160 lines
		
	
	
		
			5.4 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			160 lines
		
	
	
		
			5.4 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| #!/usr/bin/env python
 | |
| 
 | |
| '''
 | |
| Feature homography
 | |
| ==================
 | |
| 
 | |
| Example of using features2d framework for interactive video homography matching.
 | |
| ORB features and FLANN matcher are used. The actual tracking is implemented by
 | |
| PlaneTracker class in plane_tracker.py
 | |
| '''
 | |
| 
 | |
| # Python 2/3 compatibility
 | |
| from __future__ import print_function
 | |
| 
 | |
| import numpy as np
 | |
| import cv2
 | |
| import sys
 | |
| PY3 = sys.version_info[0] == 3
 | |
| 
 | |
| if PY3:
 | |
|     xrange = range
 | |
| 
 | |
| # local modules
 | |
| from tst_scene_render import TestSceneRender
 | |
| 
 | |
| def intersectionRate(s1, s2):
 | |
| 
 | |
|     x1, y1, x2, y2 = s1
 | |
|     s1 = np.array([[x1, y1], [x2,y1], [x2, y2], [x1, y2]])
 | |
| 
 | |
|     area, intersection = cv2.intersectConvexConvex(s1, np.array(s2))
 | |
|     return 2 * area / (cv2.contourArea(s1) + cv2.contourArea(np.array(s2)))
 | |
| 
 | |
| from tests_common import NewOpenCVTests
 | |
| 
 | |
| class feature_homography_test(NewOpenCVTests):
 | |
| 
 | |
|     render = None
 | |
|     tracker = None
 | |
|     framesCounter = 0
 | |
|     frame = None
 | |
| 
 | |
|     def test_feature_homography(self):
 | |
| 
 | |
|         self.render = TestSceneRender(self.get_sample('samples/data/graf1.png'),
 | |
|             self.get_sample('samples/data/box.png'), noise = 0.5, speed = 0.5)
 | |
|         self.frame = self.render.getNextFrame()
 | |
|         self.tracker = PlaneTracker()
 | |
|         self.tracker.clear()
 | |
|         self.tracker.add_target(self.frame, self.render.getCurrentRect())
 | |
| 
 | |
|         while self.framesCounter < 100:
 | |
|             self.framesCounter += 1
 | |
|             tracked = self.tracker.track(self.frame)
 | |
|             if len(tracked) > 0:
 | |
|                 tracked = tracked[0]
 | |
|                 self.assertGreater(intersectionRate(self.render.getCurrentRect(), np.int32(tracked.quad)), 0.6)
 | |
|             else:
 | |
|                 self.assertEqual(0, 1, 'Tracking error')
 | |
|             self.frame = self.render.getNextFrame()
 | |
| 
 | |
| 
 | |
| # built-in modules
 | |
| from collections import namedtuple
 | |
| 
 | |
| FLANN_INDEX_KDTREE = 1
 | |
| FLANN_INDEX_LSH    = 6
 | |
| flann_params= dict(algorithm = FLANN_INDEX_LSH,
 | |
|                    table_number = 6, # 12
 | |
|                    key_size = 12,     # 20
 | |
|                    multi_probe_level = 1) #2
 | |
| 
 | |
| MIN_MATCH_COUNT = 10
 | |
| 
 | |
| '''
 | |
|   image     - image to track
 | |
|   rect      - tracked rectangle (x1, y1, x2, y2)
 | |
|   keypoints - keypoints detected inside rect
 | |
|   descrs    - their descriptors
 | |
|   data      - some user-provided data
 | |
| '''
 | |
| PlanarTarget = namedtuple('PlaneTarget', 'image, rect, keypoints, descrs, data')
 | |
| 
 | |
| '''
 | |
|   target - reference to PlanarTarget
 | |
|   p0     - matched points coords in target image
 | |
|   p1     - matched points coords in input frame
 | |
|   H      - homography matrix from p0 to p1
 | |
|   quad   - target bounary quad in input frame
 | |
| '''
 | |
| TrackedTarget = namedtuple('TrackedTarget', 'target, p0, p1, H, quad')
