2003 lines
95 KiB
C++
2003 lines
95 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2010-2012, Institute Of Software Chinese Academy Of Science, all rights reserved.
|
|
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
|
|
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// @Authors
|
|
// Niko Li, newlife20080214@gmail.com
|
|
// Jia Haipeng, jiahaipeng95@gmail.com
|
|
// Shengen Yan, yanshengen@gmail.com
|
|
// Rock Li, Rock.Li@amd.com
|
|
// Zero Lin, Zero.Lin@amd.com
|
|
// Zhang Ying, zhangying913@gmail.com
|
|
// Xu Pang, pangxu010@163.com
|
|
// Wu Zailong, bullet@yeah.net
|
|
// Wenju He, wenju@multicorewareinc.com
|
|
// Peng Xiao, pengxiao@outlook.com
|
|
// Sen Liu, swjtuls1987@126.com
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other oclMaterials provided with the distribution.
|
|
//
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
#include "precomp.hpp"
|
|
#include <iomanip>
|
|
|
|
using namespace cv;
|
|
using namespace cv::ocl;
|
|
|
|
namespace cv
|
|
{
|
|
namespace ocl
|
|
{
|
|
|
|
////////////////////////////////////OpenCL kernel strings//////////////////////////
|
|
extern const char *meanShift;
|
|
extern const char *imgproc_copymakeboder;
|
|
extern const char *imgproc_median;
|
|
extern const char *imgproc_threshold;
|
|
extern const char *imgproc_resize;
|
|
extern const char *imgproc_remap;
|
|
extern const char *imgproc_warpAffine;
|
|
extern const char *imgproc_warpPerspective;
|
|
extern const char *imgproc_integral_sum;
|
|
extern const char *imgproc_integral;
|
|
extern const char *imgproc_histogram;
|
|
extern const char *imgproc_bilateral;
|
|
extern const char *imgproc_calcHarris;
|
|
extern const char *imgproc_calcMinEigenVal;
|
|
extern const char *imgproc_convolve;
|
|
extern const char *imgproc_mulAndScaleSpectrums;
|
|
extern const char *imgproc_clahe;
|
|
////////////////////////////////////OpenCL call wrappers////////////////////////////
|
|
|
|
template <typename T> struct index_and_sizeof;
|
|
template <> struct index_and_sizeof<char>
|
|
{
|
|
enum { index = 1 };
|
|
};
|
|
template <> struct index_and_sizeof<unsigned char>
|
|
{
|
|
enum { index = 2 };
|
|
};
|
|
template <> struct index_and_sizeof<short>
|
|
{
|
|
enum { index = 3 };
|
|
};
|
|
template <> struct index_and_sizeof<unsigned short>
|
|
{
|
|
enum { index = 4 };
|
|
};
|
|
template <> struct index_and_sizeof<int>
|
|
{
|
|
enum { index = 5 };
|
|
};
|
|
template <> struct index_and_sizeof<float>
|
|
{
|
|
enum { index = 6 };
|
|
};
|
|
template <> struct index_and_sizeof<double>
|
|
{
|
|
enum { index = 7 };
|
|
};
|
|
|
|
/////////////////////////////////////////////////////////////////////////////////////
|
|
// threshold
|
|
|
|
typedef void (*gpuThresh_t)(const oclMat &src, oclMat &dst, double thresh, double maxVal, int type);
|
|
|
|
static void threshold_8u(const oclMat &src, oclMat &dst, double thresh, double maxVal, int type)
|
|
{
|
|
CV_Assert( (src.cols == dst.cols) && (src.rows == dst.rows) );
|
|
Context *clCxt = src.clCxt;
|
|
|
|
uchar thresh_uchar = cvFloor(thresh);
|
|
uchar max_val = cvRound(maxVal);
|
|
String kernelName = "threshold";
|
|
|
|
size_t cols = (dst.cols + (dst.offset % 16) + 15) / 16;
|
|
size_t bSizeX = 16, bSizeY = 16;
|
|
size_t gSizeX = cols % bSizeX == 0 ? cols : (cols + bSizeX - 1) / bSizeX * bSizeX;
|
|
size_t gSizeY = dst.rows;
|
|
size_t globalThreads[3] = {gSizeX, gSizeY, 1};
|
|
size_t localThreads[3] = {bSizeX, bSizeY, 1};
|
|
|
|
std::vector< std::pair<size_t, const void *> > args;
|
|
args.push_back( std::make_pair(sizeof(cl_mem), &src.data));
|
|
args.push_back( std::make_pair(sizeof(cl_mem), &dst.data));
|
|
args.push_back( std::make_pair(sizeof(cl_int), (void *)&src.offset));
|
|
args.push_back( std::make_pair(sizeof(cl_int), (void *)&src.step));
|
|
args.push_back( std::make_pair(sizeof(cl_int), (void *)&dst.offset));
|
|
args.push_back( std::make_pair(sizeof(cl_int), (void *)&dst.rows));
|
|
args.push_back( std::make_pair(sizeof(cl_int), (void *)&dst.cols));
|
|
args.push_back( std::make_pair(sizeof(cl_int), (void *)&dst.step));
|
|
args.push_back( std::make_pair(sizeof(cl_uchar), (void *)&thresh_uchar));
|
|
args.push_back( std::make_pair(sizeof(cl_uchar), (void *)&max_val));
|
|
args.push_back( std::make_pair(sizeof(cl_int), (void *)&type));
|
|
openCLExecuteKernel(clCxt, &imgproc_threshold, kernelName, globalThreads, localThreads, args, src.oclchannels(), src.depth());
|
|
}
|
|
|
|
static void threshold_32f(const oclMat &src, oclMat &dst, double thresh, double maxVal, int type)
|
|
{
|
|
CV_Assert( (src.cols == dst.cols) && (src.rows == dst.rows) );
|
|
Context *clCxt = src.clCxt;
|
|
|
|
float thresh_f = thresh;
|
|
float max_val = maxVal;
|
|
int dst_offset = (dst.offset >> 2);
|
|
int dst_step = (dst.step >> 2);
|
|
int src_offset = (src.offset >> 2);
|
|
int src_step = (src.step >> 2);
|
|
|
|
String kernelName = "threshold";
|
|
|
|
size_t cols = (dst.cols + (dst_offset & 3) + 3) / 4;
|
|
//size_t cols = dst.cols;
|
|
size_t bSizeX = 16, bSizeY = 16;
|
|
size_t gSizeX = cols % bSizeX == 0 ? cols : (cols + bSizeX - 1) / bSizeX * bSizeX;
|
|
size_t gSizeY = dst.rows;
|
|
size_t globalThreads[3] = {gSizeX, gSizeY, 1};
|
|
size_t localThreads[3] = {bSizeX, bSizeY, 1};
|
|
|
|
std::vector< std::pair<size_t, const void *> > args;
|
|
args.push_back( std::make_pair(sizeof(cl_mem), &src.data));
|
|
args.push_back( std::make_pair(sizeof(cl_mem), &dst.data));
|
|
args.push_back( std::make_pair(sizeof(cl_int), (void *)&src_offset));
|
|
args.push_back( std::make_pair(sizeof(cl_int), (void *)&src_step));
|
|
args.push_back( std::make_pair(sizeof(cl_int), (void *)&dst_offset));
|
|
args.push_back( std::make_pair(sizeof(cl_int), (void *)&dst.rows));
|
|
args.push_back( std::make_pair(sizeof(cl_int), (void *)&dst.cols));
|
|
args.push_back( std::make_pair(sizeof(cl_int), (void *)&dst_step));
|
|
args.push_back( std::make_pair(sizeof(cl_float), (void *)&thresh_f));
|
|
args.push_back( std::make_pair(sizeof(cl_float), (void *)&max_val));
|
|
args.push_back( std::make_pair(sizeof(cl_int), (void *)&type));
|
|
openCLExecuteKernel(clCxt, &imgproc_threshold, kernelName, globalThreads, localThreads, args, src.oclchannels(), src.depth());
|
|
|
|
}
|
|
|
|
//threshold: support 8UC1 and 32FC1 data type and five threshold type
|
|
double threshold(const oclMat &src, oclMat &dst, double thresh, double maxVal, int type)
|
|
{
|
|
//TODO: These limitations shall be removed later.
|
|
CV_Assert(src.type() == CV_8UC1 || src.type() == CV_32FC1);
|
|
CV_Assert(type == THRESH_BINARY || type == THRESH_BINARY_INV || type == THRESH_TRUNC
|
|
|| type == THRESH_TOZERO || type == THRESH_TOZERO_INV );
|
|
|
|
static const gpuThresh_t gpuThresh_callers[2] = {threshold_8u, threshold_32f};
|
|
|
|
dst.create( src.size(), src.type() );
|
|
gpuThresh_callers[(src.type() == CV_32FC1)](src, dst, thresh, maxVal, type);
|
|
|
|
return thresh;
|
|
}
|
|
////////////////////////////////////////////////////////////////////////////////////////////
|
|
/////////////////////////////// remap //////////////////////////////////////////////////
|
|
////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
void remap( const oclMat &src, oclMat &dst, oclMat &map1, oclMat &map2, int interpolation, int borderType, const Scalar &borderValue )
|
|
{
|
|
Context *clCxt = src.clCxt;
|
|
CV_Assert(interpolation == INTER_LINEAR || interpolation == INTER_NEAREST
|
|
|| interpolation == INTER_CUBIC || interpolation == INTER_LANCZOS4);
|
|
CV_Assert((map1.type() == CV_16SC2 && !map2.data) || (map1.type() == CV_32FC2 && !map2.data) || (map1.type() == CV_32FC1 && map2.type() == CV_32FC1));
|
|
CV_Assert(!map2.data || map2.size() == map1.size());
|
|
CV_Assert(dst.size() == map1.size());
|
|
|
|
dst.create(map1.size(), src.type());
|
|
|
|
|
|
String kernelName;
|
|
|
|
if( map1.type() == CV_32FC2 && !map2.data )
|
|
{
|
|
if(interpolation == INTER_LINEAR && borderType == BORDER_CONSTANT)
|
|
kernelName = "remapLNFConstant";
|
|
else if(interpolation == INTER_NEAREST && borderType == BORDER_CONSTANT)
|
|
kernelName = "remapNNFConstant";
|
|
}
|
|
else if(map1.type() == CV_16SC2 && !map2.data)
|
|
{
|
|
if(interpolation == INTER_LINEAR && borderType == BORDER_CONSTANT)
|
|
kernelName = "remapLNSConstant";
|
|
else if(interpolation == INTER_NEAREST && borderType == BORDER_CONSTANT)
|
|
kernelName = "remapNNSConstant";
|
|
|
|
}
|
|
else if(map1.type() == CV_32FC1 && map2.type() == CV_32FC1)
|
|
{
|
|
if(interpolation == INTER_LINEAR && borderType == BORDER_CONSTANT)
|
|
kernelName = "remapLNF1Constant";
|
|
else if (interpolation == INTER_NEAREST && borderType == BORDER_CONSTANT)
|
|
kernelName = "remapNNF1Constant";
|
|
}
|
|
|
|
//int channels = dst.oclchannels();
|
|
//int depth = dst.depth();
|
|
//int type = src.type();
|
|
size_t blkSizeX = 16, blkSizeY = 16;
|
|
size_t glbSizeX;
|
|
int cols = dst.cols;
|
|
if(src.type() == CV_8UC1)
|
|
{
|
|
cols = (dst.cols + dst.offset % 4 + 3) / 4;
|
|
glbSizeX = cols % blkSizeX == 0 ? cols : (cols / blkSizeX + 1) * blkSizeX;
|
|
|
|
}
|
|
else if(src.type() == CV_32FC1 && interpolation == INTER_LINEAR)
|
|
{
|
|
cols = (dst.cols + (dst.offset >> 2) % 4 + 3) / 4;
|
|
glbSizeX = cols % blkSizeX == 0 ? cols : (cols / blkSizeX + 1) * blkSizeX;
|
|
}
|
|
else
|
|
{
|
|
