1757 lines
		
	
	
		
			52 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1757 lines
		
	
	
		
			52 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
/*M///////////////////////////////////////////////////////////////////////////////////////
 | 
						|
//
 | 
						|
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
 | 
						|
//
 | 
						|
//  By downloading, copying, installing or using the software you agree to this license.
 | 
						|
//  If you do not agree to this license, do not download, install,
 | 
						|
//  copy or use the software.
 | 
						|
//
 | 
						|
//
 | 
						|
//                           License Agreement
 | 
						|
//                For Open Source Computer Vision Library
 | 
						|
//
 | 
						|
// Copyright (C) 2010-2012, Institute Of Software Chinese Academy Of Science, all rights reserved.
 | 
						|
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
 | 
						|
// Third party copyrights are property of their respective owners.
 | 
						|
//
 | 
						|
// @Authors
 | 
						|
//    Niko Li, newlife20080214@gmail.com
 | 
						|
//    Jia Haipeng, jiahaipeng95@gmail.com
 | 
						|
//    Shengen Yan, yanshengen@gmail.com
 | 
						|
//    Jiang Liyuan, lyuan001.good@163.com
 | 
						|
//    Rock Li, Rock.Li@amd.com
 | 
						|
//    Wu Zailong, bullet@yeah.net
 | 
						|
//    Xu Pang, pangxu010@163.com
 | 
						|
//
 | 
						|
// Redistribution and use in source and binary forms, with or without modification,
 | 
						|
// are permitted provided that the following conditions are met:
 | 
						|
//
 | 
						|
//   * Redistribution's of source code must retain the above copyright notice,
 | 
						|
//     this list of conditions and the following disclaimer.
 | 
						|
//
 | 
						|
//   * Redistribution's in binary form must reproduce the above copyright notice,
 | 
						|
//     this list of conditions and the following disclaimer in the documentation
 | 
						|
//     and/or other oclMaterials provided with the distribution.
 | 
						|
//
 | 
						|
//   * The name of the copyright holders may not be used to endorse or promote products
 | 
						|
//     derived from this software without specific prior written permission.
 | 
						|
//
 | 
						|
// This software is provided by the copyright holders and contributors "as is" and
 | 
						|
// any express or implied warranties, including, but not limited to, the implied
 | 
						|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
 | 
						|
// In no event shall the Intel Corporation or contributors be liable for any direct,
 | 
						|
// indirect, incidental, special, exemplary, or consequential damages
 | 
						|
// (including, but not limited to, procurement of substitute goods or services;
 | 
						|
// loss of use, data, or profits; or business interruption) however caused
 | 
						|
// and on any theory of liability, whether in contract, strict liability,
 | 
						|
// or tort (including negligence or otherwise) arising in any way out of
 | 
						|
// the use of this software, even if advised of the possibility of such damage.
 | 
						|
//
 | 
						|
//M*/
 | 
						|
 | 
						|
#include "precomp.hpp"
 | 
						|
 | 
						|
#ifdef HAVE_OPENCL
 | 
						|
 | 
						|
using namespace cvtest;
 | 
						|
using namespace testing;
 | 
						|
using namespace std;
 | 
						|
 | 
						|
MatType nulltype = -1;
 | 
						|
 | 
						|
#define ONE_TYPE(type)  testing::ValuesIn(typeVector(type))
 | 
						|
#define NULL_TYPE  testing::ValuesIn(typeVector(nulltype))
 | 
						|
 | 
						|
vector<MatType> typeVector(MatType type)
 | 
						|
{
 | 
						|
    vector<MatType> v;
 | 
						|
    v.push_back(type);
 | 
						|
    return v;
 | 
						|
}
 | 
						|
 | 
						|
typedef struct
 | 
						|
{
 | 
						|
    short x;
 | 
						|
    short y;
 | 
						|
} COOR;
 | 
						|
 | 
						|
COOR do_meanShift(int x0, int y0, uchar *sptr, uchar *dptr, int sstep, cv::Size size, int sp, int sr, int maxIter, float eps, int *tab)
 | 
						|
{
 | 
						|
 | 
						|
    int isr2 = sr * sr;
 | 
						|
    int c0, c1, c2, c3;
 | 
						|
    int iter;
 | 
						|
    uchar *ptr = NULL;
 | 
						|
    uchar *pstart = NULL;
 | 
						|
    int revx = 0, revy = 0;
 | 
						|
    c0 = sptr[0];
 | 
						|
    c1 = sptr[1];
 | 
						|
    c2 = sptr[2];
 | 
						|
    c3 = sptr[3];
 | 
						|
    // iterate meanshift procedure
 | 
						|
