_read == (size_t)(dataSize));
 | |
|         fclose(f);
 | |
| 
 | |
|         return Mat( rows, cols, type, data );
 | |
|     }
 | |
|     return Mat();
 | |
| }
 | |
| 
 | |
| template<class Distance>
 | |
| class CV_DescriptorExtractorTest : public cvtest::BaseTest
 | |
| {
 | |
| public:
 | |
|     typedef typename Distance::ValueType ValueType;
 | |
|     typedef typename Distance::ResultType DistanceType;
 | |
| 
 | |
|     CV_DescriptorExtractorTest( const string _name, DistanceType _maxDist, const Ptr<DescriptorExtractor>& _dextractor,
 | |
|                                 Distance d = Distance() ):
 | |
|             name(_name), maxDist(_maxDist), dextractor(_dextractor), distance(d) {}
 | |
| protected:
 | |
|     virtual void createDescriptorExtractor() {}
 | |
| 
 | |
|     void compareDescriptors( const Mat& validDescriptors, const Mat& calcDescriptors )
 | |
|     {
 | |
|         if( validDescriptors.size != calcDescriptors.size || validDescriptors.type() != calcDescriptors.type() )
 | |
|         {
 | |
|             ts->printf(cvtest::TS::LOG, "Valid and computed descriptors matrices must have the same size and type.\n");
 | |
|             ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA );
 | |
|             return;
 | |
|         }
 | |
| 
 | |
|         CV_Assert( DataType<ValueType>::type == validDescriptors.type() );
 | |
| 
 | |
|         int dimension = validDescriptors.cols;
 | |
|         DistanceType curMaxDist = std::numeric_limits<DistanceType>::min();
 | |
|         for( int y = 0; y < validDescriptors.rows; y++ )
 | |
|         {
 | |
|             DistanceType dist = distance( validDescriptors.ptr<ValueType>(y), calcDescriptors.ptr<ValueType>(y), dimension );
 | |
|             if( dist > curMaxDist )
 | |
|                 curMaxDist = dist;
 | |
|         }
 | |
| 
 | |
|         stringstream ss;
 | |
|         ss << "Max distance between valid and computed descriptors " << curMaxDist;
 | |
|         if( curMaxDist < maxDist )
 | |
|             ss << "." << endl;
 | |
|         else
 | |
|         {
 | |
|             ss << ">" << maxDist  << " - bad accuracy!"<< endl;
 | |
|             ts->set_failed_test_info( cvtest::TS::FAIL_BAD_ACCURACY );
 | |
|         }
 | |
|         ts->printf(cvtest::TS::LOG,  ss.str().c_str() );
 | |
|     }
 | |
| 
 | |
|     void emptyDataTest()
 | |
|     {
 | |
|         assert( !dextractor.empty() );
 | |
| 
 | |
|         // One image.
 | |
|         Mat image;
 | |
|         vector<KeyPoint> keypoints;
 | |
|         Mat descriptors;
 | |
| 
 | |
|         try
 | |
|         {
 | |
|             dextractor->compute( image, keypoints, descriptors );
 | |
|         }
 | |
|         catch(...)
 | |
|         {
 | |
|             ts->printf( cvtest::TS::LOG, "compute() on empty image and empty keypoints must not generate exception (1).\n");
 | |
|             ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA );
 | |
|         }
 | |
| 
 | |
|         image.create( 50, 50, CV_8UC3 );
 | |
|         try
 | |
|         {
 | |
|             dextractor->compute( image, keypoints, descriptors );
 | |
|         }
 | |
|         catch(...)
 | |
|         {
 | |
|             ts->printf( cvtest::TS::LOG, "compute() on nonempty image and empty keypoints must not generate exception (1).\n");
 | |
|             ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA );
 | |
|         }
 | |
| 
 | |
|         // Several images.
 | |
|         vector<Mat> images;
 | |
|         vector<vector<KeyPoint> > keypointsCollection;
 | |
|         vector<Mat> descriptorsCollection;
 | |
|         try
 | |
|         {
 | |
|             dextractor->compute( images, keypointsCollection, descriptorsCollection );
 | |
|         }
 | |
|         catch(...)