glbSizeX = dst.cols % blkSizeX == 0 ? dst.cols : (dst.cols / blkSizeX + 1) * blkSizeX;
|
|
|
|
}
|
|
|
|
size_t glbSizeY = dst.rows % blkSizeY == 0 ? dst.rows : (dst.rows / blkSizeY + 1) * blkSizeY;
|
|
size_t globalThreads[3] = {glbSizeX, glbSizeY, 1};
|
|
size_t localThreads[3] = {blkSizeX, blkSizeY, 1};
|
|
|
|
float borderFloat[4] = {(float)borderValue[0], (float)borderValue[1], (float)borderValue[2], (float)borderValue[3]};
|
|
std::vector< std::pair<size_t, const void *> > args;
|
|
if(map1.channels() == 2)
|
|
{
|
|
args.push_back( std::make_pair(sizeof(cl_mem), (void *)&dst.data));
|
|
args.push_back( std::make_pair(sizeof(cl_mem), (void *)&src.data));
|
|
args.push_back( std::make_pair(sizeof(cl_mem), (void *)&map1.data));
|
|
args.push_back( std::make_pair(sizeof(cl_int), (void *)&dst.offset));
|
|
args.push_back( std::make_pair(sizeof(cl_int), (void *)&src.offset));
|
|
args.push_back( std::make_pair(sizeof(cl_int), (void *)&map1.offset));
|
|
args.push_back( std::make_pair(sizeof(cl_int), (void *)&dst.step));
|
|
args.push_back( std::make_pair(sizeof(cl_int), (void *)&src.step));
|
|
args.push_back( std::make_pair(sizeof(cl_int), (void *)&map1.step));
|
|
args.push_back( std::make_pair(sizeof(cl_int), (void *)&src.cols));
|
|
args.push_back( std::make_pair(sizeof(cl_int), (void *)&src.rows));
|
|
args.push_back( std::make_pair(sizeof(cl_int), (void *)&dst.cols));
|
|
args.push_back( std::make_pair(sizeof(cl_int), (void *)&dst.rows));
|
|
args.push_back( std::make_pair(sizeof(cl_int), (void *)&map1.cols));
|
|
args.push_back( std::make_pair(sizeof(cl_int), (void *)&map1.rows));
|
|
args.push_back( std::make_pair(sizeof(cl_int), (void *)&cols));
|
|
float borderFloat[4] = {(float)borderValue[0], (float)borderValue[1], (float)borderValue[2], (float)borderValue[3]};
|
|
|
|
if(src.clCxt->supportsFeature(Context::CL_DOUBLE))
|
|
{
|
|
args.push_back( std::make_pair(sizeof(cl_double4), (void *)&borderValue));
|
|
}
|
|
else
|
|
{
|
|
args.push_back( std::make_pair(sizeof(cl_float4), (void *)&borderFloat));
|
|
}
|
|
}
|
|
if(map1.channels() == 1)
|
|
{
|
|
args.push_back( std::make_pair(sizeof(cl_mem), (void *)&dst.data));
|
|
args.push_back( std::make_pair(sizeof(cl_mem), (void *)&src.data));
|
|
args.push_back( std::make_pair(sizeof(cl_mem), (void *)&map1.data));
|
|
args.push_back( std::make_pair(sizeof(cl_mem), (void *)&map2.data));
|
|
args.push_back( std::make_pair(sizeof(cl_int), (void *)&dst.offset));
|
|
args.push_back( std::make_pair(sizeof(cl_int), (void *)&src.offset));
|
|
args.push_back( std::make_pair(sizeof(cl_int), (void *)&map1.offset));
|
|
args.push_back( std::make_pair(sizeof(cl_int), (void *)&dst.step));
|
|
args.push_back( std::make_pair(sizeof(cl_int), (void *)&src.step));
|
|
args.push_back( std::make_pair(sizeof(cl_int), (void *)&map1.step));
|
|
args.push_back( std::make_pair(sizeof(cl_int), (void *)&src.cols));
|
|
args.push_back( std::make_pair(sizeof(cl_int), (void *)&src.rows));
|
|
args.push_back( std::make_pair(sizeof(cl_int), (void *)&dst.cols));
|
|
args.push_back( std::make_pair(sizeof(cl_int), (void *)&dst.rows));
|
|
args.push_back( std::make_pair(sizeof(cl_int), (void *)&map1.cols));
|
|
args.push_back( std::make_pair(sizeof(cl_int), (void *)&map1.rows));
|
|
args.push_back( std::make_pair(sizeof(cl_int), (void *)&cols));
|
|
if(src.clCxt->supportsFeature(Context::CL_DOUBLE))
|
|
{
|
|
args.push_back( std::make_pair(sizeof(cl_double4), (void *)&borderValue));
|
|
}
|
|
else
|
|
{
|
|
args.push_back( std::make_pair(sizeof(cl_float4), (void *)&borderFloat));
|
|
}
|
|
}
|
|
openCLExecuteKernel(clCxt, &imgproc_remap, kernelName, globalThreads, localThreads, args, src.oclchannels(), src.depth());
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////////////
|
|
// resize
|
|
|
|
static void resize_gpu( const oclMat &src, oclMat &dst, double fx, double fy, int interpolation)
|
|
{
|
|
CV_Assert( (src.channels() == dst.channels()) );
|
|
Context *clCxt = src.clCxt;
|
|
float ifx = 1. / fx;
|
|
float ify = 1. / fy;
|
|
double ifx_d = 1. / fx;
|
|
double ify_d = 1. / fy;
|
|
int srcStep_in_pixel = src.step1() / src.oclchannels();
|
|
int srcoffset_in_pixel = src.offset / src.elemSize();
|
|
int dstStep_in_pixel = dst.step1() / dst.oclchannels();
|
|
int dstoffset_in_pixel = dst.offset / dst.elemSize();
|
|
//printf("%d %d\n",src.step1() , dst.elemSize());
|
|
String kernelName;
|
|
if(interpolation == INTER_LINEAR)
|
|
kernelName = "resizeLN";
|
|
else if(interpolation == INTER_NEAREST)
|
|
kernelName = "resizeNN";
|
|
|
|
//TODO: improve this kernel
|
|
size_t blkSizeX = 16, blkSizeY = 16;
|
|
size_t glbSizeX;
|
|
if(src.type() == CV_8UC1)
|
|
{
|
|
size_t cols = (dst.cols + dst.offset % 4 + 3) / 4;
|
|
glbSizeX = cols % blkSizeX == 0 && cols != 0 ? cols : (cols / blkSizeX + 1) * blkSizeX;
|
|
}
|
|
else
|
|
{
|
|
glbSizeX = dst.cols % blkSizeX == 0 && dst.cols != 0 ? dst.cols : (dst.cols / blkSizeX + 1) * blkSizeX;
|
|
}
|
|
size_t glbSizeY = dst.rows % blkSizeY == 0 && dst.rows != 0 ? dst.rows : (dst.rows / blkSizeY + 1) * blkSizeY;
|
|
size_t globalThreads[3] = {glbSizeX, glbSizeY, 1};
|
|
size_t localThreads[3] = {blkSizeX, blkSizeY, 1};
|
|
|
|
std::vector< std::pair<size_t, const void *> > args;
|
|
if(interpolation == INTER_NEAREST)
|
|
{
|
|
args.push_back( std::make_pair(sizeof(cl_mem), (void *)&dst.data));
|
|
args.push_back( std::make_pair(sizeof(cl_mem), (void *)&src.data));
|
|
args.push_back( std::make_pair(sizeof(cl_int), (void *)&dstoffset_in_pixel));
|
|
args.push_back( std::make_pair(sizeof(cl_int), (void *)&srcoffset_in_pixel));
|
|
args.push_back( std::make_pair(sizeof(cl_int), (void *)&dstStep_in_pixel));
|
|
args.push_back( std::make_pair(sizeof(cl_int), (void *)&srcStep_in_pixel));
|
|
args.push_back( std::make_pair(sizeof(cl_int), (void *)&src.cols));
|
|
args.push_back( std::make_pair(sizeof(cl_int), (void *)&src.rows));
|
|
args.push_back( std::make_pair(sizeof(cl_int), (void *)&dst.cols));
|
|
args.push_back( std::make_pair(sizeof(cl_int), (void *)&dst.rows));
|
|
if(src.clCxt->supportsFeature(Context::CL_DOUBLE))
|
|
{
|
|
args.push_back( std::make_pair(sizeof(cl_double), (void *)&ifx_d));
|
|
args.push_back( std::make_pair(sizeof(cl_double), (void *)&ify_d));
|
|
}
|
|
else
|
|
{
|
|
args.push_back( std::make_pair(sizeof(cl_float), (void *)&ifx));
|
|
args.push_back( std::make_pair(sizeof(cl_float), (void *)&ify));
|
|
}
|
|
}
|
|
else
|
|
{
|
|
args.push_back( std::make_pair(sizeof(cl_mem), (void *)&dst.data));
|
|
args.push_back( std::make_pair(sizeof(cl_mem), (void *)&src.data));
|
|
args.push_back( std::make_pair(sizeof(cl_int), (void *)&dstoffset_in_pixel));
|
|
args.push_back( std::make_pair(sizeof(cl_int), (void *)&srcoffset_in_pixel));
|
|
args.push_back( std::make_pair(sizeof(cl_int), (void *)&dstStep_in_pixel));
|
|
args.push_back( std::make_pair(sizeof(cl_int), (void *)&srcStep_in_pixel));
|
|
args.push_back( std::make_pair(sizeof(cl_int), (void *)&src.cols));
|
|
args.push_back( std::make_pair(sizeof(cl_int), (void *)&src.rows));
|
|
args.push_back( std::make_pair(sizeof(cl_int), (void *)&dst.cols));
|
|
args.push_back( std::make_pair(sizeof(cl_int), (void *)&dst.rows));
|
|
args.push_back( std::make_pair(sizeof(cl_float), (void *)&ifx));
|
|
args.push_back( std::make_pair(sizeof(cl_float), (void *)&ify));
|
|
}
|
|
|
|
openCLExecuteKernel(clCxt, &imgproc_resize, kernelName, globalThreads, localThreads, args, src.oclchannels(), src.depth());
|
|
}
|
|
|
|
|
|
void resize(const oclMat &src, oclMat &dst, Size dsize,
|
|
double fx, double fy, int interpolation)
|
|
{
|
|
CV_Assert(src.type() == CV_8UC1 || src.type() == CV_8UC3 || src.type() == CV_8UC4
|
|
|| src.type() == CV_32FC1 || src.type() == CV_32FC3 || src.type() == CV_32FC4);
|
|
CV_Assert(interpolation == INTER_LINEAR || interpolation == INTER_NEAREST);
|
|
CV_Assert( src.size().area() > 0 );
|
|
CV_Assert( !(dsize == Size()) || (fx > 0 && fy > 0) );
|
|
|
|
if(!(dsize == Size()) && (fx > 0 && fy > 0))
|
|
{
|
|
if(dsize.width != (int)(src.cols * fx) || dsize.height != (int)(src.rows * fy))
|
|
{
|
|
CV_Error(Error::StsUnmatchedSizes, "invalid dsize and fx, fy!");
|
|
}
|
|
}
|
|
if( dsize == Size() )
|
|
{
|
|
dsize = Size(saturate_cast<int>(src.cols * fx), saturate_cast<int>(src.rows * fy));
|
|
}
|
|
else
|
|
{
|
|
fx = (double)dsize.width / src.cols;
|
|
fy = (double)dsize.height / src.rows;
|
|
}
|
|
|
|
dst.create(dsize, src.type());
|
|
|
|
if( interpolation == INTER_NEAREST || interpolation == INTER_LINEAR )
|
|
{
|
|
resize_gpu( src, dst, fx, fy, interpolation);
|
|
return;
|
|
}
|
|
CV_Error(Error::StsUnsupportedFormat, "Non-supported interpolation method");
|
|
}
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
// medianFilter
|
|
void medianFilter(const oclMat &src, oclMat &dst, int m)
|
|
{
|
|
CV_Assert( m % 2 == 1 && m > 1 );
|
|
CV_Assert( m <= 5 || src.depth() == CV_8U );
|
|
CV_Assert( src.cols <= dst.cols && src.rows <= dst.rows );
|
|
|
|
if(src.data == dst.data)
|
|
{
|
|
oclMat src1;
|
|
src.copyTo(src1);
|
|
return medianFilter(src1, dst, m);
|
|
}
|
|
|
|
int srcStep = src.step1() / src.oclchannels();
|
|
int dstStep = dst.step1() / dst.oclchannels();
|
|
int srcOffset = src.offset / src.oclchannels() / src.elemSize1();
|
|
int dstOffset = dst.offset / dst.oclchannels() / dst.elemSize1();