    for(iter = 0; iter < maxIter; iter++ )
 | 
						|
    {
 | 
						|
        int count = 0;
 | 
						|
        int s0 = 0, s1 = 0, s2 = 0, sx = 0, sy = 0;
 | 
						|
 | 
						|
        //mean shift: process pixels in window (p-sigmaSp)x(p+sigmaSp)
 | 
						|
        int minx = x0 - sp;
 | 
						|
        int miny = y0 - sp;
 | 
						|
        int maxx = x0 + sp;
 | 
						|
        int maxy = y0 + sp;
 | 
						|
 | 
						|
        //deal with the image boundary
 | 
						|
        if(minx < 0) minx = 0;
 | 
						|
        if(miny < 0) miny = 0;
 | 
						|
        if(maxx >= size.width) maxx = size.width - 1;
 | 
						|
        if(maxy >= size.height) maxy = size.height - 1;
 | 
						|
        if(iter == 0)
 | 
						|
        {
 | 
						|
            pstart = sptr;
 | 
						|
        }
 | 
						|
        else
 | 
						|
        {
 | 
						|
            pstart = pstart + revy * sstep + (revx << 2); //point to the new position
 | 
						|
        }
 | 
						|
        ptr = pstart;
 | 
						|
        ptr = ptr + (miny - y0) * sstep + ((minx - x0) << 2); //point to the start in the row
 | 
						|
 | 
						|
        for( int y = miny; y <= maxy; y++, ptr += sstep - ((maxx - minx + 1) << 2))
 | 
						|
        {
 | 
						|
            int rowCount = 0;
 | 
						|
            int x = minx;
 | 
						|
#if CV_ENABLE_UNROLLED
 | 
						|
            for( ; x + 4 <= maxx; x += 4, ptr += 16)
 | 
						|
            {
 | 
						|
                int t0, t1, t2;
 | 
						|
                t0 = ptr[0], t1 = ptr[1], t2 = ptr[2];
 | 
						|
                if(tab[t0-c0+255] + tab[t1-c1+255] + tab[t2-c2+255] <= isr2)
 | 
						|
                {
 | 
						|
                    s0 += t0;
 | 
						|
                    s1 += t1;
 | 
						|
                    s2 += t2;
 | 
						|
                    sx += x;
 | 
						|
                    rowCount++;
 | 
						|
                }
 | 
						|
                t0 = ptr[4], t1 = ptr[5], t2 = ptr[6];
 | 
						|
                if(tab[t0-c0+255] + tab[t1-c1+255] + tab[t2-c2+255] <= isr2)
 | 
						|
                {
 | 
						|
                    s0 += t0;
 | 
						|
                    s1 += t1;
 | 
						|
                    s2 += t2;
 | 
						|
                    sx += x + 1;
 | 
						|
                    rowCount++;
 | 
						|
                }
 | 
						|
                t0 = ptr[8], t1 = ptr[9], t2 = ptr[10];
 | 
						|
                if(tab[t0-c0+255] + tab[t1-c1+255] + tab[t2-c2+255] <= isr2)
 | 
						|
                {
 | 
						|
                    s0 += t0;
 | 
						|
                    s1 += t1;
 | 
						|
                    s2 += t2;
 | 
						|
                    sx += x + 2;
 | 
						|
                    rowCount++;
 | 
						|
                }
 | 
						|
                t0 = ptr[12], t1 = ptr[13], t2 = ptr[14];
 | 
						|
                if(tab[t0-c0+255] + tab[t1-c1+255] + tab[t2-c2+255] <= isr2)
 | 
						|
                {
 | 
						|
                    s0 += t0;
 | 
						|
                    s1 += t1;
 | 
						|
                    s2 += t2;
 | 
						|
                    sx += x + 3;
 | 
						|
                    rowCount++;
 | 
						|
                }
 | 
						|
            }
 | 
						|
#endif
 | 
						|
            for(; x <= maxx; x++, ptr += 4)
 | 
						|
            {
 | 
						|
                int t0 = ptr[0], t1 = ptr[1], t2 = ptr[2];
 | 
						|
                if(tab[t0-c0+255] + tab[t1-c1+255] + tab[t2-c2+255] <= isr2)
 | 
						|
                {
 | 
						|
                    s0 += t0;
 | 
						|
                    s1 += t1;
 | 
						|
                    s2 += t2;
 | 
						|
                    sx += x;
 | 
						|
                    rowCount++;
 | 
						|
                }
 | 
						|
            }
 | 
						|
            if(rowCount == 0)
 | 
						|
                continue;
 | 
						|
            count += rowCount;
 | 
						|
            sy += y * rowCount;
 | 
						|
        }
 | 
						|
 | 
						|
        if( count == 0 )
 | 
						|
            break;
 | 
						|
 | 
						|
        double icount = 1.0 / count;
 | 
						|
        int x1 = cvFloor(sx * icount);
 | 
						|
        int y1 = cvFloor(sy * icount);
 | 
						|
        s0 = cvFloor(s0 * icount);
 | 
						|
        s1 = cvFloor(s1 * icount);
 | 
						|
        s2 = cvFloor(s2 * icount);
 | 
						|
 | 
						|
        bool stopFlag = (x0 == x1 && y0 == y1) || (abs(x1 - x0) + abs(y1 - y0) +