 | |
|         {
 | |
|             ts->printf( cvtest::TS::LOG, "compute() on empty images and empty keypoints collection must not generate exception (2).\n");
 | |
|             ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA );
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     void regressionTest()
 | |
|     {
 | |
|         assert( !dextractor.empty() );
 | |
| 
 | |
|         // Read the test image.
 | |
|         string imgFilename =  string(ts->get_data_path()) + FEATURES2D_DIR + "/" + IMAGE_FILENAME;
 | |
| 
 | |
|         Mat img = imread( imgFilename );
 | |
|         if( img.empty() )
 | |
|         {
 | |
|             ts->printf( cvtest::TS::LOG, "Image %s can not be read.\n", imgFilename.c_str() );
 | |
|             ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA );
 | |
|             return;
 | |
|         }
 | |
| 
 | |
|         vector<KeyPoint> keypoints;
 | |
|         FileStorage fs( string(ts->get_data_path()) + FEATURES2D_DIR + "/keypoints.xml.gz", FileStorage::READ );
 | |
|         if( fs.isOpened() )
 | |
|         {
 | |
|             read( fs.getFirstTopLevelNode(), keypoints );
 | |
| 
 | |
|             Mat calcDescriptors;
 | |
|             double t = (double)getTickCount();
 | |
|             dextractor->compute( img, keypoints, calcDescriptors );
 | |
|             t = getTickCount() - t;
 | |
|             ts->printf(cvtest::TS::LOG, "\nAverage time of computing one descriptor = %g ms.\n", t/((double)cvGetTickFrequency()*1000.)/calcDescriptors.rows);
 | |
| 
 | |
|             if( calcDescriptors.rows != (int)keypoints.size() )
 | |
|             {
 | |
|                 ts->printf( cvtest::TS::LOG, "Count of computed descriptors and keypoints count must be equal.\n" );
 | |
|                 ts->printf( cvtest::TS::LOG, "Count of keypoints is            %d.\n", (int)keypoints.size() );
 | |
|                 ts->printf( cvtest::TS::LOG, "Count of computed descriptors is %d.\n", calcDescriptors.rows );
 | |
|                 ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
 | |
|                 return;
 | |
|             }
 | |
| 
 | |
|             if( calcDescriptors.cols != dextractor->descriptorSize() || calcDescriptors.type() != dextractor->descriptorType() )
 | |
|             {
 | |
|                 ts->printf( cvtest::TS::LOG, "Incorrect descriptor size or descriptor type.\n" );
 | |
|                 ts->printf( cvtest::TS::LOG, "Expected size is   %d.\n", dextractor->descriptorSize() );
 | |
|                 ts->printf( cvtest::TS::LOG, "Calculated size is %d.\n", calcDescriptors.cols );
 | |
|                 ts->printf( cvtest::TS::LOG, "Expected type is   %d.\n", dextractor->descriptorType() );
 | |
|                 ts->printf( cvtest::TS::LOG, "Calculated type is %d.\n", calcDescriptors.type() );
 | |
|                 ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
 | |
|                 return;
 | |
|             }
 | |
| 
 | |
|             // TODO read and write descriptor extractor parameters and check them
 | |
|             Mat validDescriptors = readDescriptors();
 | |
|             if( !validDescriptors.empty() )
 | |
|                 compareDescriptors( validDescriptors, calcDescriptors );
 | |
|             else
 | |
|             {
 | |
|                 if( !writeDescriptors( calcDescriptors ) )
 | |
|                 {
 | |
|                     ts->printf( cvtest::TS::LOG, "Descriptors can not be written.\n" );
 | |
|                     ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA );
 | |
|                     return;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|         else
 | |
|         {
 | |
|             ts->printf( cvtest::TS::LOG, "Compute and write keypoints.\n" );
 | |
|             fs.open( string(ts->get_data_path()) + FEATURES2D_DIR + "/keypoints.xml.gz", FileStorage::WRITE );