|
|
|
|
Context *clCxt = src.clCxt;
|
|
String kernelName = "medianFilter";
|
|
|
|
|
|
std::vector< std::pair<size_t, const void *> > args;
|
|
args.push_back( std::make_pair( sizeof(cl_mem), (void *)&src.data));
|
|
args.push_back( std::make_pair( sizeof(cl_mem), (void *)&dst.data));
|
|
args.push_back( std::make_pair( sizeof(cl_int), (void *)&srcOffset));
|
|
args.push_back( std::make_pair( sizeof(cl_int), (void *)&dstOffset));
|
|
args.push_back( std::make_pair( sizeof(cl_int), (void *)&src.cols));
|
|
args.push_back( std::make_pair( sizeof(cl_int), (void *)&src.rows));
|
|
args.push_back( std::make_pair( sizeof(cl_int), (void *)&srcStep));
|
|
args.push_back( std::make_pair( sizeof(cl_int), (void *)&dstStep));
|
|
|
|
size_t globalThreads[3] = {(src.cols + 18) / 16 * 16, (src.rows + 15) / 16 * 16, 1};
|
|
size_t localThreads[3] = {16, 16, 1};
|
|
|
|
if(m == 3)
|
|
{
|
|
String kernelName = "medianFilter3";
|
|
openCLExecuteKernel(clCxt, &imgproc_median, kernelName, globalThreads, localThreads, args, src.oclchannels(), src.depth());
|
|
}
|
|
else if(m == 5)
|
|
{
|
|
String kernelName = "medianFilter5";
|
|
openCLExecuteKernel(clCxt, &imgproc_median, kernelName, globalThreads, localThreads, args, src.oclchannels(), src.depth());
|
|
}
|
|
else
|
|
{
|
|
CV_Error(Error::StsUnsupportedFormat, "Non-supported filter length");
|
|
//String kernelName = "medianFilter";
|
|
//args.push_back( std::make_pair( sizeof(cl_int),(void*)&m));
|
|
|
|
//openCLExecuteKernel(clCxt,&imgproc_median,kernelName,globalThreads,localThreads,args,src.oclchannels(),-1);
|
|
}
|
|
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
// copyMakeBorder
|
|
void copyMakeBorder(const oclMat &src, oclMat &dst, int top, int bottom, int left, int right, int bordertype, const Scalar &scalar)
|
|
{
|
|
//CV_Assert(src.oclchannels() != 2);
|
|
CV_Assert(top >= 0 && bottom >= 0 && left >= 0 && right >= 0);
|
|
if((dst.cols != dst.wholecols) || (dst.rows != dst.wholerows)) //has roi
|
|
{
|
|
if(((bordertype & cv::BORDER_ISOLATED) == 0) &&
|
|
(bordertype != cv::BORDER_CONSTANT) &&
|
|
(bordertype != cv::BORDER_REPLICATE))
|
|
{
|
|
CV_Error(Error::StsBadArg, "unsupported border type");
|
|
}
|
|
}
|
|
bordertype &= ~cv::BORDER_ISOLATED;
|
|
if((bordertype == cv::BORDER_REFLECT) || (bordertype == cv::BORDER_WRAP))
|
|
{
|
|
CV_Assert((src.cols >= left) && (src.cols >= right) && (src.rows >= top) && (src.rows >= bottom));
|
|
}
|
|
if(bordertype == cv::BORDER_REFLECT_101)
|
|
{
|
|
CV_Assert((src.cols > left) && (src.cols > right) && (src.rows > top) && (src.rows > bottom));
|
|
}
|
|
dst.create(src.rows + top + bottom, src.cols + left + right, src.type());
|
|
int srcStep = src.step1() / src.oclchannels();
|
|
int dstStep = dst.step1() / dst.oclchannels();
|
|
int srcOffset = src.offset / src.elemSize();
|
|
int dstOffset = dst.offset / dst.elemSize();
|
|
int __bordertype[] = {cv::BORDER_CONSTANT, cv::BORDER_REPLICATE, BORDER_REFLECT, BORDER_WRAP, BORDER_REFLECT_101};
|
|
const char *borderstr[] = {"BORDER_CONSTANT", "BORDER_REPLICATE", "BORDER_REFLECT", "BORDER_WRAP", "BORDER_REFLECT_101"};
|
|
size_t bordertype_index;
|
|
for(bordertype_index = 0; bordertype_index < sizeof(__bordertype) / sizeof(int); bordertype_index++)
|
|
{
|
|
if(__bordertype[bordertype_index] == bordertype)
|
|
break;
|
|
}
|
|
if(bordertype_index == sizeof(__bordertype) / sizeof(int))
|
|
{
|
|
CV_Error(Error::StsBadArg, "unsupported border type");
|
|
}
|
|
String kernelName = "copymakeborder";
|
|
size_t localThreads[3] = {16, 16, 1};
|
|
size_t globalThreads[3] = {(dst.cols + localThreads[0] - 1) / localThreads[0] *localThreads[0],
|
|
(dst.rows + localThreads[1] - 1) / localThreads[1] *localThreads[1], 1
|
|
};
|
|
|
|
std::vector< std::pair<size_t, const void *> > args;
|
|
args.push_back( std::make_pair( sizeof(cl_mem), (void *)&src.data));
|
|
args.push_back( std::make_pair( sizeof(cl_mem), (void *)&dst.data));
|
|
args.push_back( std::make_pair( sizeof(cl_int), (void *)&dst.cols));
|
|
args.push_back( std::make_pair( sizeof(cl_int), (void *)&dst.rows));
|
|
args.push_back( std::make_pair( sizeof(cl_int), (void *)&src.cols));
|
|
args.push_back( std::make_pair( sizeof(cl_int), (void *)&src.rows));
|
|
args.push_back( std::make_pair( sizeof(cl_int), (void *)&srcStep));
|
|
args.push_back( std::make_pair( sizeof(cl_int), (void *)&srcOffset));
|
|
args.push_back( std::make_pair( sizeof(cl_int), (void *)&dstStep));
|
|
args.push_back( std::make_pair( sizeof(cl_int), (void *)&dstOffset));
|
|
args.push_back( std::make_pair( sizeof(cl_int), (void *)&top));
|
|
args.push_back( std::make_pair( sizeof(cl_int), (void *)&left));
|
|
char compile_option[64];
|
|
union sc
|
|
{
|
|
cl_uchar4 uval;
|
|
cl_char4 cval;
|
|
cl_ushort4 usval;
|
|
cl_short4 shval;
|
|
cl_int4 ival;
|
|
cl_float4 fval;
|
|
cl_double4 dval;
|
|
} val;
|
|
switch(dst.depth())
|
|
{
|
|
case CV_8U:
|
|
val.uval.s[0] = saturate_cast<uchar>(scalar.val[0]);
|
|
val.uval.s[1] = saturate_cast<uchar>(scalar.val[1]);
|
|
val.uval.s[2] = saturate_cast<uchar>(scalar.val[2]);
|
|
val.uval.s[3] = saturate_cast<uchar>(scalar.val[3]);
|
|
switch(dst.oclchannels())
|
|
{
|
|
case 1:
|
|
sprintf(compile_option, "-D GENTYPE=uchar -D %s", borderstr[bordertype_index]);
|
|
args.push_back( std::make_pair( sizeof(cl_uchar) , (void *)&val.uval.s[0] ));
|
|
if(((dst.offset & 3) == 0) && ((dst.cols & 3) == 0))
|
|
{
|
|
kernelName = "copymakeborder_C1_D0";
|
|
globalThreads[0] = (dst.cols / 4 + localThreads[0] - 1) / localThreads[0] * localThreads[0];
|
|
}
|
|
break;
|
|
case 4:
|
|
sprintf(compile_option, "-D GENTYPE=uchar4 -D %s", borderstr[bordertype_index]);
|
|
args.push_back( std::make_pair( sizeof(cl_uchar4) , (void *)&val.uval ));
|
|
break;
|
|
default:
|
|
CV_Error(Error::StsUnsupportedFormat, "unsupported channels");
|
|
}
|
|
break;
|
|
case CV_8S:
|
|
val.cval.s[0] = saturate_cast<char>(scalar.val[0]);
|
|
val.cval.s[1] = saturate_cast<char>(scalar.val[1]);
|
|
val.cval.s[2] = saturate_cast<char>(scalar.val[2]);
|
|
val.cval.s[3] = saturate_cast<char>(scalar.val[3]);
|
|
switch(dst.oclchannels())
|
|
{
|
|
case 1:
|
|
sprintf(compile_option, "-D GENTYPE=char -D %s", borderstr[bordertype_index]);
|
|
args.push_back( std::make_pair( sizeof(cl_char) , (void *)&val.cval.s[0] ));
|
|
break;
|
|
case 4:
|
|
sprintf(compile_option, "-D GENTYPE=char4 -D %s", borderstr[bordertype_index]);
|
|
args.push_back( std::make_pair( sizeof(cl_char4) , (void *)&val.cval ));
|
|
break;
|
|
default:
|
|
CV_Error(Error::StsUnsupportedFormat, "unsupported channels");
|
|
}
|
|
break;
|
|
case CV_16U:
|
|
val.usval.s[0] = saturate_cast<ushort>(scalar.val[0]);
|
|
val.usval.s[1] = saturate_cast<ushort>(scalar.val[1]);
|
|
val.usval.s[2] = saturate_cast<ushort>(scalar.val[2]);
|
|
val.usval.s[3] = saturate_cast<ushort>(scalar.val[3]);
|
|
switch(dst.oclchannels())
|
|
{
|
|
case 1:
|
|
sprintf(compile_option, "-D GENTYPE=ushort -D %s", borderstr[bordertype_index]);
|
|
args.push_back( std::make_pair( sizeof(cl_ushort) , (void *)&val.usval.s[0] ));
|
|
break;
|
|
case 4:
|
|
sprintf(compile_option, "-D GENTYPE=ushort4 -D %s", borderstr[bordertype_index]);
|
|
args.push_back( std::make_pair( sizeof(cl_ushort4) , (void *)&val.usval ));
|
|
break;
|
|
default:
|
|
CV_Error(Error::StsUnsupportedFormat, "unsupported channels");
|
|
}
|
|
break;
|
|
case CV_16S:
|
|
val.shval.s[0] = saturate_cast<short>(scalar.val[0]);
|
|
val.shval.s[1] = saturate_cast<short>(scalar.val[1]);
|
|
val.shval.s[2] = saturate_cast<short>(scalar.val[2]);
|
|
val.shval.s[3] = saturate_cast<short>(scalar.val[3]);
|
|
switch(dst.oclchannels())
|
|
{
|
|
case 1:
|
|
sprintf(compile_option, "-D GENTYPE=short -D %s", borderstr[bordertype_index]);
|
|
args.push_back( std::make_pair( sizeof(cl_short) , (void *)&val.shval.s[0] ));
|
|
break;
|
|
case 4:
|
|
sprintf(compile_option, "-D GENTYPE=short4 -D %s", borderstr[bordertype_index]);
|
|
args.push_back( std::make_pair( sizeof(cl_short4) , (void *)&val.shval ));
|
|
break;
|
|
default:
|
|
CV_Error(Error::StsUnsupportedFormat, "unsupported channels");
|
|
}
|
|
break;
|
|
case CV_32S:
|
|
val.ival.s[0] = saturate_cast<int>(scalar.val[0]);
|
|
val.ival.s[1] = saturate_cast<int>(scalar.val[1]);
|
|
val.ival.s[2] = saturate_cast<int>(scalar.val[2]);
|
|
val.ival.s[3] = saturate_cast<int>(scalar.val[3]);
|
|
switch(dst.oclchannels())
|
|
{
|
|
case 1:
|
|
sprintf(compile_option, "-D GENTYPE=int -D %s", borderstr[bordertype_index]);
|
|
args.push_back( std::make_pair( sizeof(cl_int) , (void *)&val.ival.s[0] ));
|
|
break;
|
|
case 2:
|
|
sprintf(compile_option, "-D GENTYPE=int2 -D %s", borderstr[bordertype_index]);
|
|
cl_int2 i2val;
|
|
i2val.s[0] = val.ival.s[0];
|
|
i2val.s[1] = val.ival.s[1];
|
|
args.push_back( std::make_pair( sizeof(cl_int2) , (void *)&i2val ));
|
|
break;
|
|
case 4:
|
|
sprintf(compile_option, "-D GENTYPE=int4 -D %s", borderstr[bordertype_index]);
|
|
args.push_back( std::make_pair( sizeof(cl_int4) , (void *)&val.ival ));
|
|
break;
|
|
default:
|
|
CV_Error(Error::StsUnsupportedFormat, "unsupported channels");
|
|
}
|
|
break;
|
|
case CV_32F:
|
|
val.fval.s[0] = scalar.val[0];
|
|
val.fval.s[1] = scalar.val[1];
|
|
val.fval.s[2] = scalar.val[2];
|
|
val.fval.s[3] = scalar.val[3];
|
|
switch(dst.oclchannels())
|
|
{
|
|
case 1:
|
|
sprintf(compile_option, "-D GENTYPE=float -D %s", borderstr[bordertype_index]);
|
|
args.push_back( std::make_pair( sizeof(cl_float) , (void *)&val.fval.s[0] ));
|
|
break;
|
|
case 4:
|
|
sprintf(compile_option, "-D GENTYPE=float4 -D %s", borderstr[bordertype_index]);
|
|
args.push_back( std::make_pair( sizeof(cl_float4) , (void *)&val.fval ));
|
|
break;
|
|
default:
|
|
CV_Error(Error::StsUnsupportedFormat, "unsupported channels");
|
|
}
|
|
break;
|
|
case CV_64F:
|
|
val.dval.s[0] = scalar.val[0];
|
|
val.dval.s[1] = scalar.val[1];
|
|
val.dval.s[2] = scalar.val[2];
|
|
val.dval.s[3] = scalar.val[3];
|
|
switch(dst.oclchannels())
|
|
{
|
|
case 1:
|
|
sprintf(compile_option, "-D GENTYPE=double -D %s", borderstr[bordertype_index]);
|
|
args.push_back( std::make_pair( sizeof(cl_double) , (void *)&val.dval.s[0] ));
|
|
break;
|
|
case 4:
|
|
sprintf(compile_option, "-D GENTYPE=double4 -D %s", borderstr[bordertype_index]);
|
|
args.push_back( std::make_pair( sizeof(cl_double4) , (void *)&val.dval ));
|
|
break;
|
|
default:
|
|
CV_Error(Error::StsUnsupportedFormat, "unsupported channels");
|
|
}
|
|
break;
|
|
default:
|
|
CV_Error(Error::StsUnsupportedFormat, "unknown depth");
|
|
}
|
|
|
|
openCLExecuteKernel(src.clCxt, &imgproc_copymakeboder, kernelName, globalThreads, localThreads, args, -1, -1, compile_option);
|
|
//uchar* cputemp=new uchar[32*dst.wholerows];
|
|
////int* cpudata=new int[this->step*this->wholerows/sizeof(int)];
|
|
//openCLSafeCall(clEnqueueReadBuffer(src.clCxt->impl->clCmdQueue, (cl_mem)dst.data, CL_TRUE,
|
|
// 0, 32*dst.wholerows, cputemp, 0, NULL, NULL));
|
|
//for(int i=0;i<dst.wholerows;i++)
|
|
//{
|
|
// for(int j=0;j<dst.wholecols;j++)
|
|
// {
|
|
// std::cout<< (int)cputemp[i*32+j]<<" ";
|
|
// }
|
|
// std::cout<<std::endl;
|
|
//}
|
|
//delete []cputemp;
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
// warp
|
|
|
|
namespace
|
|
{
|
|
#define F double
|
|
|
|
void convert_coeffs(F *M)
|
|
{
|
|
double D = M[0] * M[4] - M[1] * M[3];
|
|
D = D != 0 ? 1. / D : 0;
|
|
double A11 = M[4] * D, A22 = M[0] * D;
|
|
M[0] = A11;
|
|
M[1] *= -D;
|
|
M[3] *= -D;
|
|
M[4] = A22;
|
|
double b1 = -M[0] * M[2] - M[1] * M[5];
|
|
double b2 = -M[3] * M[2] - M[4] * M[5];
|
|
M[2] = b1;
|
|
M[5] = b2;
|
|
}
|
|
|
|
double invert(double *M)
|
|
{
|
|
#define Sd(y,x) (Sd[y*3+x])
|
|
#define Dd(y,x) (Dd[y*3+x])
|
|
#define det3(m) (m(0,0)*(m(1,1)*m(2,2) - m(1,2)*m(2,1)) - \
|
|
m(0,1)*(m(1,0)*m(2,2) - m(1,2)*m(2,0)) + \
|
|
m(0,2)*(m(1,0)*m(2,1) - m(1,1)*m(2,0)))
|
|
double *Sd = M;
|
|
double *Dd = M;
|
|
double d = det3(Sd);
|
|
double result = 0;
|
|
if( d != 0)
|
|
{
|
|
double t[9];
|
|
result = d;
|
|
d = 1. / d;
|
|
|
|
t[0] = (Sd(1, 1) * Sd(2, 2) - Sd(1, 2) * Sd(2, 1)) * d;
|
|
t[1] = (Sd(0, 2) * Sd(2, 1) - Sd(0, 1) * Sd(2, 2)) * d;
|
|
t[2] = (Sd(0, 1) * Sd(1, 2) - Sd(0, 2) * Sd(1, 1)) * d;
|
|
|
|
t[3] = (Sd(1, 2) * Sd(2, 0) - Sd(1, 0) * Sd(2, 2)) * d;
|
|
t[4] = (Sd(0, 0) * Sd(2, 2) - Sd(0, 2) * Sd(2, 0)) * d;
|
|
t[5] = (Sd(0, 2) * Sd(1, 0) - Sd(0, 0) * Sd(1, 2)) * d;
|
|
|
|
t[6] = (Sd(1, 0) * Sd(2, 1) - Sd(1, 1) * Sd(2, 0)) * d;
|
|
t[7] = (Sd(0, 1) * Sd(2, 0) - Sd(0, 0) * Sd(2, 1)) * d;
|
|
t[8] = (Sd(0, 0) * Sd(1, 1) - Sd(0, 1) * Sd(1, 0)) * d;
|
|
|
|
Dd(0, 0) = t[0];
|
|
Dd(0, 1) = t[1];
|
|
Dd(0, 2) = t[2];
|
|
Dd(1, 0) = t[3];
|
|
Dd(1, 1) = t[4];
|
|
Dd(1, 2) = t[5];
|
|
Dd(2, 0) = t[6];
|
|
Dd(2, 1) = t[7];
|
|
Dd(2, 2) = t[8];
|
|
}
|
|
return result;
|
|
}
|
|
|
|
void warpAffine_gpu(const oclMat &src, oclMat &dst, F coeffs[2][3], int interpolation)
|
|
{
|
|
CV_Assert( (src.oclchannels() == dst.oclchannels()) );
|
|
int srcStep = src.step1();
|
|
int dstStep = dst.step1();
|
|
float float_coeffs[2][3];
|
|
cl_mem coeffs_cm;
|
|
|
|
Context *clCxt = src.clCxt;
|
|
String s[3] = {"NN", "Linear", "Cubic"};
|
|
String kernelName = "warpAffine" + s[interpolation];
|
|
|
|
|
|
if(src.clCxt->supportsFeature(Context::CL_DOUBLE))
|
|
{
|
|
cl_int st;
|
|
coeffs_cm = clCreateBuffer( (cl_context)clCxt->oclContext(), CL_MEM_READ_WRITE, sizeof(F) * 2 * 3, NULL, &st );
|
|
openCLVerifyCall(st);
|
|
openCLSafeCall(clEnqueueWriteBuffer((cl_command_queue)clCxt->oclCommandQueue(), (cl_mem)coeffs_cm, 1, 0, sizeof(F) * 2 * 3, coeffs, 0, 0, 0));
|
|
}
|
|
else
|
|
{
|
|
cl_int st;
|
|
for(int m = 0; m < 2; m++)
|
|
for(int n = 0; n < 3; n++)
|
|
{
|
|
float_coeffs[m][n] = coeffs[m][n];
|
|
}
|
|
coeffs_cm = clCreateBuffer( (cl_context)clCxt->oclContext(), CL_MEM_READ_WRITE, sizeof(float) * 2 * 3, NULL, &st );
|
|
openCLSafeCall(clEnqueueWriteBuffer((cl_command_queue)clCxt->oclCommandQueue(), (cl_mem)coeffs_cm, 1, 0, sizeof(float) * 2 * 3, float_coeffs, 0, 0, 0));
|
|
|
|
}
|
|
//TODO: improve this kernel
|
|
size_t blkSizeX = 16, blkSizeY = 16;
|
|
size_t glbSizeX;
|
|
size_t cols;
|
|
//if(src.type() == CV_8UC1 && interpolation != 2)
|
|
if(src.type() == CV_8UC1 && interpolation != 2)
|
|
{
|
|
cols = (dst.cols + dst.offset % 4 + 3) / 4;
|
|
glbSizeX = cols % blkSizeX == 0 ? cols : (cols / blkSizeX + 1) * blkSizeX;
|
|
}
|
|
else
|
|
{
|
|
cols = dst.cols;
|
|
glbSizeX = dst.cols % blkSizeX == 0 ? dst.cols : (dst.cols / blkSizeX + 1) * blkSizeX;
|
|
}
|
|
size_t glbSizeY = dst.rows % blkSizeY == 0 ? dst.rows : (dst.rows / blkSizeY + 1) * blkSizeY;
|
|
size_t globalThreads[3] = {glbSizeX, glbSizeY, 1};
|
|
size_t localThreads[3] = {blkSizeX, blkSizeY, 1};
|
|
|
|
std::vector< std::pair<size_t, const void *> > args;
|
|
|
|
args.push_back(std::make_pair(sizeof(cl_mem), (void *)&src.data));
|
|
args.push_back(std::make_pair(sizeof(cl_mem), (void *)&dst.data));
|
|
args.push_back(std::make_pair(sizeof(cl_int), (void *)&src.cols));
|
|
args.push_back(std::make_pair(sizeof(cl_int), (void *)&src.rows));
|
|
args.push_back(std::make_pair(sizeof(cl_int), (void *)&dst.cols));
|
|
args.push_back(std::make_pair(sizeof(cl_int), (void *)&dst.rows));
|
|
args.push_back(std::make_pair(sizeof(cl_int), (void *)&srcStep));
|
|
args.push_back(std::make_pair(sizeof(cl_int), (void *)&dstStep));
|
|
args.push_back(std::make_pair(sizeof(cl_int), (void *)&src.offset));
|
|
args.push_back(std::make_pair(sizeof(cl_int), (void *)&dst.offset));
|
|
args.push_back(std::make_pair(sizeof(cl_mem), (void *)&coeffs_cm));
|
|
args.push_back(std::make_pair(sizeof(cl_int), (void *)&cols));
|
|
|
|
openCLExecuteKernel(clCxt, &imgproc_warpAffine, kernelName, globalThreads, localThreads, args, src.oclchannels(), src.depth());
|
|
openCLSafeCall(clReleaseMemObject(coeffs_cm));
|
|
}
|
|
|
|
|
|
void warpPerspective_gpu(const oclMat &src, oclMat &dst, double coeffs[3][3], int interpolation)
|
|
{
|
|
CV_Assert( (src.oclchannels() == dst.oclchannels()) );
|
|
int srcStep = src.step1();
|
|
int dstStep = dst.step1();
|
|
float float_coeffs[3][3];
|
|
cl_mem coeffs_cm;
|
|
|
|
Context *clCxt = src.clCxt;
|
|
String s[3] = {"NN", "Linear", "Cubic"};
|
|
String kernelName = "warpPerspective" + s[interpolation];
|
|
|
|
if(src.clCxt->supportsFeature(Context::CL_DOUBLE))
|
|
{
|
|
cl_int st;
|
|
coeffs_cm = clCreateBuffer((cl_context) clCxt->oclContext(), CL_MEM_READ_WRITE, sizeof(double) * 3 * 3, NULL, &st );
|
|
openCLVerifyCall(st);
|
|
openCLSafeCall(clEnqueueWriteBuffer((cl_command_queue)clCxt->oclCommandQueue(), (cl_mem)coeffs_cm, 1, 0, sizeof(double) * 3 * 3, coeffs, 0, 0, 0));
|
|
}
|
|
else
|
|
{
|
|
cl_int st;
|
|
for(int m = 0; m < 3; m++)
|
|
for(int n = 0; n < 3; n++)
|
|
float_coeffs[m][n] = coeffs[m][n];
|
|
|
|
coeffs_cm = clCreateBuffer((cl_context) clCxt->oclContext(), CL_MEM_READ_WRITE, sizeof(float) * 3 * 3, NULL, &st );
|
|
openCLVerifyCall(st);
|
|
openCLSafeCall(clEnqueueWriteBuffer((cl_command_queue)clCxt->oclCommandQueue(), (cl_mem)coeffs_cm, 1, 0, sizeof(float) * 3 * 3, float_coeffs, 0, 0, 0));
|
|
}
|
|
//TODO: improve this kernel
|
|
size_t blkSizeX = 16, blkSizeY = 16;
|
|
size_t glbSizeX;
|
|
size_t cols;
|
|
if(src.type() == CV_8UC1 && interpolation == 0)
|
|
{
|
|
cols = (dst.cols + dst.offset % 4 + 3) / 4;
|
|
glbSizeX = cols % blkSizeX == 0 ? cols : (cols / blkSizeX + 1) * blkSizeX;
|
|
}
|
|
else
|
|
/*
|
|
*/
|
|
{
|
|
cols = dst.cols;
|
|
glbSizeX = dst.cols % blkSizeX == 0 ? dst.cols : (dst.cols / blkSizeX + 1) * blkSizeX;
|
|
}
|
|
size_t glbSizeY = dst.rows % blkSizeY == 0 ? dst.rows : (dst.rows / blkSizeY + 1) * blkSizeY;
|
|
size_t globalThreads[3] = {glbSizeX, glbSizeY, 1};
|
|
size_t localThreads[3] = {blkSizeX, blkSizeY, 1};
|
|
|
|
std::vector< std::pair<size_t, const void *> > args;
|
|
|
|
args.push_back(std::make_pair(sizeof(cl_mem), (void *)&src.data));
|
|
args.push_back(std::make_pair(sizeof(cl_mem), (void *)&dst.data));
|
|
args.push_back(std::make_pair(sizeof(cl_int), (void *)&src.cols));
|
|
args.push_back(std::make_pair(sizeof(cl_int), (void *)&src.rows));
|
|
args.push_back(std::make_pair(sizeof(cl_int), (void *)&dst.cols));
|
|
args.push_back(std::make_pair(sizeof(cl_int), (void *)&dst.rows));
|
|
args.push_back(std::make_pair(sizeof(cl_int), (void *)&srcStep));
|
|
args.push_back(std::make_pair(sizeof(cl_int), (void *)&dstStep));
|
|
args.push_back(std::make_pair(sizeof(cl_int), (void *)&src.offset));
|
|
args.push_back(std::make_pair(sizeof(cl_int), (void *)&dst.offset));
|
|
args.push_back(std::make_pair(sizeof(cl_mem), (void *)&coeffs_cm));
|
|
args.push_back(std::make_pair(sizeof(cl_int), (void *)&cols));