 | 
						|
                        tab[s0-c0+255] + tab[s1-c1+255] + tab[s2-c2+255] <= eps);
 | 
						|
 | 
						|
        //revise the pointer corresponding to the new (y0,x0)
 | 
						|
        revx = x1 - x0;
 | 
						|
        revy = y1 - y0;
 | 
						|
 | 
						|
        x0 = x1;
 | 
						|
        y0 = y1;
 | 
						|
        c0 = s0;
 | 
						|
        c1 = s1;
 | 
						|
        c2 = s2;
 | 
						|
 | 
						|
        if( stopFlag )
 | 
						|
            break;
 | 
						|
    } //for iter
 | 
						|
 | 
						|
    dptr[0] = (uchar)c0;
 | 
						|
    dptr[1] = (uchar)c1;
 | 
						|
    dptr[2] = (uchar)c2;
 | 
						|
    dptr[3] = (uchar)c3;
 | 
						|
 | 
						|
    COOR coor;
 | 
						|
    coor.x = x0;
 | 
						|
    coor.y = y0;
 | 
						|
    return coor;
 | 
						|
}
 | 
						|
 | 
						|
void meanShiftFiltering_(const Mat &src_roi, Mat &dst_roi, int sp, int sr, cv::TermCriteria crit)
 | 
						|
{
 | 
						|
    if( src_roi.empty() )
 | 
						|
        CV_Error( CV_StsBadArg, "The input image is empty" );
 | 
						|
 | 
						|
    if( src_roi.depth() != CV_8U || src_roi.channels() != 4 )
 | 
						|
        CV_Error( CV_StsUnsupportedFormat, "Only 8-bit, 4-channel images are supported" );
 | 
						|
 | 
						|
    CV_Assert( (src_roi.cols == dst_roi.cols) && (src_roi.rows == dst_roi.rows) );
 | 
						|
    CV_Assert( !(dst_roi.step & 0x3) );
 | 
						|
 | 
						|
    if( !(crit.type & cv::TermCriteria::MAX_ITER) )
 | 
						|
        crit.maxCount = 5;
 | 
						|
    int maxIter = std::min(std::max(crit.maxCount, 1), 100);
 | 
						|
    float eps;
 | 
						|
    if( !(crit.type & cv::TermCriteria::EPS) )
 | 
						|
        eps = 1.f;
 | 
						|
    eps = (float)std::max(crit.epsilon, 0.0);
 | 
						|
 | 
						|
    int tab[512];
 | 
						|
    for(int i = 0; i < 512; i++)
 | 
						|
        tab[i] = (i - 255) * (i - 255);
 | 
						|
    uchar *sptr = src_roi.data;
 | 
						|
    uchar *dptr = dst_roi.data;
 | 
						|
    int sstep = (int)src_roi.step;
 | 
						|
    int dstep = (int)dst_roi.step;
 | 
						|
    cv::Size size = src_roi.size();
 | 
						|
 | 
						|
    for(int i = 0; i < size.height; i++, sptr += sstep - (size.width << 2),
 | 
						|
            dptr += dstep - (size.width << 2))
 | 
						|
    {
 | 
						|
        for(int j = 0; j < size.width; j++, sptr += 4, dptr += 4)
 | 
						|
        {
 | 
						|
            do_meanShift(j, i, sptr, dptr, sstep, size, sp, sr, maxIter, eps, tab);
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void meanShiftProc_(const Mat &src_roi, Mat &dst_roi, Mat &dstCoor_roi, int sp, int sr, cv::TermCriteria crit)
 | 
						|
{
 | 
						|
 | 
						|
    if( src_roi.empty() )
 | 
						|
        CV_Error( CV_StsBadArg, "The input image is empty" );
 | 
						|
    if( src_roi.depth() != CV_8U || src_roi.channels() != 4 )
 | 
						|
        CV_Error( CV_StsUnsupportedFormat, "Only 8-bit, 4-channel images are supported" );
 | 
						|
    CV_Assert( (src_roi.cols == dst_roi.cols) && (src_roi.rows == dst_roi.rows) &&
 | 
						|
               (src_roi.cols == dstCoor_roi.cols) && (src_roi.rows == dstCoor_roi.rows));
 | 
						|
    CV_Assert( !(dstCoor_roi.step & 0x3) );
 | 
						|
 | 
						|
    if( !(crit.type & cv::TermCriteria::MAX_ITER) )
 | 
						|
        crit.maxCount = 5;
 | 
						|
    int maxIter = std::min(std::max(crit.maxCount, 1), 100);
 | 
						|
    float eps;
 | 
						|
    if( !(crit.type & cv::TermCriteria::EPS) )
 | 
						|
        eps = 1.f;
 | 
						|
    eps = (float)std::max(crit.epsilon, 0.0);
 | 
						|
 | 
						|
    int tab[512];
 | 
						|
    for(int i = 0; i < 512; i++)
 | 
						|
        tab[i] = (i - 255) * (i - 255);
 | 
						|
    uchar *sptr = src_roi.data;
 | 
						|
    uchar *dptr = dst_roi.data;
 | 
						|
    short *dCoorptr = (short *)dstCoor_roi.data;
 | 
						|
    int sstep = (int)src_roi.step;
 | 
						|
    int dstep = (int)dst_roi.step;
 | 
						|
    int dCoorstep = (int)dstCoor_roi.step >> 1;
 | 
						|
    cv::Size size = src_roi.size();
 | 
						|
 | 
						|
    for(int i = 0; i < size.height; i++, sptr += sstep - (size.width << 2),
 | 
						|
            dptr += dstep - (size.width << 2), dCoorptr += dCoorstep - (size.width << 1))
 | 
						|
    {
 | 
						|
        for(int j = 0; j < size.width; j++, sptr += 4, dptr += 4, dCoorptr += 2)
 | 
						|
        {
 | 
						|