 | |
|             if( fs.isOpened() )
 | |
|             {
 | |
|                 ORB fd;
 | |
|                 fd.detect(img, keypoints);
 | |
|                 write( fs, "keypoints", keypoints );
 | |
|             }
 | |
|             else
 | |
|             {
 | |
|                 ts->printf(cvtest::TS::LOG, "File for writting keypoints can not be opened.\n");
 | |
|                 ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA );
 | |
|                 return;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     void run(int)
 | |
|     {
 | |
|         createDescriptorExtractor();
 | |
|         if( dextractor.empty() )
 | |
|         {
 | |
|             ts->printf(cvtest::TS::LOG, "Descriptor extractor is empty.\n");
 | |
|             ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA );
 | |
|             return;
 | |
|         }
 | |
| 
 | |
|         emptyDataTest();
 | |
|         regressionTest();
 | |
| 
 | |
|         ts->set_failed_test_info( cvtest::TS::OK );
 | |
|     }
 | |
| 
 | |
|     virtual Mat readDescriptors()
 | |
|     {
 | |
|         Mat res = readMatFromBin( string(ts->get_data_path()) + DESCRIPTOR_DIR + "/" + string(name) );
 | |
|         return res;
 | |
|     }
 | |
| 
 | |
|     virtual bool writeDescriptors( Mat& descs )
 | |
|     {
 | |
|         writeMatInBin( descs,  string(ts->get_data_path()) + DESCRIPTOR_DIR + "/" + string(name) );
 | |
|         return true;
 | |
|     }
 | |
| 
 | |
|     string name;
 | |
|     const DistanceType maxDist;
 | |
|     Ptr<DescriptorExtractor> dextractor;
 | |
|     Distance distance;
 | |
| 
 | |
| private:
 | |
|     CV_DescriptorExtractorTest& operator=(const CV_DescriptorExtractorTest&) { return *this; }
 | |
| };
 | |
| 
 | |
| /****************************************************************************************\
 | |
| *                                Tests registrations                                     *
 | |
| \****************************************************************************************/
 | |
| 
 | |
| TEST( Features2d_DescriptorExtractor_BRISK, regression )
 | |
| {
 | |
|     CV_DescriptorExtractorTest<Hamming> test( "descriptor-brisk",  (CV_DescriptorExtractorTest<Hamming>::DistanceType)2.f,
 | |
|                                                  DescriptorExtractor::create("BRISK") );
 | |
|     test.safe_run();
 | |
| }
 | |
| 
 | |
| TEST( Features2d_DescriptorExtractor_ORB, regression )
 | |
| {
 | |
|     // TODO adjust the parameters below
 | |
|     CV_DescriptorExtractorTest<Hamming> test( "descriptor-orb",  (CV_DescriptorExtractorTest<Hamming>::DistanceType)12.f,
 | |
|                                                  DescriptorExtractor::create("ORB") );
 | |
|     test.safe_run();
 | |
| }
 | |
| 
 | |
| TEST( Features2d_DescriptorExtractor_FREAK, regression )
 | |
| {
 | |
|     // TODO adjust the parameters below
 | |
|     CV_DescriptorExtractorTest<Hamming> test( "descriptor-freak",  (CV_DescriptorExtractorTest<Hamming>::DistanceType)12.f,
 | |
|                                                  DescriptorExtractor::create("FREAK") );
 | |
|     test.safe_run();
 | |
| }
 | |
| 
 | |
| TEST( Features2d_DescriptorExtractor_BRIEF, regression )
 | |
| {
 | |
|     CV_DescriptorExtractorTest<Hamming> test( "descriptor-brief",  1,
 | |
|                                                DescriptorExtractor::create("BRIEF") );
 | |
|     test.safe_run();
 | |
| }
 | |
| 
 | |
| TEST( Features2d_DescriptorExtractor_OpponentBRIEF, regression )
 | |
| {
 | |
|     CV_DescriptorExtractorTest<Hamming> test( "descriptor-opponent-brief",  1,
 | |
|                                                DescriptorExtractor::create("OpponentBRIEF") );
 | |
|     test.safe_run();
 | |
| }
 | 