|
|
|
|
openCLExecuteKernel(clCxt, &imgproc_warpPerspective, kernelName, globalThreads, localThreads, args, src.oclchannels(), src.depth());
|
|
openCLSafeCall(clReleaseMemObject(coeffs_cm));
|
|
}
|
|
}
|
|
|
|
void warpAffine(const oclMat &src, oclMat &dst, const Mat &M, Size dsize, int flags)
|
|
{
|
|
int interpolation = flags & INTER_MAX;
|
|
|
|
CV_Assert((src.depth() == CV_8U || src.depth() == CV_32F) && src.oclchannels() != 2 && src.oclchannels() != 3);
|
|
CV_Assert(interpolation == INTER_NEAREST || interpolation == INTER_LINEAR || interpolation == INTER_CUBIC);
|
|
|
|
dst.create(dsize, src.type());
|
|
|
|
CV_Assert(M.rows == 2 && M.cols == 3);
|
|
|
|
int warpInd = (flags & WARP_INVERSE_MAP) >> 4;
|
|
F coeffs[2][3];
|
|
|
|
double coeffsM[2*3];
|
|
Mat coeffsMat(2, 3, CV_64F, (void *)coeffsM);
|
|
M.convertTo(coeffsMat, coeffsMat.type());
|
|
if(!warpInd)
|
|
{
|
|
convert_coeffs(coeffsM);
|
|
}
|
|
|
|
for(int i = 0; i < 2; ++i)
|
|
for(int j = 0; j < 3; ++j)
|
|
coeffs[i][j] = coeffsM[i*3+j];
|
|
|
|
warpAffine_gpu(src, dst, coeffs, interpolation);
|
|
}
|
|
|
|
void warpPerspective(const oclMat &src, oclMat &dst, const Mat &M, Size dsize, int flags)
|
|
{
|
|
int interpolation = flags & INTER_MAX;
|
|
|
|
CV_Assert((src.depth() == CV_8U || src.depth() == CV_32F) && src.oclchannels() != 2 && src.oclchannels() != 3);
|
|
CV_Assert(interpolation == INTER_NEAREST || interpolation == INTER_LINEAR || interpolation == INTER_CUBIC);
|
|
|
|
dst.create(dsize, src.type());
|
|
|
|
|
|
CV_Assert(M.rows == 3 && M.cols == 3);
|
|
|
|
int warpInd = (flags & WARP_INVERSE_MAP) >> 4;
|
|
double coeffs[3][3];
|
|
|
|
double coeffsM[3*3];
|
|
Mat coeffsMat(3, 3, CV_64F, (void *)coeffsM);
|
|
M.convertTo(coeffsMat, coeffsMat.type());
|
|
if(!warpInd)
|
|
{
|
|
invert(coeffsM);
|
|
}
|
|
|
|
for(int i = 0; i < 3; ++i)
|
|
for(int j = 0; j < 3; ++j)
|
|
coeffs[i][j] = coeffsM[i*3+j];
|
|
|
|
warpPerspective_gpu(src, dst, coeffs, interpolation);
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
// integral
|
|
void integral(const oclMat &src, oclMat &sum, oclMat &sqsum)
|
|
{
|
|
CV_Assert(src.type() == CV_8UC1);
|
|
if(!src.clCxt->supportsFeature(Context::CL_DOUBLE) && src.depth() == CV_64F)
|
|
{
|
|
CV_Error(Error::GpuNotSupported, "select device don't support double");
|
|
}
|
|
int vlen = 4;
|
|
int offset = src.offset / vlen;
|
|
int pre_invalid = src.offset % vlen;
|
|
int vcols = (pre_invalid + src.cols + vlen - 1) / vlen;
|
|
|
|
oclMat t_sum , t_sqsum;
|
|
int w = src.cols + 1, h = src.rows + 1;
|
|
int depth;
|
|
if( src.cols * src.rows <= 2901 * 2901 ) //2901 is the maximum size for int when all values are 255
|
|
{
|
|
t_sum.create(src.cols, src.rows, CV_32SC1);
|
|
sum.create(h, w, CV_32SC1);
|
|
}
|
|
else
|
|
{
|
|
//Use float to prevent overflow
|
|
t_sum.create(src.cols, src.rows, CV_32FC1);
|
|
sum.create(h, w, CV_32FC1);
|
|
}
|
|
t_sqsum.create(src.cols, src.rows, CV_32FC1);
|
|
sqsum.create(h, w, CV_32FC1);
|
|
depth = sum.depth();
|
|
int sum_offset = sum.offset / vlen;
|
|
int sqsum_offset = sqsum.offset / vlen;
|
|
|
|
std::vector<std::pair<size_t , const void *> > args;
|
|
args.push_back( std::make_pair( sizeof(cl_mem) , (void *)&src.data ));
|
|
args.push_back( std::make_pair( sizeof(cl_mem) , (void *)&t_sum.data ));
|
|
args.push_back( std::make_pair( sizeof(cl_mem) , (void *)&t_sqsum.data ));
|
|
args.push_back( std::make_pair( sizeof(cl_int) , (void *)&offset ));
|
|
args.push_back( std::make_pair( sizeof(cl_int) , (void *)&pre_invalid ));
|
|
args.push_back( std::make_pair( sizeof(cl_int) , (void *)&src.rows ));
|
|
args.push_back( std::make_pair( sizeof(cl_int) , (void *)&src.cols ));
|
|
args.push_back( std::make_pair( sizeof(cl_int) , (void *)&src.step ));
|
|
args.push_back( std::make_pair( sizeof(cl_int) , (void *)&t_sum.step));
|
|
size_t gt[3] = {((vcols + 1) / 2) * 256, 1, 1}, lt[3] = {256, 1, 1};
|
|
openCLExecuteKernel(src.clCxt, &imgproc_integral, "integral_cols", gt, lt, args, -1, depth);
|
|
args.clear();
|
|
args.push_back( std::make_pair( sizeof(cl_mem) , (void *)&t_sum.data ));
|
|
args.push_back( std::make_pair( sizeof(cl_mem) , (void *)&t_sqsum.data ));
|
|
args.push_back( std::make_pair( sizeof(cl_mem) , (void *)&sum.data ));
|
|
args.push_back( std::make_pair( sizeof(cl_mem) , (void *)&sqsum.data ));
|
|
args.push_back( std::make_pair( sizeof(cl_int) , (void *)&t_sum.rows ));
|
|
args.push_back( std::make_pair( sizeof(cl_int) , (void *)&t_sum.cols ));
|
|
args.push_back( std::make_pair( sizeof(cl_int) , (void *)&t_sum.step ));
|
|
args.push_back( std::make_pair( sizeof(cl_int) , (void *)&sum.step));
|
|
args.push_back( std::make_pair( sizeof(cl_int) , (void *)&sqsum.step));
|
|
args.push_back( std::make_pair( sizeof(cl_int) , (void *)&sum_offset));
|
|
args.push_back( std::make_pair( sizeof(cl_int) , (void *)&sqsum_offset));
|
|
size_t gt2[3] = {t_sum.cols * 32, 1, 1}, lt2[3] = {256, 1, 1};
|
|
openCLExecuteKernel(src.clCxt, &imgproc_integral, "integral_rows", gt2, lt2, args, -1, depth);
|
|
}
|
|
|
|
void integral(const oclMat &src, oclMat &sum)
|
|
{
|
|
CV_Assert(src.type() == CV_8UC1);
|
|
int vlen = 4;
|
|
int offset = src.offset / vlen;
|
|
int pre_invalid = src.offset % vlen;
|
|
int vcols = (pre_invalid + src.cols + vlen - 1) / vlen;
|
|
|
|
oclMat t_sum;
|
|
int w = src.cols + 1, h = src.rows + 1;
|
|
int depth;
|
|
if(src.cols * src.rows <= 2901 * 2901)
|
|
{
|
|
t_sum.create(src.cols, src.rows, CV_32SC1);
|
|
sum.create(h, w, CV_32SC1);
|
|
}else
|
|
{
|
|
t_sum.create(src.cols, src.rows, CV_32FC1);
|
|
sum.create(h, w, CV_32FC1);
|
|
}
|
|
depth = sum.depth();
|
|
int sum_offset = sum.offset / vlen;
|
|
|
|
std::vector<std::pair<size_t , const void *> > args;
|
|
args.push_back( std::make_pair( sizeof(cl_mem) , (void *)&src.data ));
|
|
args.push_back( std::make_pair( sizeof(cl_mem) , (void *)&t_sum.data ));
|
|
args.push_back( std::make_pair( sizeof(cl_int) , (void *)&offset ));
|
|
args.push_back( std::make_pair( sizeof(cl_int) , (void *)&pre_invalid ));
|
|
args.push_back( std::make_pair( sizeof(cl_int) , (void *)&src.rows ));
|
|
args.push_back( std::make_pair( sizeof(cl_int) , (void *)&src.cols ));
|
|
args.push_back( std::make_pair( sizeof(cl_int) , (void *)&src.step ));
|
|
args.push_back( std::make_pair( sizeof(cl_int) , (void *)&t_sum.step));
|
|
size_t gt[3] = {((vcols + 1) / 2) * 256, 1, 1}, lt[3] = {256, 1, 1};
|
|
openCLExecuteKernel(src.clCxt, &imgproc_integral_sum, "integral_sum_cols", gt, lt, args, -1, depth);
|
|
args.clear();
|
|
args.push_back( std::make_pair( sizeof(cl_mem) , (void *)&t_sum.data ));
|
|
args.push_back( std::make_pair( sizeof(cl_mem) , (void *)&sum.data ));
|
|
args.push_back( std::make_pair( sizeof(cl_int) , (void *)&t_sum.rows ));
|
|
args.push_back( std::make_pair( sizeof(cl_int) , (void *)&t_sum.cols ));
|
|
args.push_back( std::make_pair( sizeof(cl_int) , (void *)&t_sum.step ));
|
|
args.push_back( std::make_pair( sizeof(cl_int) , (void *)&sum.step));
|
|
args.push_back( std::make_pair( sizeof(cl_int) , (void *)&sum_offset));
|
|
size_t gt2[3] = {t_sum.cols * 32, 1, 1}, lt2[3] = {256, 1, 1};
|
|
openCLExecuteKernel(src.clCxt, &imgproc_integral_sum, "integral_sum_rows", gt2, lt2, args, -1, depth);
|
|
//std::cout << "tested" << std::endl;
|
|
}
|
|
|
|
/////////////////////// corner //////////////////////////////
|
|
static void extractCovData(const oclMat &src, oclMat &Dx, oclMat &Dy,
|
|
int blockSize, int ksize, int borderType)
|
|
{
|
|
CV_Assert(src.type() == CV_8UC1 || src.type() == CV_32FC1);
|
|
double scale = static_cast<double>(1 << ((ksize > 0 ? ksize : 3) - 1)) * blockSize;
|
|
if (ksize < 0)
|
|
scale *= 2.;
|
|
|
|
if (src.depth() == CV_8U)
|
|
{
|
|
scale *= 255.;
|
|
scale = 1. / scale;
|
|
}
|
|
else
|
|
{
|
|
scale = 1. / scale;
|
|
}
|
|
if (ksize > 0)
|
|
{
|
|
Sobel(src, Dx, CV_32F, 1, 0, ksize, scale, 0, borderType);
|
|
Sobel(src, Dy, CV_32F, 0, 1, ksize, scale, 0, borderType);
|
|
}
|
|
else
|
|
{
|
|
Scharr(src, Dx, CV_32F, 1, 0, scale, 0, borderType);
|
|
Scharr(src, Dy, CV_32F, 0, 1, scale, 0, borderType);
|
|
}
|
|
CV_Assert(Dx.offset == 0 && Dy.offset == 0);
|
|
}
|
|
|
|
static void corner_ocl(const char *src_str, String kernelName, int block_size, float k, oclMat &Dx, oclMat &Dy,
|
|
oclMat &dst, int border_type)
|
|
{
|
|
char borderType[30];
|
|
switch (border_type)
|
|
{
|
|
case cv::BORDER_CONSTANT:
|
|
sprintf(borderType, "BORDER_CONSTANT");
|
|
break;
|
|
case cv::BORDER_REFLECT101:
|
|
sprintf(borderType, "BORDER_REFLECT101");
|
|
break;
|
|
case cv::BORDER_REFLECT:
|
|
sprintf(borderType, "BORDER_REFLECT");
|
|
break;
|
|
case cv::BORDER_REPLICATE:
|
|
sprintf(borderType, "BORDER_REPLICATE");
|
|
break;
|
|
default:
|
|
std::cout << "BORDER type is not supported!" << std::endl;
|
|
}
|
|
char build_options[150];
|
|
sprintf(build_options, "-D anX=%d -D anY=%d -D ksX=%d -D ksY=%d -D %s",
|
|
block_size / 2, block_size / 2, block_size, block_size, borderType);
|
|
|
|
size_t blockSizeX = 256, blockSizeY = 1;
|
|
size_t gSize = blockSizeX - block_size / 2 * 2;
|
|
size_t globalSizeX = (Dx.cols) % gSize == 0 ? Dx.cols / gSize * blockSizeX : (Dx.cols / gSize + 1) * blockSizeX;
|
|
size_t rows_per_thread = 2;
|
|
size_t globalSizeY = ((Dx.rows + rows_per_thread - 1) / rows_per_thread) % blockSizeY == 0 ?
