70 lines
		
	
	
		
			1.8 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			70 lines
		
	
	
		
			1.8 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| #!/usr/bin/env python
 | |
| 
 | |
| '''
 | |
| K-means clusterization test
 | |
| '''
 | |
| 
 | |
| # Python 2/3 compatibility
 | |
| from __future__ import print_function
 | |
| 
 | |
| import numpy as np
 | |
| import cv2
 | |
| from numpy import random
 | |
| import sys
 | |
| PY3 = sys.version_info[0] == 3
 | |
| if PY3:
 | |
|     xrange = range
 | |
| 
 | |
| from tests_common import NewOpenCVTests
 | |
| 
 | |
| def make_gaussians(cluster_n, img_size):
 | |
|     points = []
 | |
|     ref_distrs = []
 | |
|     sizes = []
 | |
|     for i in xrange(cluster_n):
 | |
|         mean = (0.1 + 0.8*random.rand(2)) * img_size
 | |
|         a = (random.rand(2, 2)-0.5)*img_size*0.1
 | |
|         cov = np.dot(a.T, a) + img_size*0.05*np.eye(2)
 | |
|         n = 100 + random.randint(900)
 | |
|         pts = random.multivariate_normal(mean, cov, n)
 | |
|         points.append( pts )
 | |
|         ref_distrs.append( (mean, cov) )
 | |
|         sizes.append(n)
 | |
|     points = np.float32( np.vstack(points) )
 | |
|     return points, ref_distrs, sizes
 | |
| 
 | |
| def getMainLabelConfidence(labels, nLabels):
 | |
| 
 | |
|     n = len(labels)
 | |
|     labelsDict = dict.fromkeys(range(nLabels), 0)
 | |
|     labelsConfDict = dict.fromkeys(range(nLabels))
 | |
| 
 | |
|     for i in range(n):
 | |
|         labelsDict[labels[i][0]] += 1
 | |
| 
 | |
|     for i in range(nLabels):
 | |
|         labelsConfDict[i] = float(labelsDict[i]) / n
 | |
| 
 | |
|     return max(labelsConfDict.values())
 | |
| 
 | |
| class kmeans_test(NewOpenCVTests):
 | |
| 
 | |
|     def test_kmeans(self):
 | |
| 
 | |
|         np.random.seed(10)
 | |
| 
 | |
|         cluster_n = 5
 | |
|         img_size = 512
 | |
| 
 | |
|         points, _, clusterSizes = make_gaussians(cluster_n, img_size)
 | |
| 
 | |
|         term_crit = (cv2.TERM_CRITERIA_EPS, 30, 0.1)
 | |
|         ret, labels, centers = cv2.kmeans(points, cluster_n, None, term_crit, 10, 0)
 | |
| 
 | |
|         self.assertEqual(len(centers), cluster_n)
 | |
| 
 | |
|         offset = 0
 | |
|         for i in range(cluster_n):
 | |
|             confidence = getMainLabelConfidence(labels[offset : (offset + clusterSizes[i])], cluster_n)
 | |
|             offset += clusterSizes[i]
 | |
|             self.assertGreater(confidence, 0.9) | 
