324 lines
9.9 KiB
C

/* slasd8.f -- translated by f2c (version 20061008).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#include "clapack.h"
/* Table of constant values */
static integer c__1 = 1;
static integer c__0 = 0;
static real c_b8 = 1.f;
/* Subroutine */ int slasd8_(integer *icompq, integer *k, real *d__, real *
z__, real *vf, real *vl, real *difl, real *difr, integer *lddifr,
real *dsigma, real *work, integer *info)
{
/* System generated locals */
integer difr_dim1, difr_offset, i__1, i__2;
real r__1, r__2;
/* Builtin functions */
double sqrt(doublereal), r_sign(real *, real *);
/* Local variables */
integer i__, j;
real dj, rho;
integer iwk1, iwk2, iwk3;
real temp;
extern doublereal sdot_(integer *, real *, integer *, real *, integer *);
integer iwk2i, iwk3i;
extern doublereal snrm2_(integer *, real *, integer *);
real diflj, difrj, dsigj;
extern /* Subroutine */ int scopy_(integer *, real *, integer *, real *,
integer *);
extern doublereal slamc3_(real *, real *);
extern /* Subroutine */ int slasd4_(integer *, integer *, real *, real *,
real *, real *, real *, real *, integer *), xerbla_(char *,
integer *);
real dsigjp;
extern /* Subroutine */ int slascl_(char *, integer *, integer *, real *,
real *, integer *, integer *, real *, integer *, integer *), slaset_(char *, integer *, integer *, real *, real *,
real *, integer *);
/* -- LAPACK auxiliary routine (version 3.2) -- */
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/* October 2006 */
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* Purpose */
/* ======= */
/* SLASD8 finds the square roots of the roots of the secular equation, */
/* as defined by the values in DSIGMA and Z. It makes the appropriate */
/* calls to SLASD4, and stores, for each element in D, the distance */
/* to its two nearest poles (elements in DSIGMA). It also updates */
/* the arrays VF and VL, the first and last components of all the */
/* right singular vectors of the original bidiagonal matrix. */
/* SLASD8 is called from SLASD6. */
/* Arguments */
/* ========= */
/* ICOMPQ (input) INTEGER */
/* Specifies whether singular vectors are to be computed in */
/* factored form in the calling routine: */
/* = 0: Compute singular values only. */
/* = 1: Compute singular vectors in factored form as well. */
/* K (input) INTEGER */
/* The number of terms in the rational function to be solved */
/* by SLASD4. K >= 1. */
/* D (output) REAL array, dimension ( K ) */
/* On output, D contains the updated singular values. */
/* Z (input/output) REAL array, dimension ( K ) */
/* On entry, the first K elements of this array contain the */
/* components of the deflation-adjusted updating row vector. */
/* On exit, Z is updated. */
/* VF (input/output) REAL array, dimension ( K ) */
/* On entry, VF contains information passed through DBEDE8. */
/* On exit, VF contains the first K components of the first */
/* components of all right singular vectors of the bidiagonal */
/* matrix. */
/* VL (input/output) REAL array, dimension ( K ) */
/* On entry, VL contains information passed through DBEDE8. */
/* On exit, VL contains the first K components of the last */
/* components of all right singular vectors of the bidiagonal */
/* matrix. */
/* DIFL (output) REAL array, dimension ( K ) */
/* On exit, DIFL(I) = D(I) - DSIGMA(I). */
/* DIFR (output) REAL array, */
/* dimension ( LDDIFR, 2 ) if ICOMPQ = 1 and */
/* dimension ( K ) if ICOMPQ = 0. */
/* On exit, DIFR(I,1) = D(I) - DSIGMA(I+1), DIFR(K,1) is not */
/* defined and will not be referenced. */
/* If ICOMPQ = 1, DIFR(1:K,2) is an array containing the */
/* normalizing factors for the right singular vector matrix. */
/* LDDIFR (input) INTEGER */
/* The leading dimension of DIFR, must be at least K. */
/* DSIGMA (input/output) REAL array, dimension ( K ) */
/* On entry, the first K elements of this array contain the old */
/* roots of the deflated updating problem. These are the poles */
/* of the secular equation. */
/* On exit, the elements of DSIGMA may be very slightly altered */
/* in value. */
/* WORK (workspace) REAL array, dimension at least 3 * K */
/* INFO (output) INTEGER */
/* = 0: successful exit. */
/* < 0: if INFO = -i, the i-th argument had an illegal value. */
/* > 0: if INFO = 1, an singular value did not converge */
/* Further Details */
/* =============== */
