356 lines
8.4 KiB
C
356 lines
8.4 KiB
C
/* slascl.f -- translated by f2c (version 20061008).
|
|
You must link the resulting object file with libf2c:
|
|
on Microsoft Windows system, link with libf2c.lib;
|
|
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
|
|
or, if you install libf2c.a in a standard place, with -lf2c -lm
|
|
-- in that order, at the end of the command line, as in
|
|
cc *.o -lf2c -lm
|
|
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
|
|
|
|
http://www.netlib.org/f2c/libf2c.zip
|
|
*/
|
|
|
|
#include "clapack.h"
|
|
|
|
|
|
/* Subroutine */ int slascl_(char *type__, integer *kl, integer *ku, real *
|
|
cfrom, real *cto, integer *m, integer *n, real *a, integer *lda,
|
|
integer *info)
|
|
{
|
|
/* System generated locals */
|
|
integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5;
|
|
|
|
/* Local variables */
|
|
integer i__, j, k1, k2, k3, k4;
|
|
real mul, cto1;
|
|
logical done;
|
|
real ctoc;
|
|
extern logical lsame_(char *, char *);
|
|
integer itype;
|
|
real cfrom1;
|
|
extern doublereal slamch_(char *);
|
|
real cfromc;
|
|
extern /* Subroutine */ int xerbla_(char *, integer *);
|
|
real bignum;
|
|
extern logical sisnan_(real *);
|
|
real smlnum;
|
|
|
|
|
|
/* -- LAPACK auxiliary routine (version 3.2) -- */
|
|
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
|
|
/* November 2006 */
|
|
|
|
/* .. Scalar Arguments .. */
|
|
/* .. */
|
|
/* .. Array Arguments .. */
|
|
/* .. */
|
|
|
|
/* Purpose */
|
|
/* ======= */
|
|
|
|
/* SLASCL multiplies the M by N real matrix A by the real scalar */
|
|
/* CTO/CFROM. This is done without over/underflow as long as the final */
|
|
/* result CTO*A(I,J)/CFROM does not over/underflow. TYPE specifies that */
|
|
/* A may be full, upper triangular, lower triangular, upper Hessenberg, */
|
|
/* or banded. */
|
|
|
|
/* Arguments */
|
|
/* ========= */
|
|
|
|
/* TYPE (input) CHARACTER*1 */
|
|
/* TYPE indices the storage type of the input matrix. */
|
|
/* = 'G': A is a full matrix. */
|
|
/* = 'L': A is a lower triangular matrix. */
|
|
/* = 'U': A is an upper triangular matrix. */
|
|
/* = 'H': A is an upper Hessenberg matrix. */
|
|
/* = 'B': A is a symmetric band matrix with lower bandwidth KL */
|
|
/* and upper bandwidth KU and with the only the lower */
|
|
/* half stored. */
|
|
/* = 'Q': A is a symmetric band matrix with lower bandwidth KL */
|
|
/* and upper bandwidth KU and with the only the upper */
|
|
/* half stored. */
|
|
/* = 'Z': A is a band matrix with lower bandwidth KL and upper */
|
|
/* bandwidth KU. */
|
|
|
|
/* KL (input) INTEGER */
|
|
/* The lower bandwidth of A. Referenced only if TYPE = 'B', */
|
|
/* 'Q' or 'Z'. */
|
|
|
|
/* KU (input) INTEGER */
|
|
/* The upper bandwidth of A. Referenced only if TYPE = 'B', */
|
|
/* 'Q' or 'Z'. */
|
|
|
|
/* CFROM (input) REAL */
|
|
/* CTO (input) REAL */
|
|
/* The matrix A is multiplied by CTO/CFROM. A(I,J) is computed */
|
|
/* without over/underflow if the final result CTO*A(I,J)/CFROM */