            *((COOR *)dCoorptr) = do_meanShift(j, i, sptr, dptr, sstep, size, sp, sr, maxIter, eps, tab);
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
PARAM_TEST_CASE(ImgprocTestBase, MatType, MatType, MatType, MatType, MatType, bool)
 | 
						|
{
 | 
						|
    int type1, type2, type3, type4, type5;
 | 
						|
    cv::Scalar val;
 | 
						|
    // set up roi
 | 
						|
    int roicols;
 | 
						|
    int roirows;
 | 
						|
    int src1x;
 | 
						|
    int src1y;
 | 
						|
    int src2x;
 | 
						|
    int src2y;
 | 
						|
    int dstx;
 | 
						|
    int dsty;
 | 
						|
    int dst1x;
 | 
						|
    int dst1y;
 | 
						|
    int maskx;
 | 
						|
    int masky;
 | 
						|
 | 
						|
    //mat
 | 
						|
    cv::Mat mat1;
 | 
						|
    cv::Mat mat2;
 | 
						|
    cv::Mat mask;
 | 
						|
    cv::Mat dst;
 | 
						|
    cv::Mat dst1; //bak, for two outputs
 | 
						|
 | 
						|
    //mat with roi
 | 
						|
    cv::Mat mat1_roi;
 | 
						|
    cv::Mat mat2_roi;
 | 
						|
    cv::Mat mask_roi;
 | 
						|
    cv::Mat dst_roi;
 | 
						|
    cv::Mat dst1_roi; //bak
 | 
						|
    //std::vector<cv::ocl::Info> oclinfo;
 | 
						|
    //ocl mat
 | 
						|
    cv::ocl::oclMat clmat1;
 | 
						|
    cv::ocl::oclMat clmat2;
 | 
						|
    cv::ocl::oclMat clmask;
 | 
						|
    cv::ocl::oclMat cldst;
 | 
						|
    cv::ocl::oclMat cldst1; //bak
 | 
						|
 | 
						|
    //ocl mat with roi
 | 
						|
    cv::ocl::oclMat clmat1_roi;
 | 
						|
    cv::ocl::oclMat clmat2_roi;
 | 
						|
    cv::ocl::oclMat clmask_roi;
 | 
						|
    cv::ocl::oclMat cldst_roi;
 | 
						|
    cv::ocl::oclMat cldst1_roi;
 | 
						|
 | 
						|
    virtual void SetUp()
 | 
						|
    {
 | 
						|
        type1 = GET_PARAM(0);
 | 
						|
        type2 = GET_PARAM(1);
 | 
						|
        type3 = GET_PARAM(2);
 | 
						|
        type4 = GET_PARAM(3);
 | 
						|
        type5 = GET_PARAM(4);
 | 
						|
        cv::RNG &rng = TS::ptr()->get_rng();
 | 
						|
        cv::Size size(MWIDTH, MHEIGHT);
 | 
						|
        double min = 1, max = 20;
 | 
						|
        //int devnums = getDevice(oclinfo, OPENCV_DEFAULT_OPENCL_DEVICE);
 | 
						|
        //CV_Assert(devnums > 0);
 | 
						|
        ////if you want to use undefault device, set it here
 | 
						|
        ////setDevice(oclinfo[0]);
 | 
						|
 | 
						|
        if(type1 != nulltype)
 | 
						|
        {
 | 
						|
            mat1 = randomMat(rng, size, type1, min, max, false);
 | 
						|
            clmat1 = mat1;
 | 
						|
        }
 | 
						|
        if(type2 != nulltype)
 | 
						|
        {
 | 
						|
            mat2 = randomMat(rng, size, type2, min, max, false);
 | 
						|
            clmat2 = mat2;
 | 
						|
        }
 | 
						|
        if(type3 != nulltype)
 | 
						|
        {
 | 
						|
            dst  = randomMat(rng, size, type3, min, max, false);
 | 
						|
            cldst = dst;
 | 
						|
        }
 | 
						|
        if(type4 != nulltype)
 | 
						|
        {
 | 
						|
            dst1 = randomMat(rng, size, type4, min, max, false);
 | 
						|
            cldst1 = dst1;
 | 
						|
        }
 | 
						|
        if(type5 != nulltype)
 | 
						|
        {
 | 
						|
            mask = randomMat(rng, size, CV_8UC1, 0, 2,  false);
 | 
						|
            cv::threshold(mask, mask, 0.5, 255., type5);
 | 
						|
            clmask = mask;
 | 
						|
        }
 | 
						|
        val = cv::Scalar(rng.uniform(-10.0, 10.0), rng.uniform(-10.0, 10.0), rng.uniform(-10.0, 10.0), rng.uniform(-10.0, 10.0));
 | 
						|
    }
 | 
						|
 | 
						|
    void random_roi()
 | 
						|
    {     
 | 
						|
#ifdef RANDOMROI
 | 
						|
        //randomize ROI
 | 
						|
		cv::RNG &rng = TS::ptr()->get_rng();
 | 
						|
        roicols = rng.uniform(1, mat1.cols);
 | 
						|
        roirows = rng.uniform(1, mat1.rows);
 | 
						|
        src1x   = rng.uniform(0, mat1.cols - roicols);
 | 
						|
        src1y   = rng.uniform(0, mat1.rows - roirows);
 | 
						|
        src2x   = rng.uniform(0, mat2.cols - roicols);
 | 
						|
        src2y   = rng.uniform(0, mat2.rows - roirows);
 | 
						|
        dstx    = rng.uniform(0, dst.cols  - roicols);
 | 
						|
        dsty    = rng.uniform(0, dst.rows  - roirows);
 | 
						|
        dst1x    = rng.uniform(0, dst1.cols  - roicols);
 | 
						|
        dst1y    = rng.uniform(0, dst1.rows  - roirows);
 | 
						|