 | |
| 
 | |
| class PlaneTracker:
 | |
|     def __init__(self):
 | |
|         self.detector = cv2.AKAZE_create(threshold = 0.003)
 | |
|         self.matcher = cv2.FlannBasedMatcher(flann_params, {})  # bug : need to pass empty dict (#1329)
 | |
|         self.targets = []
 | |
|         self.frame_points = []
 | |
| 
 | |
|     def add_target(self, image, rect, data=None):
 | |
|         '''Add a new tracking target.'''
 | |
|         x0, y0, x1, y1 = rect
 | |
|         raw_points, raw_descrs = self.detect_features(image)
 | |
|         points, descs = [], []
 | |
|         for kp, desc in zip(raw_points, raw_descrs):
 | |
|             x, y = kp.pt
 | |
|             if x0 <= x <= x1 and y0 <= y <= y1:
 | |
|                 points.append(kp)
 | |
|                 descs.append(desc)
 | |
|         descs = np.uint8(descs)
 | |
|         self.matcher.add([descs])
 | |
|         target = PlanarTarget(image = image, rect=rect, keypoints = points, descrs=descs, data=data)
 | |
|         self.targets.append(target)
 | |
| 
 | |
|     def clear(self):
 | |
|         '''Remove all targets'''
 | |
|         self.targets = []
 | |
|         self.matcher.clear()
 | |
| 
 | |
|     def track(self, frame):
 | |
|         '''Returns a list of detected TrackedTarget objects'''
 | |
|         self.frame_points, frame_descrs = self.detect_features(frame)
 | |
|         if len(self.frame_points) < MIN_MATCH_COUNT:
 | |
|             return []
 | |
|         matches = self.matcher.knnMatch(frame_descrs, k = 2)
 | |
|         matches = [m[0] for m in matches if len(m) == 2 and m[0].distance < m[1].distance * 0.75]
 | |
|         if len(matches) < MIN_MATCH_COUNT:
 | |
|             return []
 | |
|         matches_by_id = [[] for _ in xrange(len(self.targets))]
 | |
|         for m in matches:
 | |
|             matches_by_id[m.imgIdx].append(m)
 | |
|         tracked = []
 | |
|         for imgIdx, matches in enumerate(matches_by_id):
 | |
|             if len(matches) < MIN_MATCH_COUNT:
 | |
|                 continue
 | |
|             target = self.targets[imgIdx]
 | |
|             p0 = [target.keypoints[m.trainIdx].pt for m in matches]
 | |
|             p1 = [self.frame_points[m.queryIdx].pt for m in matches]
 | |
|             p0, p1 = np.float32((p0, p1))
 | |
|             H, status = cv2.findHomography(p0, p1, cv2.RANSAC, 3.0)
 | |
|             status = status.ravel() != 0
 | |
|             if status.sum() < MIN_MATCH_COUNT:
 | |
|                 continue
 | |
|             p0, p1 = p0[status], p1[status]
 | |
| 
 | |
|             x0, y0, x1, y1 = target.rect
 | |
|             quad = np.float32([[x0, y0], [x1, y0], [x1, y1], [x0, y1]])
 | |
|             quad = cv2.perspectiveTransform(quad.reshape(1, -1, 2), H).reshape(-1, 2)
 | |
| 
 | |
|             track = TrackedTarget(target=target, p0=p0, p1=p1, H=H, quad=quad)
 | |
|             tracked.append(track)
 | |
|         tracked.sort(key = lambda t: len(t.p0), reverse=True)
 | |
|         return tracked
 | |
| 
 | |
|     def detect_features(self, frame):
 | |
|         '''detect_features(self, frame) -> keypoints, descrs'''
 | |
|         keypoints, descrs = self.detector.detectAndCompute(frame, None)
 | |
|         if descrs is None:  # detectAndCompute returns descs=None if no keypoints found
 | |
|             descrs = []
 | |
|         return keypoints, descrs | 