|
|
((Dx.rows + rows_per_thread - 1) / rows_per_thread) :
|
|
(((Dx.rows + rows_per_thread - 1) / rows_per_thread) / blockSizeY + 1) * blockSizeY;
|
|
|
|
size_t gt[3] = { globalSizeX, globalSizeY, 1 };
|
|
size_t lt[3] = { blockSizeX, blockSizeY, 1 };
|
|
std::vector<std::pair<size_t , const void *> > args;
|
|
args.push_back( std::make_pair( sizeof(cl_mem) , (void *)&Dx.data ));
|
|
args.push_back( std::make_pair( sizeof(cl_mem) , (void *)&Dy.data));
|
|
args.push_back( std::make_pair( sizeof(cl_mem) , (void *)&dst.data));
|
|
args.push_back( std::make_pair( sizeof(cl_int) , (void *)&Dx.offset ));
|
|
args.push_back( std::make_pair( sizeof(cl_int) , (void *)&Dx.wholerows ));
|
|
args.push_back( std::make_pair( sizeof(cl_int) , (void *)&Dx.wholecols ));
|
|
args.push_back( std::make_pair(sizeof(cl_int), (void *)&Dx.step));
|
|
args.push_back( std::make_pair( sizeof(cl_int) , (void *)&Dy.offset ));
|
|
args.push_back( std::make_pair( sizeof(cl_int) , (void *)&Dy.wholerows ));
|
|
args.push_back( std::make_pair( sizeof(cl_int) , (void *)&Dy.wholecols ));
|
|
args.push_back( std::make_pair(sizeof(cl_int), (void *)&Dy.step));
|
|
args.push_back( std::make_pair(sizeof(cl_int), (void *)&dst.offset));
|
|
args.push_back( std::make_pair(sizeof(cl_int), (void *)&dst.rows));
|
|
args.push_back( std::make_pair(sizeof(cl_int), (void *)&dst.cols));
|
|
args.push_back( std::make_pair(sizeof(cl_int), (void *)&dst.step));
|
|
args.push_back( std::make_pair( sizeof(cl_float) , (void *)&k));
|
|
openCLExecuteKernel(dst.clCxt, &src_str, kernelName, gt, lt, args, -1, -1, build_options);
|
|
}
|
|
|
|
void cornerHarris(const oclMat &src, oclMat &dst, int blockSize, int ksize,
|
|
double k, int borderType)
|
|
{
|
|
oclMat dx, dy;
|
|
cornerHarris_dxdy(src, dst, dx, dy, blockSize, ksize, k, borderType);
|
|
}
|
|
|
|
void cornerHarris_dxdy(const oclMat &src, oclMat &dst, oclMat &dx, oclMat &dy, int blockSize, int ksize,
|
|
double k, int borderType)
|
|
{
|
|
if(!src.clCxt->supportsFeature(Context::CL_DOUBLE) && src.depth() == CV_64F)
|
|
{
|
|
CV_Error(Error::GpuNotSupported, "select device don't support double");
|
|
}
|
|
CV_Assert(src.cols >= blockSize / 2 && src.rows >= blockSize / 2);
|
|
CV_Assert(borderType == cv::BORDER_CONSTANT || borderType == cv::BORDER_REFLECT101 || borderType == cv::BORDER_REPLICATE || borderType == cv::BORDER_REFLECT);
|
|
extractCovData(src, dx, dy, blockSize, ksize, borderType);
|
|
dst.create(src.size(), CV_32F);
|
|
corner_ocl(imgproc_calcHarris, "calcHarris", blockSize, static_cast<float>(k), dx, dy, dst, borderType);
|
|
}
|
|
|
|
void cornerMinEigenVal(const oclMat &src, oclMat &dst, int blockSize, int ksize, int borderType)
|
|
{
|
|
oclMat dx, dy;
|
|
cornerMinEigenVal_dxdy(src, dst, dx, dy, blockSize, ksize, borderType);
|
|
}
|
|
|
|
void cornerMinEigenVal_dxdy(const oclMat &src, oclMat &dst, oclMat &dx, oclMat &dy, int blockSize, int ksize, int borderType)
|
|
{
|
|
if(!src.clCxt->supportsFeature(Context::CL_DOUBLE) && src.depth() == CV_64F)
|
|
{
|
|
CV_Error(Error::GpuNotSupported, "select device don't support double");
|
|
}
|
|
CV_Assert(src.cols >= blockSize / 2 && src.rows >= blockSize / 2);
|
|
CV_Assert(borderType == cv::BORDER_CONSTANT || borderType == cv::BORDER_REFLECT101 || borderType == cv::BORDER_REPLICATE || borderType == cv::BORDER_REFLECT);
|
|
extractCovData(src, dx, dy, blockSize, ksize, borderType);
|
|
dst.create(src.size(), CV_32F);
|
|
corner_ocl(imgproc_calcMinEigenVal, "calcMinEigenVal", blockSize, 0, dx, dy, dst, borderType);
|
|
}
|
|
/////////////////////////////////// MeanShiftfiltering ///////////////////////////////////////////////
|
|
static void meanShiftFiltering_gpu(const oclMat &src, oclMat dst, int sp, int sr, int maxIter, float eps)
|
|
{
|
|
CV_Assert( (src.cols == dst.cols) && (src.rows == dst.rows) );
|
|
CV_Assert( !(dst.step & 0x3) );
|
|
Context *clCxt = src.clCxt;
|
|
|
|
//Arrange the NDRange
|
|
int col = src.cols, row = src.rows;
|
|
int ltx = 16, lty = 8;
|
|
if(src.cols % ltx != 0)
|
|
col = (col / ltx + 1) * ltx;
|
|
if(src.rows % lty != 0)
|
|
row = (row / lty + 1) * lty;
|
|
|
|
size_t globalThreads[3] = {col, row, 1};
|
|
size_t localThreads[3] = {ltx, lty, 1};
|
|
|
|
//set args
|
|
std::vector<std::pair<size_t , const void *> > args;
|
|
args.push_back( std::make_pair( sizeof(cl_mem) , (void *)&dst.data ));
|
|
args.push_back( std::make_pair( sizeof(cl_int) , (void *)&dst.step ));
|
|
args.push_back( std::make_pair( sizeof(cl_mem) , (void *)&src.data ));
|
|
args.push_back( std::make_pair( sizeof(cl_int) , (void *)&src.step ));
|
|
args.push_back( std::make_pair( sizeof(cl_int) , (void *)&dst.offset ));
|
|
args.push_back( std::make_pair( sizeof(cl_int) , (void *)&src.offset ));
|
|
args.push_back( std::make_pair( sizeof(cl_int) , (void *)&dst.cols ));
|
|
args.push_back( std::make_pair( sizeof(cl_int) , (void *)&dst.rows ));
|
|
args.push_back( std::make_pair( sizeof(cl_int) , (void *)&sp ));
|
|
args.push_back( std::make_pair( sizeof(cl_int) , (void *)&sr ));
|
|
args.push_back( std::make_pair( sizeof(cl_int) , (void *)&maxIter ));
|
|
args.push_back( std::make_pair( sizeof(cl_float) , (void *)&eps ));
|
|
openCLExecuteKernel(clCxt, &meanShift, "meanshift_kernel", globalThreads, localThreads, args, -1, -1);
|
|
}
|
|
|
|
void meanShiftFiltering(const oclMat &src, oclMat &dst, int sp, int sr, TermCriteria criteria)
|
|
{
|
|
if( src.empty() )
|
|
CV_Error(Error::StsBadArg, "The input image is empty" );
|
|
|
|
if( src.depth() != CV_8U || src.oclchannels() != 4 )
|
|
CV_Error(Error::StsUnsupportedFormat, "Only 8-bit, 4-channel images are supported" );
|
|
|
|
dst.create( src.size(), CV_8UC4 );
|
|
|
|
if( !(criteria.type & TermCriteria::MAX_ITER) )
|
|
criteria.maxCount = 5;
|
|
|
|
int maxIter = std::min(std::max(criteria.maxCount, 1), 100);
|
|
|
|
float eps;
|
|
if( !(criteria.type & TermCriteria::EPS) )
|
|
eps = 1.f;
|
|
eps = (float)std::max(criteria.epsilon, 0.0);
|
|
|
|
meanShiftFiltering_gpu(src, dst, sp, sr, maxIter, eps);
|
|
|
|
}
|
|
|
|
static void meanShiftProc_gpu(const oclMat &src, oclMat dstr, oclMat dstsp, int sp, int sr, int maxIter, float eps)
|
|
{
|
|
//sanity checks
|
|
CV_Assert( (src.cols == dstr.cols) && (src.rows == dstr.rows) &&
|
|
(src.rows == dstsp.rows) && (src.cols == dstsp.cols));
|
|
CV_Assert( !(dstsp.step & 0x3) );
|
|
Context *clCxt = src.clCxt;
|
|
|
|
//Arrange the NDRange
|
|
int col = src.cols, row = src.rows;
|
|
int ltx = 16, lty = 8;
|
|
if(src.cols % ltx != 0)
|
|
col = (col / ltx + 1) * ltx;
|
|
if(src.rows % lty != 0)
|
|
row = (row / lty + 1) * lty;
|
|
|
|
size_t globalThreads[3] = {col, row, 1};
|
|
size_t localThreads[3] = {ltx, lty, 1};
|
|
|
|
//set args
|
|
std::vector<std::pair<size_t , const void *> > args;
|
|
args.push_back( std::make_pair( sizeof(cl_mem) , (void *)&src.data ));
|
|
args.push_back( std::make_pair( sizeof(cl_mem) , (void *)&dstr.data ));
|
|
args.push_back( std::make_pair( sizeof(cl_mem) , (void *)&dstsp.data ));
|
|
args.push_back( std::make_pair( sizeof(cl_int) , (void *)&src.step ));
|
|
args.push_back( std::make_pair( sizeof(cl_int) , (void *)&dstr.step ));
|
|
args.push_back( std::make_pair( sizeof(cl_int) , (void *)&dstsp.step ));
|
|
args.push_back( std::make_pair( sizeof(cl_int) , (void *)&src.offset ));
|
|
args.push_back( std::make_pair( sizeof(cl_int) , (void *)&dstr.offset ));
|
|
args.push_back( std::make_pair( sizeof(cl_int) , (void *)&dstsp.offset ));
|
|
args.push_back( std::make_pair( sizeof(cl_int) , (void *)&dstr.cols ));
|
|
args.push_back( std::make_pair( sizeof(cl_int) , (void *)&dstr.rows ));
|
|
args.push_back( std::make_pair( sizeof(cl_int) , (void *)&sp ));
|
|
args.push_back( std::make_pair( sizeof(cl_int) , (void *)&sr ));
|
|
args.push_back( std::make_pair( sizeof(cl_int) , (void *)&maxIter ));
|
|
args.push_back( std::make_pair( sizeof(cl_float) , (void *)&eps ));
|
|
openCLExecuteKernel(clCxt, &meanShift, "meanshiftproc_kernel", globalThreads, localThreads, args, -1, -1);
|
|
}
|
|
|
|
void meanShiftProc(const oclMat &src, oclMat &dstr, oclMat &dstsp, int sp, int sr, TermCriteria criteria)
|
|
{
|
|
if( src.empty() )
|
|
CV_Error(Error::StsBadArg, "The input image is empty" );
|
|
|
|
if( src.depth() != CV_8U || src.oclchannels() != 4 )
|
|
CV_Error(Error::StsUnsupportedFormat, "Only 8-bit, 4-channel images are supported" );
|
|
|
|
dstr.create( src.size(), CV_8UC4 );
|
|
dstsp.create( src.size(), CV_16SC2 );
|
|
|
|
if( !(criteria.type & TermCriteria::MAX_ITER) )
|
|
criteria.maxCount = 5;
|
|
|
|
int maxIter = std::min(std::max(criteria.maxCount, 1), 100);
|
|
|
|
float eps;
|
|
if( !(criteria.type & TermCriteria::EPS) )
|
|
eps = 1.f;
|
|
eps = (float)std::max(criteria.epsilon, 0.0);
|
|
|
|
meanShiftProc_gpu(src, dstr, dstsp, sp, sr, maxIter, eps);
|
|
}
|
|
|
|
///////////////////////////////////////////////////////////////////////////////////////////////////
|
|
////////////////////////////////////////////////////hist///////////////////////////////////////////////
|
|
/////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
namespace histograms
|
|
{
|
|
const int PARTIAL_HISTOGRAM256_COUNT = 256;
|
|
const int HISTOGRAM256_BIN_COUNT = 256;
|
|
}
|
|
///////////////////////////////calcHist/////////////////////////////////////////////////////////////////
|
|
static void calc_sub_hist(const oclMat &mat_src, const oclMat &mat_sub_hist)
|
|
{
|
|
using namespace histograms;
|
|
|
|
Context *clCxt = mat_src.clCxt;
|
|
int depth = mat_src.depth();
|
|
|
|
String kernelName = "calc_sub_hist";
|
|
|
|
size_t localThreads[3] = { HISTOGRAM256_BIN_COUNT, 1, 1 };
|
|
size_t globalThreads[3] = { PARTIAL_HISTOGRAM256_COUNT *localThreads[0], 1, 1};
|
|
|
|
int dataWidth = 16;
|
|
int dataWidth_bits = 4;
|
|
int mask = dataWidth - 1;
|
|
|
|
int cols = mat_src.cols * mat_src.oclchannels();
|
|
int src_offset = mat_src.offset;
|
|
int hist_step = mat_sub_hist.step >> 2;
|
|
int left_col = 0, right_col = 0;
|
|
|
|
if(cols >= dataWidth * 2 - 1)
|
|
{
|
|
left_col = dataWidth - (src_offset & mask);
|
|
left_col &= mask;
|
|
src_offset += left_col;
|
|
cols -= left_col;
|
|
right_col = cols & mask;
|
|
cols -= right_col;
|
|
}
|
|
else
|
|
{
|
|
left_col = cols;
|
|
right_col = 0;
|
|
cols = 0;
|
|
globalThreads[0] = 0;
|
|
}
|
|
|
|
std::vector<std::pair<size_t , const void *> > args;
|
|
if(globalThreads[0] != 0)
|
|
{
|
|
int tempcols = cols >> dataWidth_bits;
|
|
int inc_x = globalThreads[0] % tempcols;
|
|
int inc_y = globalThreads[0] / tempcols;
|
|
src_offset >>= dataWidth_bits;
|
|
int src_step = mat_src.step >> dataWidth_bits;
|
|
int datacount = tempcols * mat_src.rows;
|
|
args.push_back( std::make_pair( sizeof(cl_mem), (void *)&mat_src.data));
|
|
args.push_back( std::make_pair( sizeof(cl_int), (void *)&src_step));
|
|
args.push_back( std::make_pair( sizeof(cl_int), (void *)&src_offset));
|
|
args.push_back( std::make_pair( sizeof(cl_mem), (void *)&mat_sub_hist.data));
|
|
args.push_back( std::make_pair( sizeof(cl_int), (void *)&datacount));
|
|
args.push_back( std::make_pair( sizeof(cl_int), (void *)&tempcols));
|
|
args.push_back( std::make_pair( sizeof(cl_int), (void *)&inc_x));
|
|
args.push_back( std::make_pair( sizeof(cl_int), (void *)&inc_y));
|
|