        maskx   = rng.uniform(0, mask.cols - roicols);
 | 
						|
        masky   = rng.uniform(0, mask.rows - roirows);
 | 
						|
#else
 | 
						|
        roicols = mat1.cols;
 | 
						|
        roirows = mat1.rows;
 | 
						|
        src1x = 0;
 | 
						|
        src1y = 0;
 | 
						|
        src2x = 0;
 | 
						|
        src2y = 0;
 | 
						|
        dstx = 0;
 | 
						|
        dsty = 0;
 | 
						|
        dst1x = 0;
 | 
						|
        dst1y = 0;
 | 
						|
        maskx = 0;
 | 
						|
        masky = 0;
 | 
						|
#endif
 | 
						|
 | 
						|
 | 
						|
        if(type1 != nulltype)
 | 
						|
        {
 | 
						|
            mat1_roi = mat1(Rect(src1x, src1y, roicols, roirows));
 | 
						|
            clmat1_roi = clmat1(Rect(src1x, src1y, roicols, roirows));
 | 
						|
        }
 | 
						|
        if(type2 != nulltype)
 | 
						|
        {
 | 
						|
            mat2_roi = mat2(Rect(src2x, src2y, roicols, roirows));
 | 
						|
            clmat2_roi = clmat2(Rect(src2x, src2y, roicols, roirows));
 | 
						|
        }
 | 
						|
        if(type3 != nulltype)
 | 
						|
        {
 | 
						|
            dst_roi  = dst(Rect(dstx, dsty, roicols, roirows));
 | 
						|
            cldst_roi = cldst(Rect(dstx, dsty, roicols, roirows));
 | 
						|
        }
 | 
						|
        if(type4 != nulltype)
 | 
						|
        {
 | 
						|
            dst1_roi = dst1(Rect(dst1x, dst1y, roicols, roirows));
 | 
						|
            cldst1_roi = cldst1(Rect(dst1x, dst1y, roicols, roirows));
 | 
						|
        }
 | 
						|
        if(type5 != nulltype)
 | 
						|
        {
 | 
						|
            mask_roi = mask(Rect(maskx, masky, roicols, roirows));
 | 
						|
            clmask_roi = clmask(Rect(maskx, masky, roicols, roirows));
 | 
						|
        }
 | 
						|
    }
 | 
						|
};
 | 
						|
////////////////////////////////equalizeHist//////////////////////////////////////////
 | 
						|
 | 
						|
struct equalizeHist : ImgprocTestBase {};
 | 
						|
 | 
						|
TEST_P(equalizeHist, Mat)
 | 
						|
{
 | 
						|
    if (mat1.type() != CV_8UC1 || mat1.type() != dst.type())
 | 
						|
    {
 | 
						|
        cout << "Unsupported type" << endl;
 | 
						|
        EXPECT_DOUBLE_EQ(0.0, 0.0);
 | 
						|
    }
 | 
						|
    else
 | 
						|
    {
 | 
						|
        for(int j = 0; j < LOOP_TIMES; j++)
 | 
						|
        {
 | 
						|
            random_roi();
 | 
						|
            cv::equalizeHist(mat1_roi, dst_roi);
 | 
						|
            cv::ocl::equalizeHist(clmat1_roi, cldst_roi);
 | 
						|
            cv::Mat cpu_cldst;
 | 
						|
            cldst.download(cpu_cldst);
 | 
						|
            char sss[1024];
 | 
						|
            sprintf(sss, "roicols=%d,roirows=%d,src1x=%d,src1y=%d,dstx=%d,dsty=%d,dst1x=%d,dst1y=%d,maskx=%d,masky=%d,src2x=%d,src2y=%d", roicols, roirows, src1x, src1y, dstx, dsty, dst1x, dst1y, maskx, masky, src2x, src2y);
 | 
						|
            EXPECT_MAT_NEAR(dst, cpu_cldst, 1.1, sss);
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
 | 
						|
 | 
						|
////////////////////////////////bilateralFilter////////////////////////////////////////////
 | 
						|
 | 
						|
struct bilateralFilter : ImgprocTestBase {};
 | 
						|
 | 
						|
TEST_P(bilateralFilter, Mat)
 | 
						|
{
 | 
						|
    double sigmacolor = 50.0;
 | 
						|
    int radius = 9;
 | 
						|
    int d = 2 * radius + 1;
 | 
						|
    double sigmaspace = 20.0;
 | 
						|
    int bordertype[] = {cv::BORDER_CONSTANT, cv::BORDER_REPLICATE,cv::BORDER_REFLECT,cv::BORDER_WRAP,cv::BORDER_REFLECT_101};
 | 
						|
    const char* borderstr[]={"BORDER_CONSTANT", "BORDER_REPLICATE", "BORDER_REFLECT","BORDER_WRAP","BORDER_REFLECT_101"};
 | 
						|
 | 
						|
    if (mat1.type() != CV_8UC1 || mat1.type() != dst.type())
 | 
						|
    {
 | 
						|
        cout << "Unsupported type" << endl;
 | 
						|
        EXPECT_DOUBLE_EQ(0.0, 0.0);
 | 
						|
    }
 | 
						|
    else
 | 
						|
    {
 | 
						|
        for(int i = 0; i < sizeof(bordertype) / sizeof(int); i++)
 | 
						|
            for(int j = 0; j < LOOP_TIMES; j++)
 | 
						|
            {
 | 
						|
                random_roi();
 | 
						|
				#ifdef RANDOMROI
 | 
						|
				if(((bordertype[i]!=cv::BORDER_CONSTANT) && (bordertype[i]!=cv::BORDER_REPLICATE))&&(mat1_roi.cols<=radius) || (mat1_roi.cols<=radius) || (mat1_roi.rows <= radius) || (mat1_roi.rows <= radius))
 | 
						|
				{
 | 
						|