|
|
/* can be represented without over/underflow. CFROM must be */
|
|
/* nonzero. */
|
|
|
|
/* M (input) INTEGER */
|
|
/* The number of rows of the matrix A. M >= 0. */
|
|
|
|
/* N (input) INTEGER */
|
|
/* The number of columns of the matrix A. N >= 0. */
|
|
|
|
/* A (input/output) REAL array, dimension (LDA,N) */
|
|
/* The matrix to be multiplied by CTO/CFROM. See TYPE for the */
|
|
/* storage type. */
|
|
|
|
/* LDA (input) INTEGER */
|
|
/* The leading dimension of the array A. LDA >= max(1,M). */
|
|
|
|
/* INFO (output) INTEGER */
|
|
/* 0 - successful exit */
|
|
/* <0 - if INFO = -i, the i-th argument had an illegal value. */
|
|
|
|
/* ===================================================================== */
|
|
|
|
/* .. Parameters .. */
|
|
/* .. */
|
|
/* .. Local Scalars .. */
|
|
/* .. */
|
|
/* .. External Functions .. */
|
|
/* .. */
|
|
/* .. Intrinsic Functions .. */
|
|
/* .. */
|
|
/* .. External Subroutines .. */
|
|
/* .. */
|
|
/* .. Executable Statements .. */
|
|
|
|
/* Test the input arguments */
|
|
|
|
/* Parameter adjustments */
|
|
a_dim1 = *lda;
|
|
a_offset = 1 + a_dim1;
|
|
a -= a_offset;
|
|
|
|
/* Function Body */
|
|
*info = 0;
|
|
|
|
if (lsame_(type__, "G")) {
|
|
itype = 0;
|
|
} else if (lsame_(type__, "L")) {
|
|
itype = 1;
|
|
} else if (lsame_(type__, "U")) {
|
|
itype = 2;
|
|
} else if (lsame_(type__, "H")) {
|
|
itype = 3;
|
|
} else if (lsame_(type__, "B")) {
|
|
itype = 4;
|
|
} else if (lsame_(type__, "Q")) {
|
|
itype = 5;
|
|
} else if (lsame_(type__, "Z")) {
|
|
itype = 6;
|
|
} else {
|
|
itype = -1;
|
|
}
|
|
|
|
if (itype == -1) {
|
|
*info = -1;
|
|
} else if (*cfrom == 0.f || sisnan_(cfrom)) {
|
|
*info = -4;
|
|
} else if (sisnan_(cto)) {
|
|
*info = -5;
|
|
} else if (*m < 0) {
|
|
*info = -6;
|
|
} else if (*n < 0 || itype == 4 && *n != *m || itype == 5 && *n != *m) {
|
|
*info = -7;
|
|
} else if (itype <= 3 && *lda < max(1,*m)) {
|
|
*info = -9;
|
|
} else if (itype >= 4) {
|
|
/* Computing MAX */
|
|
i__1 = *m - 1;
|
|
if (*kl < 0 || *kl > max(i__1,0)) {
|
|
*info = -2;
|
|
} else /* if(complicated condition) */ {
|
|
/* Computing MAX */
|
|
i__1 = *n - 1;
|
|
if (*ku < 0 || *ku > max(i__1,0) || (itype == 4 || itype == 5) &&
|
|
*kl != *ku) {
|
|
*info = -3;
|
|
} else if (itype == 4 && *lda < *kl + 1 || itype == 5 && *lda < *
|
|
ku + 1 || itype == 6 && *lda < (*kl << 1) + *ku + 1) {
|
|
*info = -9;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (*info != 0) {
|
|
i__1 = -(*info);
|
|
xerbla_("SLASCL", &i__1);
|
|
return 0;
|
|
}
|
|
|
|
/* Quick return if possible */
|
|
|
|
if (*n == 0 || *m == 0) {
|
|
return 0;
|
|
}
|
|
|
|
/* Get machine parameters */
|
|
|
|
smlnum = slamch_("S");
|
|
bignum = 1.f / smlnum;
|
|
|
|
cfromc = *cfrom;
|
|
ctoc = *cto;
|
|
|
|
L10:
|
|
cfrom1 = cfromc * smlnum;
|
|
if (cfrom1 == cfromc) {
|
|
/* CFROMC is an inf. Multiply by a correctly signed zero for */
|
|