args.push_back( std::make_pair( sizeof(cl_int), (void *)&hist_step));
|
|
openCLExecuteKernel(clCxt, &imgproc_histogram, kernelName, globalThreads, localThreads, args, -1, depth);
|
|
}
|
|
if(left_col != 0 || right_col != 0)
|
|
{
|
|
kernelName = "calc_sub_hist_border";
|
|
src_offset = mat_src.offset;
|
|
localThreads[0] = 1;
|
|
localThreads[1] = 256;
|
|
globalThreads[0] = left_col + right_col;
|
|
globalThreads[1] = (mat_src.rows + localThreads[1] - 1) / localThreads[1] * localThreads[1];
|
|
|
|
args.clear();
|
|
args.push_back( std::make_pair( sizeof(cl_mem), (void *)&mat_src.data));
|
|
args.push_back( std::make_pair( sizeof(cl_int), (void *)&mat_src.step));
|
|
args.push_back( std::make_pair( sizeof(cl_int), (void *)&src_offset));
|
|
args.push_back( std::make_pair( sizeof(cl_mem), (void *)&mat_sub_hist.data));
|
|
args.push_back( std::make_pair( sizeof(cl_int), (void *)&left_col));
|
|
args.push_back( std::make_pair( sizeof(cl_int), (void *)&cols));
|
|
args.push_back( std::make_pair( sizeof(cl_int), (void *)&mat_src.rows));
|
|
args.push_back( std::make_pair( sizeof(cl_int), (void *)&hist_step));
|
|
openCLExecuteKernel(clCxt, &imgproc_histogram, kernelName, globalThreads, localThreads, args, -1, depth);
|
|
}
|
|
}
|
|
static void merge_sub_hist(const oclMat &sub_hist, oclMat &mat_hist)
|
|
{
|
|
using namespace histograms;
|
|
|
|
Context *clCxt = sub_hist.clCxt;
|
|
String kernelName = "merge_hist";
|
|
|
|
size_t localThreads[3] = { 256, 1, 1 };
|
|
size_t globalThreads[3] = { HISTOGRAM256_BIN_COUNT *localThreads[0], 1, 1};
|
|
int src_step = sub_hist.step >> 2;
|
|
std::vector<std::pair<size_t , const void *> > args;
|
|
args.push_back( std::make_pair( sizeof(cl_mem), (void *)&sub_hist.data));
|
|
args.push_back( std::make_pair( sizeof(cl_mem), (void *)&mat_hist.data));
|
|
args.push_back( std::make_pair( sizeof(cl_int), (void *)&src_step));
|
|
openCLExecuteKernel(clCxt, &imgproc_histogram, kernelName, globalThreads, localThreads, args, -1, -1);
|
|
}
|
|
void calcHist(const oclMat &mat_src, oclMat &mat_hist)
|
|
{
|
|
using namespace histograms;
|
|
CV_Assert(mat_src.type() == CV_8UC1);
|
|
mat_hist.create(1, 256, CV_32SC1);
|
|
|
|
oclMat buf(PARTIAL_HISTOGRAM256_COUNT, HISTOGRAM256_BIN_COUNT, CV_32SC1);
|
|
buf.setTo(0);
|
|
|
|
calc_sub_hist(mat_src, buf);
|
|
merge_sub_hist(buf, mat_hist);
|
|
}
|
|
///////////////////////////////////equalizeHist/////////////////////////////////////////////////////
|
|
void equalizeHist(const oclMat &mat_src, oclMat &mat_dst)
|
|
{
|
|
mat_dst.create(mat_src.rows, mat_src.cols, CV_8UC1);
|
|
|
|
oclMat mat_hist(1, 256, CV_32SC1);
|
|
|
|
calcHist(mat_src, mat_hist);
|
|
|
|
Context *clCxt = mat_src.clCxt;
|
|
String kernelName = "calLUT";
|
|
size_t localThreads[3] = { 256, 1, 1};
|
|
size_t globalThreads[3] = { 256, 1, 1};
|
|
oclMat lut(1, 256, CV_8UC1);
|
|
std::vector<std::pair<size_t , const void *> > args;
|
|
int total = mat_src.rows * mat_src.cols;
|
|
args.push_back( std::make_pair( sizeof(cl_mem), (void *)&lut.data));
|
|
args.push_back( std::make_pair( sizeof(cl_mem), (void *)&mat_hist.data));
|
|
args.push_back( std::make_pair( sizeof(int), (void *)&total));
|
|
openCLExecuteKernel(clCxt, &imgproc_histogram, kernelName, globalThreads, localThreads, args, -1, -1);
|
|
LUT(mat_src, lut, mat_dst);
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
// CLAHE
|
|
namespace clahe
|
|
{
|
|
inline int divUp(int total, int grain)
|
|
{
|
|
return (total + grain - 1) / grain * grain;
|
|
}
|
|
|
|
static void calcLut(const oclMat &src, oclMat &dst,
|
|
const int tilesX, const int tilesY, const cv::Size tileSize,
|
|
const int clipLimit, const float lutScale)
|
|
{
|
|
cl_int2 tile_size;
|
|
tile_size.s[0] = tileSize.width;
|
|
tile_size.s[1] = tileSize.height;
|
|
|
|
std::vector<std::pair<size_t , const void *> > args;
|
|
args.push_back( std::make_pair( sizeof(cl_mem), (void *)&src.data ));
|
|
args.push_back( std::make_pair( sizeof(cl_mem), (void *)&dst.data ));
|
|
args.push_back( std::make_pair( sizeof(cl_int), (void *)&src.step ));
|
|
args.push_back( std::make_pair( sizeof(cl_int), (void *)&dst.step ));
|
|
args.push_back( std::make_pair( sizeof(cl_int2), (void *)&tile_size ));
|
|
args.push_back( std::make_pair( sizeof(cl_int), (void *)&tilesX ));
|
|
args.push_back( std::make_pair( sizeof(cl_int), (void *)&clipLimit ));
|
|
args.push_back( std::make_pair( sizeof(cl_float), (void *)&lutScale ));
|
|
|
|
String kernelName = "calcLut";
|
|
size_t localThreads[3] = { 32, 8, 1 };
|
|
size_t globalThreads[3] = { tilesX * localThreads[0], tilesY * localThreads[1], 1 };
|
|
bool is_cpu = queryDeviceInfo<IS_CPU_DEVICE, bool>();
|
|
if (is_cpu)
|
|
{
|
|
openCLExecuteKernel(Context::getContext(), &imgproc_clahe, kernelName, globalThreads, localThreads, args, -1, -1, (char*)" -D CPU");
|
|
}
|
|
else
|
|
{
|
|
cl_kernel kernel = openCLGetKernelFromSource(Context::getContext(), &imgproc_clahe, kernelName);
|
|
int wave_size = queryDeviceInfo<WAVEFRONT_SIZE, int>(kernel);
|
|
openCLSafeCall(clReleaseKernel(kernel));
|
|
|
|
static char opt[20] = {0};
|
|
sprintf(opt, " -D WAVE_SIZE=%d", wave_size);
|
|
openCLExecuteKernel(Context::getContext(), &imgproc_clahe, kernelName, globalThreads, localThreads, args, -1, -1, opt);
|
|
}
|
|
}
|
|
|
|
static void transform(const oclMat &src, oclMat &dst, const oclMat &lut,
|
|
const int tilesX, const int tilesY, const cv::Size tileSize)
|
|
{
|
|
cl_int2 tile_size;
|
|
tile_size.s[0] = tileSize.width;
|
|
tile_size.s[1] = tileSize.height;
|
|
|
|
std::vector<std::pair<size_t , const void *> > args;
|
|
args.push_back( std::make_pair( sizeof(cl_mem), (void *)&src.data ));
|
|
args.push_back( std::make_pair( sizeof(cl_mem), (void *)&dst.data ));
|
|
args.push_back( std::make_pair( sizeof(cl_mem), (void *)&lut.data ));
|
|
args.push_back( std::make_pair( sizeof(cl_int), (void *)&src.step ));
|
|
args.push_back( std::make_pair( sizeof(cl_int), (void *)&dst.step ));
|
|
args.push_back( std::make_pair( sizeof(cl_int), (void *)&lut.step ));
|
|
args.push_back( std::make_pair( sizeof(cl_int), (void *)&src.cols ));
|
|
args.push_back( std::make_pair( sizeof(cl_int), (void *)&src.rows ));
|
|
args.push_back( std::make_pair( sizeof(cl_int2), (void *)&tile_size ));
|
|
args.push_back( std::make_pair( sizeof(cl_int), (void *)&tilesX ));
|
|
args.push_back( std::make_pair( sizeof(cl_int), (void *)&tilesY ));
|
|
|
|
String kernelName = "transform";
|
|
size_t localThreads[3] = { 32, 8, 1 };
|
|
size_t globalThreads[3] = { divUp(src.cols, localThreads[0]), divUp(src.rows, localThreads[1]), 1 };
|
|
|
|
openCLExecuteKernel(Context::getContext(), &imgproc_clahe, kernelName, globalThreads, localThreads, args, -1, -1);
|
|
}
|
|
}
|
|
|
|
namespace
|
|
{
|
|
class CLAHE_Impl : public cv::CLAHE
|
|
{
|
|
public:
|
|
CLAHE_Impl(double clipLimit = 40.0, int tilesX = 8, int tilesY = 8);
|
|
|
|
cv::AlgorithmInfo* info() const;
|
|
|
|
void apply(cv::InputArray src, cv::OutputArray dst);
|
|
|
|
void setClipLimit(double clipLimit);
|
|
double getClipLimit() const;
|
|
|
|
void setTilesGridSize(cv::Size tileGridSize);
|
|
cv::Size getTilesGridSize() const;
|
|
|
|
void collectGarbage();
|
|
|
|
private:
|
|
double clipLimit_;
|
|
int tilesX_;
|
|
int tilesY_;
|
|
|
|
oclMat srcExt_;
|
|
oclMat lut_;
|
|
};
|
|
CLAHE_Impl::CLAHE_Impl(double clipLimit, int tilesX, int tilesY) :
|
|
clipLimit_(clipLimit), tilesX_(tilesX), tilesY_(tilesY)
|
|
{
|
|
}
|
|
|
|
CV_INIT_ALGORITHM(CLAHE_Impl, "CLAHE_OCL",
|
|
obj.info()->addParam(obj, "clipLimit", obj.clipLimit_);
|
|
obj.info()->addParam(obj, "tilesX", obj.tilesX_);
|
|
obj.info()->addParam(obj, "tilesY", obj.tilesY_))
|
|
void CLAHE_Impl::apply(cv::InputArray src_raw, cv::OutputArray dst_raw)
|
|
{
|
|
oclMat& src = getOclMatRef(src_raw);
|
|
oclMat& dst = getOclMatRef(dst_raw);
|
|
CV_Assert( src.type() == CV_8UC1 );
|
|
|
|
dst.create( src.size(), src.type() );
|
|
|
|
const int histSize = 256;
|
|
|
|
ensureSizeIsEnough(tilesX_ * tilesY_, histSize, CV_8UC1, lut_);
|
|
|
|
cv::Size tileSize;
|
|
oclMat srcForLut;
|
|
|
|
if (src.cols % tilesX_ == 0 && src.rows % tilesY_ == 0)
|
|
{
|
|
tileSize = cv::Size(src.cols / tilesX_, src.rows / tilesY_);
|
|
srcForLut = src;
|
|
}
|
|
else
|
|
{
|
|
cv::ocl::copyMakeBorder(src, srcExt_, 0, tilesY_ - (src.rows % tilesY_), 0, tilesX_ - (src.cols % tilesX_), cv::BORDER_REFLECT_101, cv::Scalar());
|
|
|
|
tileSize = cv::Size(srcExt_.cols / tilesX_, srcExt_.rows / tilesY_);
|
|
srcForLut = srcExt_;
|
|
}
|
|
|
|
const int tileSizeTotal = tileSize.area();
|
|
const float lutScale = static_cast<float>(histSize - 1) / tileSizeTotal;
|
|
|
|
int clipLimit = 0;
|
|
if (clipLimit_ > 0.0)
|
|
{
|
|
clipLimit = static_cast<int>(clipLimit_ * tileSizeTotal / histSize);
|
|
clipLimit = std::max(clipLimit, 1);
|
|
}
|
|
|
|
clahe::calcLut(srcForLut, lut_, tilesX_, tilesY_, tileSize, clipLimit, lutScale);
|
|
//finish();
|
|
clahe::transform(src, dst, lut_, tilesX_, tilesY_, tileSize);
|
|
}
|
|
|
|
void CLAHE_Impl::setClipLimit(double clipLimit)
|
|
{
|
|
clipLimit_ = clipLimit;
|
|
}
|
|
|
|
double CLAHE_Impl::getClipLimit() const
|
|
{
|
|
return clipLimit_;
|
|
}
|
|
|
|
void CLAHE_Impl::setTilesGridSize(cv::Size tileGridSize)
|
|
{
|
|
tilesX_ = tileGridSize.width;
|
|
tilesY_ = tileGridSize.height;
|
|
}
|
|
|
|
cv::Size CLAHE_Impl::getTilesGridSize() const
|
|
{
|
|
return cv::Size(tilesX_, tilesY_);
|
|
}
|
|
|
|
void CLAHE_Impl::collectGarbage()
|
|
{
|
|
srcExt_.release();
|
|
lut_.release();
|
|
}
|
|
}
|
|
|
|
cv::Ptr<cv::CLAHE> createCLAHE(double clipLimit, cv::Size tileGridSize)
|
|
{
|
|
return makePtr<CLAHE_Impl>(clipLimit, tileGridSize.width, tileGridSize.height);
|
|
}
|
|
|
|
//////////////////////////////////bilateralFilter////////////////////////////////////////////////////
|
|
static void
|
|
oclbilateralFilter_8u( const oclMat &src, oclMat &dst, int d,
|
|
double sigma_color, double sigma_space,
|
|
int borderType )
|
|
{
|
|
int cn = src.channels();
|
|
int i, j, maxk, radius;
|
|
|
|
CV_Assert( (src.channels() == 1 || src.channels() == 3) &&
|
|
src.type() == dst.type() && src.size() == dst.size() &&
|
|
src.data != dst.data );
|
|
|
|
if( sigma_color <= 0 )
|
|
sigma_color = 1;
|
|
if( sigma_space <= 0 )
|
|
sigma_space = 1;
|
|
|
|
double gauss_color_coeff = -0.5 / (sigma_color * sigma_color);
|
|
double gauss_space_coeff = -0.5 / (sigma_space * sigma_space);
|
|
|
|
if( d <= 0 )
|
|
radius = cvRound(sigma_space * 1.5);
|
|
else
|
|
radius = d / 2;
|
|
radius = MAX(radius, 1);
|
|
d = radius * 2 + 1;
|
|
|
|
oclMat temp;
|
|
copyMakeBorder( src, temp, radius, radius, radius, radius, borderType );
|
|
|
|
std::vector<float> _color_weight(cn * 256);
|
|
std::vector<float> _space_weight(d * d);
|
|
std::vector<int> _space_ofs(d * d);
|
|
float *color_weight = &_color_weight[0];
|
|
float *space_weight = &_space_weight[0];
|
|
int *space_ofs = &_space_ofs[0];
|
|
int dst_step_in_pixel = dst.step / dst.elemSize();
|
|
int dst_offset_in_pixel = dst.offset / dst.elemSize();
|
|
int temp_step_in_pixel = temp.step / temp.elemSize();
|
|
// initialize color-related bilateral filter coefficients
|
|
for( i = 0; i < 256 * cn; i++ )
|
|
color_weight[i] = (float)std::exp(i * i * gauss_color_coeff);