					continue;
 | 
						|
				}
 | 
						|
				if((dstx>=radius) && (dsty >= radius) && (dstx+cldst_roi.cols+radius <=cldst_roi.wholecols) && (dsty+cldst_roi.rows+radius <= cldst_roi.wholerows))
 | 
						|
				{
 | 
						|
					dst_roi.adjustROI(radius, radius, radius, radius);
 | 
						|
					cldst_roi.adjustROI(radius, radius, radius, radius);
 | 
						|
				}
 | 
						|
				else
 | 
						|
				{
 | 
						|
					continue;
 | 
						|
				}
 | 
						|
				#endif
 | 
						|
                cv::bilateralFilter(mat1_roi, dst_roi, d, sigmacolor, sigmaspace, bordertype[i]|cv::BORDER_ISOLATED);
 | 
						|
                cv::ocl::bilateralFilter(clmat1_roi, cldst_roi, d, sigmacolor, sigmaspace, bordertype[i]|cv::BORDER_ISOLATED);
 | 
						|
 | 
						|
                cv::Mat cpu_cldst;
 | 
						|
				#ifndef RANDOMROI
 | 
						|
                cldst_roi.download(cpu_cldst);
 | 
						|
				#else
 | 
						|
				cldst.download(cpu_cldst);
 | 
						|
				#endif
 | 
						|
 | 
						|
                char sss[1024];
 | 
						|
                sprintf(sss, "roicols=%d,roirows=%d,src1x=%d,src1y=%d,dstx=%d,dsty=%d,radius=%d,boredertype=%s", roicols, roirows, src1x, src1y, dstx, dsty, radius, borderstr[i]);
 | 
						|
 | 
						|
				#ifndef RANDOMROI
 | 
						|
                EXPECT_MAT_NEAR(dst_roi, cpu_cldst, 0.0, sss);
 | 
						|
				#else
 | 
						|
				//for(int i=0;i<dst_roi.rows;i++)
 | 
						|
				//{
 | 
						|
				//	for(int j=0;j<dst_roi.cols;j++)
 | 
						|
				//	{
 | 
						|
				//		cout<< (int)dst_roi.at<uchar>(i,j)<<" "<< (int)cpu_cldst.at<uchar>(i,j)<<"  ";
 | 
						|
				//	}
 | 
						|
				//	cout<<endl;
 | 
						|
				//}
 | 
						|
				EXPECT_MAT_NEAR(dst, cpu_cldst, 0.0, sss);
 | 
						|
				#endif
 | 
						|
            }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
////////////////////////////////copyMakeBorder////////////////////////////////////////////
 | 
						|
 | 
						|
struct CopyMakeBorder : ImgprocTestBase {};
 | 
						|
 | 
						|
TEST_P(CopyMakeBorder, Mat)
 | 
						|
{
 | 
						|
    int bordertype[] = {cv::BORDER_CONSTANT, cv::BORDER_REPLICATE,cv::BORDER_REFLECT,cv::BORDER_WRAP,cv::BORDER_REFLECT_101};
 | 
						|
    const char* borderstr[]={"BORDER_CONSTANT", "BORDER_REPLICATE", "BORDER_REFLECT","BORDER_WRAP","BORDER_REFLECT_101"};
 | 
						|
	cv::RNG &rng = TS::ptr()->get_rng();
 | 
						|
	int top = rng.uniform(0, 10);
 | 
						|
	int bottom = rng.uniform(0, 10);
 | 
						|
	int left = rng.uniform(0, 10);
 | 
						|
	int right = rng.uniform(0, 10);
 | 
						|
    if (mat1.type() != dst.type())
 | 
						|
    {
 | 
						|
        cout << "Unsupported type" << endl;
 | 
						|
        EXPECT_DOUBLE_EQ(0.0, 0.0);
 | 
						|
    }
 | 
						|
    else
 | 
						|
    {
 | 
						|
        for(int i = 0; i < sizeof(bordertype) / sizeof(int); i++)
 | 
						|
            for(int j = 0; j < LOOP_TIMES; j++)
 | 
						|
            {
 | 
						|
                random_roi();
 | 
						|
				#ifdef RANDOMROI
 | 
						|
				if(((bordertype[i]!=cv::BORDER_CONSTANT) && (bordertype[i]!=cv::BORDER_REPLICATE))&&(mat1_roi.cols<=left) || (mat1_roi.cols<=right) || (mat1_roi.rows <= top) || (mat1_roi.rows <= bottom))
 | 
						|
				{
 | 
						|
					continue;
 | 
						|
				}
 | 
						|
				if((dstx>=left) && (dsty >= top) && (dstx+cldst_roi.cols+right <=cldst_roi.wholecols) && (dsty+cldst_roi.rows+bottom <= cldst_roi.wholerows))
 | 
						|
				{
 | 
						|
					dst_roi.adjustROI(top, bottom, left, right);
 | 
						|
					cldst_roi.adjustROI(top, bottom, left, right);
 | 
						|
				}
 | 
						|
				else
 | 
						|
				{
 | 
						|
					continue;
 | 
						|
				}
 | 
						|
				#endif
 | 
						|
                cv::copyMakeBorder(mat1_roi, dst_roi, top, bottom, left, right, bordertype[i]| cv::BORDER_ISOLATED, cv::Scalar(1.0));
 | 
						|
                cv::ocl::copyMakeBorder(clmat1_roi, cldst_roi, top, bottom, left, right,  bordertype[i]| cv::BORDER_ISOLATED, cv::Scalar(1.0));
 | 
						|
 | 
						|
                cv::Mat cpu_cldst;
 | 
						|
				#ifndef RANDOMROI
 | 
						|
                cldst_roi.download(cpu_cldst);
 | 
						|
				#else
 | 
						|
				cldst.download(cpu_cldst);
 | 
						|
				#endif
 | 
						|
                char sss[1024];
 | 
						|
                sprintf(sss, "roicols=%d,roirows=%d,src1x=%d,src1y=%d,dstx=%d,dsty=%d,dst1x=%d,dst1y=%d,top=%d,bottom=%d,left=%d,right=%d, bordertype=%s", roicols, roirows, src1x, src1y, dstx, dsty, dst1x, dst1y, top, bottom, left, right,borderstr[i]);