/* finite CTOC, or a NaN if CTOC is infinite. */
|
|
mul = ctoc / cfromc;
|
|
done = TRUE_;
|
|
cto1 = ctoc;
|
|
} else {
|
|
cto1 = ctoc / bignum;
|
|
if (cto1 == ctoc) {
|
|
/* CTOC is either 0 or an inf. In both cases, CTOC itself */
|
|
/* serves as the correct multiplication factor. */
|
|
mul = ctoc;
|
|
done = TRUE_;
|
|
cfromc = 1.f;
|
|
} else if (dabs(cfrom1) > dabs(ctoc) && ctoc != 0.f) {
|
|
mul = smlnum;
|
|
done = FALSE_;
|
|
cfromc = cfrom1;
|
|
} else if (dabs(cto1) > dabs(cfromc)) {
|
|
mul = bignum;
|
|
done = FALSE_;
|
|
ctoc = cto1;
|
|
} else {
|
|
mul = ctoc / cfromc;
|
|
done = TRUE_;
|
|
}
|
|
}
|
|
|
|
if (itype == 0) {
|
|
|
|
/* Full matrix */
|
|
|
|
i__1 = *n;
|
|
for (j = 1; j <= i__1; ++j) {
|
|
i__2 = *m;
|
|
for (i__ = 1; i__ <= i__2; ++i__) {
|
|
a[i__ + j * a_dim1] *= mul;
|
|
/* L20: */
|
|
}
|
|
/* L30: */
|
|
}
|
|
|
|
} else if (itype == 1) {
|
|
|
|
/* Lower triangular matrix */
|
|
|
|
i__1 = *n;
|
|
for (j = 1; j <= i__1; ++j) {
|
|
i__2 = *m;
|
|
for (i__ = j; i__ <= i__2; ++i__) {
|
|
a[i__ + j * a_dim1] *= mul;
|
|
/* L40: */
|
|
}
|
|
/* L50: */
|
|
}
|
|
|
|
} else if (itype == 2) {
|
|
|
|
/* Upper triangular matrix */
|
|
|
|
i__1 = *n;
|
|
for (j = 1; j <= i__1; ++j) {
|
|
i__2 = min(j,*m);
|
|
for (i__ = 1; i__ <= i__2; ++i__) {
|
|
a[i__ + j * a_dim1] *= mul;
|
|
/* L60: */
|
|
}
|
|
/* L70: */
|
|
}
|
|
|
|
} else if (itype == 3) {
|
|
|
|
/* Upper Hessenberg matrix */
|
|
|
|
i__1 = *n;
|
|
for (j = 1; j <= i__1; ++j) {
|
|
/* Computing MIN */
|
|
i__3 = j + 1;
|
|
i__2 = min(i__3,*m);
|
|
for (i__ = 1; i__ <= i__2; ++i__) {
|
|
a[i__ + j * a_dim1] *= mul;
|
|
/* L80: */
|
|
}
|
|
/* L90: */
|
|
}
|
|
|
|
} else if (itype == 4) {
|
|
|
|
/* Lower half of a symmetric band matrix */
|
|
|
|
k3 = *kl + 1;
|
|
k4 = *n + 1;
|
|
i__1 = *n;
|
|
for (j = 1; j <= i__1; ++j) {
|
|
/* Computing MIN */
|
|
i__3 = k3, i__4 = k4 - j;
|
|
i__2 = min(i__3,i__4);
|
|
for (i__ = 1; i__ <= i__2; ++i__) {
|
|
a[i__ + j * a_dim1] *= mul;
|
|
/* L100: */
|
|
}
|
|
/* L110: */
|
|
}
|
|
|
|
} else if (itype == 5) {
|
|
|
|
/* Upper half of a symmetric band matrix */
|
|
|
|
k1 = *ku + 2;
|
|
k3 = *ku + 1;
|
|
i__1 = *n;
|
|
for (j = 1; j <= i__1; ++j) {
|
|
/* Computing MAX */
|
|
i__2 = k1 - j;
|
|
i__3 = k3;
|
|
for (i__ = max(i__2,1); i__ <= i__3; ++i__) {
|
|
a[i__ + j * a_dim1] *= mul;
|
|
/* L120: */
|
|
}
|
|
/* L130: */
|
|
}
|
|
|
|
} else if (itype == 6) {
|
|
|
|
/* Band matrix */
|
|
|
|
k1 = *kl + *ku + 2;
|
|
k2 = *kl + 1;
|
|
k3 = (*kl << 1) + *ku + 1;
|
|
k4 = *kl + *ku + 1 + *m;
|
|
i__1 = *n;
|
|
for (j = 1; j <= i__1; ++j) {
|
|
/* Computing MAX */
|
|
i__3 = k1 - j;
|
|
/* Computing MIN */
|
|
i__4 = k3, i__5 = k4 - j;
|
|
i__2 = min(i__4,i__5);
|
|
for (i__ = max(i__3,k2); i__ <= i__2; ++i__) {
|
|
a[i__ + j * a_dim1] *= mul;
|
|
/* L140: */
|
|
}
|
|
/* L150: */
|
|
}
|
|
|
|
}
|
|
|
|
if (! done) {
|
|
goto L10;
|
|
}
|
|
|
|
return 0;
|
|
|
|
/* End of SLASCL */
|
|
|
|
} /* slascl_ */
|