|
|
|
|
// initialize space-related bilateral filter coefficients
|
|
for( i = -radius, maxk = 0; i <= radius; i++ )
|
|
for( j = -radius; j <= radius; j++ )
|
|
{
|
|
double r = std::sqrt((double)i * i + (double)j * j);
|
|
if( r > radius )
|
|
continue;
|
|
space_weight[maxk] = (float)std::exp(r * r * gauss_space_coeff);
|
|
space_ofs[maxk++] = (int)(i * temp_step_in_pixel + j);
|
|
}
|
|
oclMat oclcolor_weight(1, cn * 256, CV_32FC1, color_weight);
|
|
oclMat oclspace_weight(1, d * d, CV_32FC1, space_weight);
|
|
oclMat oclspace_ofs(1, d * d, CV_32SC1, space_ofs);
|
|
|
|
String kernelName = "bilateral";
|
|
size_t localThreads[3] = { 16, 16, 1 };
|
|
size_t globalThreads[3] = { (dst.cols + localThreads[0] - 1) / localThreads[0] *localThreads[0],
|
|
(dst.rows + localThreads[1] - 1) / localThreads[1] *localThreads[1],
|
|
1
|
|
};
|
|
if((dst.type() == CV_8UC1) && ((dst.offset & 3) == 0) && ((dst.cols & 3) == 0))
|
|
{
|
|
kernelName = "bilateral2";
|
|
globalThreads[0] = (dst.cols / 4 + localThreads[0] - 1) / localThreads[0] * localThreads[0];
|
|
}
|
|
std::vector<std::pair<size_t , const void *> > args;
|
|
args.push_back( std::make_pair( sizeof(cl_mem), (void *)&dst.data ));
|
|
args.push_back( std::make_pair( sizeof(cl_mem), (void *)&temp.data ));
|
|
args.push_back( std::make_pair( sizeof(cl_int), (void *)&dst.rows ));
|
|
args.push_back( std::make_pair( sizeof(cl_int), (void *)&dst.cols ));
|
|
args.push_back( std::make_pair( sizeof(cl_int), (void *)&maxk ));
|
|
args.push_back( std::make_pair( sizeof(cl_int), (void *)&radius ));
|
|
args.push_back( std::make_pair( sizeof(cl_int), (void *)&dst_step_in_pixel ));
|
|
args.push_back( std::make_pair( sizeof(cl_int), (void *)&dst_offset_in_pixel ));
|
|
args.push_back( std::make_pair( sizeof(cl_int), (void *)&temp_step_in_pixel ));
|
|
args.push_back( std::make_pair( sizeof(cl_int), (void *)&temp.rows ));
|
|
args.push_back( std::make_pair( sizeof(cl_int), (void *)&temp.cols ));
|
|
args.push_back( std::make_pair( sizeof(cl_mem), (void *)&oclcolor_weight.data ));
|
|
args.push_back( std::make_pair( sizeof(cl_mem), (void *)&oclspace_weight.data ));
|
|
args.push_back( std::make_pair( sizeof(cl_mem), (void *)&oclspace_ofs.data ));
|
|
openCLExecuteKernel(src.clCxt, &imgproc_bilateral, kernelName, globalThreads, localThreads, args, dst.oclchannels(), dst.depth());
|
|
}
|
|
void bilateralFilter(const oclMat &src, oclMat &dst, int radius, double sigmaclr, double sigmaspc, int borderType)
|
|
{
|
|
|
|
dst.create( src.size(), src.type() );
|
|
if( src.depth() == CV_8U )
|
|
oclbilateralFilter_8u( src, dst, radius, sigmaclr, sigmaspc, borderType );
|
|
else
|
|
CV_Error(Error::StsUnsupportedFormat, "Bilateral filtering is only implemented for 8uimages" );
|
|
}
|
|
|
|
}
|
|
}
|
|
//////////////////////////////////mulSpectrums////////////////////////////////////////////////////
|
|
void cv::ocl::mulSpectrums(const oclMat &a, const oclMat &b, oclMat &c, int /*flags*/, float scale, bool conjB)
|
|
{
|
|
CV_Assert(a.type() == CV_32FC2);
|
|
CV_Assert(b.type() == CV_32FC2);
|
|
|
|
c.create(a.size(), CV_32FC2);
|
|
|
|
size_t lt[3] = { 16, 16, 1 };
|
|
size_t gt[3] = { a.cols, a.rows, 1 };
|
|
|
|
String kernelName = conjB ? "mulAndScaleSpectrumsKernel_CONJ":"mulAndScaleSpectrumsKernel";
|
|
|
|
std::vector<std::pair<size_t , const void *> > args;
|
|
args.push_back( std::make_pair( sizeof(cl_mem), (void *)&a.data ));
|
|
args.push_back( std::make_pair( sizeof(cl_mem), (void *)&b.data ));
|
|
args.push_back( std::make_pair( sizeof(cl_float), (void *)&scale));
|
|
args.push_back( std::make_pair( sizeof(cl_mem), (void *)&c.data ));
|
|
args.push_back( std::make_pair( sizeof(cl_int), (void *)&a.cols ));
|
|
args.push_back( std::make_pair( sizeof(cl_int), (void *)&a.rows));
|
|
args.push_back( std::make_pair( sizeof(cl_int), (void *)&a.step ));
|
|
|
|
Context *clCxt = Context::getContext();
|
|
openCLExecuteKernel(clCxt, &imgproc_mulAndScaleSpectrums, kernelName, gt, lt, args, -1, -1);
|
|
}
|
|
//////////////////////////////////convolve////////////////////////////////////////////////////
|
|
inline int divUp(int total, int grain)
|
|
{
|
|
return (total + grain - 1) / grain;
|
|
}
|
|
|
|
// ported from CUDA module
|
|
void cv::ocl::ConvolveBuf::create(Size image_size, Size templ_size)
|
|
{
|
|
result_size = Size(image_size.width - templ_size.width + 1,
|
|
image_size.height - templ_size.height + 1);
|
|
|
|
block_size = user_block_size;
|
|
if (user_block_size.width == 0 || user_block_size.height == 0)
|
|
block_size = estimateBlockSize(result_size, templ_size);
|
|
|
|
dft_size.width = 1 << int(ceil(std::log(block_size.width + templ_size.width - 1.) / std::log(2.)));
|
|
dft_size.height = 1 << int(ceil(std::log(block_size.height + templ_size.height - 1.) / std::log(2.)));
|
|
|
|
// CUFFT has hard-coded kernels for power-of-2 sizes (up to 8192),
|
|
// see CUDA Toolkit 4.1 CUFFT Library Programming Guide
|
|
//if (dft_size.width > 8192)
|
|
dft_size.width = getOptimalDFTSize(block_size.width + templ_size.width - 1.);
|
|
//if (dft_size.height > 8192)
|
|
dft_size.height = getOptimalDFTSize(block_size.height + templ_size.height - 1.);
|
|
|
|
// To avoid wasting time doing small DFTs
|
|
dft_size.width = std::max(dft_size.width, 512);
|
|
dft_size.height = std::max(dft_size.height, 512);
|
|
|
|
image_block.create(dft_size, CV_32F);
|
|
templ_block.create(dft_size, CV_32F);
|
|
result_data.create(dft_size, CV_32F);
|
|
|
|
//spect_len = dft_size.height * (dft_size.width / 2 + 1);
|
|
image_spect.create(dft_size.height, dft_size.width / 2 + 1, CV_32FC2);
|
|
templ_spect.create(dft_size.height, dft_size.width / 2 + 1, CV_32FC2);
|
|
result_spect.create(dft_size.height, dft_size.width / 2 + 1, CV_32FC2);
|
|
|
|
// Use maximum result matrix block size for the estimated DFT block size
|
|
block_size.width = std::min(dft_size.width - templ_size.width + 1, result_size.width);
|
|
block_size.height = std::min(dft_size.height - templ_size.height + 1, result_size.height);
|
|
}
|
|
|
|
Size cv::ocl::ConvolveBuf::estimateBlockSize(Size result_size, Size /*templ_size*/)
|
|
{
|
|
int width = (result_size.width + 2) / 3;
|
|
int height = (result_size.height + 2) / 3;
|
|
width = std::min(width, result_size.width);
|
|
height = std::min(height, result_size.height);
|
|
return Size(width, height);
|
|
}
|
|
|
|
static void convolve_run_fft(const oclMat &image, const oclMat &templ, oclMat &result, bool ccorr, ConvolveBuf& buf)
|
|
{
|
|
#if defined HAVE_CLAMDFFT
|
|
CV_Assert(image.type() == CV_32F);
|
|
CV_Assert(templ.type() == CV_32F);
|
|
|
|
buf.create(image.size(), templ.size());
|
|
result.create(buf.result_size, CV_32F);
|
|
|
|
Size& block_size = buf.block_size;
|
|
Size& dft_size = buf.dft_size;
|
|
|
|
oclMat& image_block = buf.image_block;
|
|
oclMat& templ_block = buf.templ_block;
|
|
oclMat& result_data = buf.result_data;
|
|
|
|
oclMat& image_spect = buf.image_spect;
|
|
oclMat& templ_spect = buf.templ_spect;
|
|
oclMat& result_spect = buf.result_spect;
|
|
|
|
oclMat templ_roi = templ;
|
|
copyMakeBorder(templ_roi, templ_block, 0, templ_block.rows - templ_roi.rows, 0,
|
|
templ_block.cols - templ_roi.cols, 0, Scalar());
|
|
|
|
cv::ocl::dft(templ_block, templ_spect, dft_size);
|
|
|
|
// Process all blocks of the result matrix
|
|
for (int y = 0; y < result.rows; y += block_size.height)
|
|
{
|
|
for (int x = 0; x < result.cols; x += block_size.width)
|
|
{
|
|
Size image_roi_size(std::min(x + dft_size.width, image.cols) - x,
|
|
std::min(y + dft_size.height, image.rows) - y);
|
|
Rect roi0(x, y, image_roi_size.width, image_roi_size.height);
|
|
|
|
oclMat image_roi(image, roi0);
|
|
|
|
copyMakeBorder(image_roi, image_block, 0, image_block.rows - image_roi.rows,
|
|
0, image_block.cols - image_roi.cols, 0, Scalar());
|
|
|
|
cv::ocl::dft(image_block, image_spect, dft_size);
|
|
|
|
mulSpectrums(image_spect, templ_spect, result_spect, 0,
|
|
1.f / dft_size.area(), ccorr);
|
|
|
|
cv::ocl::dft(result_spect, result_data, dft_size, cv::DFT_INVERSE | cv::DFT_REAL_OUTPUT);
|
|
|
|
Size result_roi_size(std::min(x + block_size.width, result.cols) - x,
|
|
std::min(y + block_size.height, result.rows) - y);
|
|
|
|
Rect roi1(x, y, result_roi_size.width, result_roi_size.height);
|
|
Rect roi2(0, 0, result_roi_size.width, result_roi_size.height);
|
|
|
|
oclMat result_roi(result, roi1);
|
|
oclMat result_block(result_data, roi2);
|
|
|
|
result_block.copyTo(result_roi);
|
|
}
|
|
}
|
|
|
|
#else
|
|
CV_Error(Error::StsNotImplemented, "OpenCL DFT is not implemented");
|
|
#define UNUSED(x) (void)(x);
|
|
UNUSED(image) UNUSED(templ) UNUSED(result) UNUSED(ccorr) UNUSED(buf)
|
|
#undef UNUSED
|
|
#endif
|
|
}
|
|
static void convolve_run(const oclMat &src, const oclMat &temp1, oclMat &dst, String kernelName, const char **kernelString)
|
|
{
|
|
CV_Assert(src.depth() == CV_32FC1);
|
|
CV_Assert(temp1.depth() == CV_32F);
|
|
CV_Assert(temp1.cols <= 17 && temp1.rows <= 17);
|
|
|
|
dst.create(src.size(), src.type());
|
|
|
|
CV_Assert(src.cols == dst.cols && src.rows == dst.rows);
|
|
CV_Assert(src.type() == dst.type());
|
|
|
|
Context *clCxt = src.clCxt;
|
|
int channels = dst.oclchannels();
|
|
int depth = dst.depth();
|
|
|
|
size_t vector_length = 1;
|
|
int offset_cols = ((dst.offset % dst.step) / dst.elemSize1()) & (vector_length - 1);
|
|
int cols = divUp(dst.cols * channels + offset_cols, vector_length);
|
|
int rows = dst.rows;
|
|
|
|
size_t localThreads[3] = { 16, 16, 1 };
|
|
size_t globalThreads[3] = { divUp(cols, localThreads[0]) *localThreads[0],
|
|
divUp(rows, localThreads[1]) *localThreads[1],
|
|
1
|
|
};
|
|
|
|
std::vector<std::pair<size_t , const void *> > args;
|
|
args.push_back( std::make_pair( sizeof(cl_mem), (void *)&src.data ));
|
|
args.push_back( std::make_pair( sizeof(cl_mem), (void *)&temp1.data ));
|
|
args.push_back( std::make_pair( sizeof(cl_mem), (void *)&dst.data ));
|
|
args.push_back( std::make_pair( sizeof(cl_int), (void *)&src.rows ));
|
|
args.push_back( std::make_pair( sizeof(cl_int), (void *)&cols ));
|
|
args.push_back( std::make_pair( sizeof(cl_int), (void *)&src.step ));
|
|
args.push_back( std::make_pair( sizeof(cl_int), (void *)&dst.step ));
|
|
args.push_back( std::make_pair( sizeof(cl_int), (void *)&temp1.step ));
|
|
args.push_back( std::make_pair( sizeof(cl_int), (void *)&temp1.rows ));
|
|
args.push_back( std::make_pair( sizeof(cl_int), (void *)&temp1.cols ));
|
|
|
|
openCLExecuteKernel(clCxt, kernelString, kernelName, globalThreads, localThreads, args, -1, depth);
|
|
}
|
|
void cv::ocl::convolve(const oclMat &x, const oclMat &t, oclMat &y, bool ccorr)
|
|
{
|
|
CV_Assert(x.depth() == CV_32F);
|
|
CV_Assert(t.depth() == CV_32F);
|
|
y.create(x.size(), x.type());
|
|
String kernelName = "convolve";
|
|
if(t.cols > 17 || t.rows > 17)
|
|
{
|
|
ConvolveBuf buf;
|
|
convolve_run_fft(x, t, y, ccorr, buf);
|
|
}
|
|
else
|
|
{
|
|
CV_Assert(ccorr == false);
|
|
convolve_run(x, t, y, kernelName, &imgproc_convolve);
|
|
}
|
|
}
|
|
void cv::ocl::convolve(const oclMat &image, const oclMat &templ, oclMat &result, bool ccorr, ConvolveBuf& buf)
|
|
{
|
|
result.create(image.size(), image.type());
|
|
convolve_run_fft(image, templ, result, ccorr, buf);
|
|
}
|