 | 
						|
				#ifndef RANDOMROI
 | 
						|
                EXPECT_MAT_NEAR(dst_roi, cpu_cldst, 0.0, sss);
 | 
						|
				#else
 | 
						|
				//for(int i=0;i<dst.rows;i++)
 | 
						|
				//{
 | 
						|
				//for(int j=0;j<dst.cols;j++)
 | 
						|
				//{
 | 
						|
				//	cout<< (int)dst.at<uchar>(i,j)<<" ";
 | 
						|
				//}
 | 
						|
				//cout<<endl;
 | 
						|
				//}
 | 
						|
				EXPECT_MAT_NEAR(dst, cpu_cldst, 0.0, sss);
 | 
						|
				#endif
 | 
						|
            }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
////////////////////////////////cornerMinEigenVal//////////////////////////////////////////
 | 
						|
 | 
						|
struct cornerMinEigenVal : ImgprocTestBase {};
 | 
						|
 | 
						|
TEST_P(cornerMinEigenVal, Mat)
 | 
						|
{
 | 
						|
    for(int j = 0; j < LOOP_TIMES; j++)
 | 
						|
    {
 | 
						|
 | 
						|
        random_roi();
 | 
						|
        int blockSize = 3, apertureSize = 3;//1 + 2 * (rand() % 4);
 | 
						|
        //int borderType = cv::BORDER_CONSTANT;
 | 
						|
        //int borderType = cv::BORDER_REPLICATE;
 | 
						|
        int borderType = cv::BORDER_REFLECT;
 | 
						|
        cv::cornerMinEigenVal(mat1_roi, dst_roi, blockSize, apertureSize, borderType);
 | 
						|
        cv::ocl::cornerMinEigenVal(clmat1_roi, cldst_roi, blockSize, apertureSize, borderType);
 | 
						|
 | 
						|
 | 
						|
        cv::Mat cpu_cldst;
 | 
						|
        cldst.download(cpu_cldst);
 | 
						|
 | 
						|
        char sss[1024];
 | 
						|
        sprintf(sss, "roicols=%d,roirows=%d,src1x=%d,src1y=%d,dstx=%d,dsty=%d,dst1x=%d,dst1y=%d,maskx=%d,masky=%d,src2x=%d,src2y=%d", roicols, roirows, src1x, src1y, dstx, dsty, dst1x, dst1y, maskx, masky, src2x, src2y);
 | 
						|
        EXPECT_MAT_NEAR(dst, cpu_cldst, 1, sss);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
////////////////////////////////cornerHarris//////////////////////////////////////////
 | 
						|
 | 
						|
struct cornerHarris : ImgprocTestBase {};
 | 
						|
 | 
						|
TEST_P(cornerHarris, Mat)
 | 
						|
{
 | 
						|
    for(int j = 0; j < LOOP_TIMES; j++)
 | 
						|
    {
 | 
						|
 | 
						|
        random_roi();
 | 
						|
        int blockSize = 3, apertureSize = 3; //1 + 2 * (rand() % 4);
 | 
						|
        double k = 2;
 | 
						|
        //int borderType = cv::BORDER_CONSTANT;
 | 
						|
        //int borderType = cv::BORDER_REPLICATE;
 | 
						|
        int borderType = cv::BORDER_REFLECT;
 | 
						|
        cv::cornerHarris(mat1_roi, dst_roi, blockSize, apertureSize, k, borderType);
 | 
						|
        cv::ocl::cornerHarris(clmat1_roi, cldst_roi, blockSize, apertureSize, k, borderType);
 | 
						|
        cv::Mat cpu_cldst;
 | 
						|
        cldst.download(cpu_cldst);
 | 
						|
 | 
						|
        char sss[1024];
 | 
						|
        sprintf(sss, "roicols=%d,roirows=%d,src1x=%d,src1y=%d,dstx=%d,dsty=%d,dst1x=%d,dst1y=%d,maskx=%d,masky=%d,src2x=%d,src2y=%d", roicols, roirows, src1x, src1y, dstx, dsty, dst1x, dst1y, maskx, masky, src2x, src2y);
 | 
						|
 | 
						|
        EXPECT_MAT_NEAR(dst, cpu_cldst, 1, sss);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
////////////////////////////////integral/////////////////////////////////////////////////
 | 
						|
 | 
						|
struct integral : ImgprocTestBase {};
 | 
						|
 | 
						|
TEST_P(integral, Mat)
 | 
						|
{
 | 
						|
    for(int j = 0; j < LOOP_TIMES; j++)
 | 
						|
    {
 | 
						|
        random_roi();
 | 
						|
 | 
						|
        cv::ocl::integral(clmat1_roi, cldst_roi, cldst1_roi);
 | 
						|
        cv::integral(mat1_roi, dst_roi, dst1_roi);
 | 
						|
 | 
						|
        cv::Mat cpu_cldst, cpu_cldst1;
 | 
						|
        cldst.download(cpu_cldst);
 | 
						|
        cldst1.download(cpu_cldst1);
 | 
						|
        char sss[1024];
 | 
						|
        sprintf(sss, "roicols=%d,roirows=%d,src1x=%d,src1y=%d,dstx=%d,dsty=%d,dst1x=%d,dst1y=%d,maskx=%d,masky=%d,src2x=%d,src2y=%d", roicols, roirows, src1x, src1y, dstx, dsty, dst1x, dst1y, maskx, masky, src2x, src2y);
 | 
						|
 | 
						|
        EXPECT_MAT_NEAR(dst, cpu_cldst, 0.0, sss);
 | 
						|
        EXPECT_MAT_NEAR(dst1, cpu_cldst1, 0.0, sss);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/////////////////////////////////////////////////////////////////////////////////////////////////