/* Based on contributions by */
/* Ming Gu and Huan Ren, Computer Science Division, University of */
/* California at Berkeley, USA */
/* ===================================================================== */
/* .. Parameters .. */
/* .. */
/* .. Local Scalars .. */
/* .. */
/* .. External Subroutines .. */
/* .. */
/* .. External Functions .. */
/* .. */
/* .. Intrinsic Functions .. */
/* .. */
/* .. Executable Statements .. */
/* Test the input parameters. */
/* Parameter adjustments */
--d__;
--z__;
--vf;
--vl;
--difl;
difr_dim1 = *lddifr;
difr_offset = 1 + difr_dim1;
difr -= difr_offset;
--dsigma;
--work;
/* Function Body */
*info = 0;
if (*icompq < 0 || *icompq > 1) {
*info = -1;
} else if (*k < 1) {
*info = -2;
} else if (*lddifr < *k) {
*info = -9;
}
if (*info != 0) {
i__1 = -(*info);
xerbla_("SLASD8", &i__1);
return 0;
}
/* Quick return if possible */
if (*k == 1) {
d__[1] = dabs(z__[1]);
difl[1] = d__[1];
if (*icompq == 1) {
difl[2] = 1.f;
difr[(difr_dim1 << 1) + 1] = 1.f;
}
return 0;
}
/* Modify values DSIGMA(i) to make sure all DSIGMA(i)-DSIGMA(j) can */
/* be computed with high relative accuracy (barring over/underflow). */
/* This is a problem on machines without a guard digit in */
/* add/subtract (Cray XMP, Cray YMP, Cray C 90 and Cray 2). */
/* The following code replaces DSIGMA(I) by 2*DSIGMA(I)-DSIGMA(I), */
/* which on any of these machines zeros out the bottommost */
/* bit of DSIGMA(I) if it is 1; this makes the subsequent */
/* subtractions DSIGMA(I)-DSIGMA(J) unproblematic when cancellation */
/* occurs. On binary machines with a guard digit (almost all */
/* machines) it does not change DSIGMA(I) at all. On hexadecimal */
/* and decimal machines with a guard digit, it slightly */
/* changes the bottommost bits of DSIGMA(I). It does not account */
/* for hexadecimal or decimal machines without guard digits */
/* (we know of none). We use a subroutine call to compute */
/* 2*DLAMBDA(I) to prevent optimizing compilers from eliminating */
/* this code. */
i__1 = *k;
for (i__ = 1; i__ <= i__1; ++i__) {
dsigma[i__] = slamc3_(&dsigma[i__], &dsigma[i__]) - dsigma[i__];
/* L10: */
}
/* Book keeping. */
iwk1 = 1;
iwk2 = iwk1 + *k;
iwk3 = iwk2 + *k;
iwk2i = iwk2 - 1;
iwk3i = iwk3 - 1;
/* Normalize Z. */
rho = snrm2_(k, &z__[1], &c__1);
slascl_("G", &c__0, &c__0, &rho, &c_b8, k, &c__1, &z__[1], k, info);
rho *= rho;
/* Initialize WORK(IWK3). */
slaset_("A", k, &c__1, &c_b8, &c_b8, &work[iwk3], k);
/* Compute the updated singular values, the arrays DIFL, DIFR, */
/* and the updated Z. */
i__1 = *k;
for (j = 1; j <= i__1; ++j) {
slasd4_(k, &j, &dsigma[1], &z__[1], &work[iwk1], &rho, &d__[j], &work[
iwk2], info);
/* If the root finder fails, the computation is terminated. */
if (*info != 0) {
return 0;
}
work[iwk3i + j] = work[iwk3i + j] * work[j] * work[iwk2i + j];
difl[j] = -work[j];
difr[j + difr_dim1] = -work[j + 1];
i__2 = j - 1;
for (i__ = 1; i__ <= i__2; ++i__) {
work[iwk3i + i__] = work[iwk3i + i__] * work[i__] * work[iwk2i +
i__] / (dsigma[i__] - dsigma[j]) / (dsigma[i__] + dsigma[
j]);
/* L20: */
}
i__2 = *k;
for (i__ = j + 1; i__ <= i__2; ++i__) {
work[iwk3i + i__] = work[iwk3i + i__] * work[i__] * work[iwk2i +
i__] / (dsigma[i__] - dsigma[j]) / (dsigma[i__] + dsigma[
j]);
/* L30: */
}
/* L40: */
}
/* Compute updated Z. */
i__1 = *k;
for (i__ = 1; i__ <= i__1; ++i__) {
r__2 = sqrt((r__1 = work[iwk3i + i__], dabs(r__1)));
z__[i__] = r_sign(&r__2, &z__[i__]);
/* L50: */
}
/* Update VF and VL. */
i__1 = *k;
for (j = 1; j <= i__1; ++j) {
diflj = difl[j];
dj = d__[j];
dsigj = -dsigma[j];
if (j < *k) {
difrj = -difr[j + difr_dim1];
dsigjp = -dsigma[j + 1];
}
work[j] = -z__[j] / diflj / (dsigma[j] + dj);
i__2 = j - 1;
for (i__ = 1; i__ <= i__2; ++i__) {
work[i__] = z__[i__] / (slamc3_(&dsigma[i__], &dsigj) - diflj) / (
dsigma[i__] + dj);
/* L60: */
}
i__2 = *k;
for (i__ = j + 1; i__ <= i__2; ++i__) {
work[i__] = z__[i__] / (slamc3_(&dsigma[i__], &dsigjp) + difrj) /
(dsigma[i__] + dj);
/* L70: */
}
temp = snrm2_(k, &work[1], &c__1);
work[iwk2i + j] = sdot_(k, &work[1], &c__1, &vf[1], &c__1) / temp;
work[iwk3i + j] = sdot_(k, &work[1], &c__1, &vl[1], &c__1) / temp;
if (*icompq == 1) {
difr[j + (difr_dim1 << 1)] = temp;
}
/* L80: */
}
scopy_(k, &work[iwk2], &c__1, &vf[1], &c__1);
scopy_(k, &work[iwk3], &c__1, &vl[1], &c__1);
return 0;
/* End of SLASD8 */
} /* slasd8_ */