 | 
						|
// warpAffine  & warpPerspective
 | 
						|
 | 
						|
PARAM_TEST_CASE(WarpTestBase, MatType, int)
 | 
						|
{
 | 
						|
    int type;
 | 
						|
    cv::Size size;
 | 
						|
    int interpolation;
 | 
						|
 | 
						|
    //src mat
 | 
						|
    cv::Mat mat1;
 | 
						|
    cv::Mat dst;
 | 
						|
 | 
						|
    // set up roi
 | 
						|
    int src_roicols;
 | 
						|
    int src_roirows;
 | 
						|
    int dst_roicols;
 | 
						|
    int dst_roirows;
 | 
						|
    int src1x;
 | 
						|
    int src1y;
 | 
						|
    int dstx;
 | 
						|
    int dsty;
 | 
						|
 | 
						|
 | 
						|
    //src mat with roi
 | 
						|
    cv::Mat mat1_roi;
 | 
						|
    cv::Mat dst_roi;
 | 
						|
    //std::vector<cv::ocl::Info> oclinfo;
 | 
						|
    //ocl dst mat for testing
 | 
						|
    cv::ocl::oclMat gdst_whole;
 | 
						|
 | 
						|
    //ocl mat with roi
 | 
						|
    cv::ocl::oclMat gmat1;
 | 
						|
    cv::ocl::oclMat gdst;
 | 
						|
 | 
						|
    virtual void SetUp()
 | 
						|
    {
 | 
						|
        type = GET_PARAM(0);
 | 
						|
        //dsize = GET_PARAM(1);
 | 
						|
        interpolation = GET_PARAM(1);
 | 
						|
 | 
						|
        cv::RNG &rng = TS::ptr()->get_rng();
 | 
						|
        size = cv::Size(MWIDTH, MHEIGHT);
 | 
						|
 | 
						|
        mat1 = randomMat(rng, size, type, 5, 16, false);
 | 
						|
        dst  = randomMat(rng, size, type, 5, 16, false);
 | 
						|
 | 
						|
        //int devnums = getDevice(oclinfo, OPENCV_DEFAULT_OPENCL_DEVICE);
 | 
						|
        //CV_Assert(devnums > 0);
 | 
						|
        ////if you want to use undefault device, set it here
 | 
						|
        ////setDevice(oclinfo[0]);
 | 
						|
    }
 | 
						|
 | 
						|
    void random_roi()
 | 
						|
    {       
 | 
						|
#ifdef RANDOMROI
 | 
						|
        //randomize ROI
 | 
						|
		cv::RNG &rng = TS::ptr()->get_rng();
 | 
						|
        src_roicols = rng.uniform(1, mat1.cols);
 | 
						|
        src_roirows = rng.uniform(1, mat1.rows);
 | 
						|
        dst_roicols = rng.uniform(1, dst.cols);
 | 
						|
        dst_roirows = rng.uniform(1, dst.rows);
 | 
						|
        src1x   = rng.uniform(0, mat1.cols - src_roicols);
 | 
						|
        src1y   = rng.uniform(0, mat1.rows - src_roirows);
 | 
						|
        dstx    = rng.uniform(0, dst.cols  - dst_roicols);
 | 
						|
        dsty    = rng.uniform(0, dst.rows  - dst_roirows);
 | 
						|
#else
 | 
						|
        src_roicols = mat1.cols;
 | 
						|
        src_roirows = mat1.rows;
 | 
						|
        dst_roicols = dst.cols;
 | 
						|
        dst_roirows = dst.rows;
 | 
						|
        src1x   = 0;
 | 
						|
        src1y   = 0;
 | 
						|
        dstx    = 0;
 | 
						|
        dsty    = 0;
 | 
						|
#endif
 | 
						|
 | 
						|
 | 
						|
        mat1_roi = mat1(Rect(src1x, src1y, src_roicols, src_roirows));
 | 
						|
        dst_roi  = dst(Rect(dstx, dsty, dst_roicols, dst_roirows));
 | 
						|
 | 
						|
        gdst_whole = dst;
 | 
						|
        gdst = gdst_whole(Rect(dstx, dsty, dst_roicols, dst_roirows));
 | 
						|
 | 
						|
 | 
						|
        gmat1 = mat1_roi;
 | 
						|
    }
 | 
						|
 | 
						|
};
 | 
						|
 | 
						|
/////warpAffine
 | 
						|
 | 
						|
struct WarpAffine : WarpTestBase {};
 | 
						|
 | 
						|
TEST_P(WarpAffine, Mat)
 | 
						|
{
 | 
						|
    static const double coeffs[2][3] =
 | 
						|
    {
 | 
						|
        {cos(3.14 / 6), -sin(3.14 / 6), 100.0},
 | 
						|
        {sin(3.14 / 6), cos(3.14 / 6), -100.0}
 | 
						|
    };
 | 
						|
    Mat M(2, 3, CV_64F, (void *)coeffs);
 | 
						|
 | 
						|
    for(int j = 0; j < LOOP_TIMES; j++)
 | 
						|
    {
 | 
						|
        random_roi();
 | 
						|
 | 
						|
        cv::warpAffine(mat1_roi, dst_roi, M, size, interpolation);
 | 
						|
        cv::ocl::warpAffine(gmat1, gdst, M, size, interpolation);
 | 
						|
 | 
						|
        cv::Mat cpu_dst;
 | 
						|
        gdst_whole.download(cpu_dst);
 | 
						|
        char sss[1024];
 | 
						|
        sprintf(sss, "src_roicols=%d,src_roirows=%d,dst_roicols=%d,dst_roirows=%d,src1x =%d,src1y=%d,dstx=%d,dsty=%d", src_roicols, src_roirows, dst_roicols, dst_roirows, src1x, src1y, dstx, dsty);
 | 
						|
 | 
						|
        EXPECT_MAT_NEAR(dst, cpu_dst, 1.0, sss);
 | 
						|
    }
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// warpPerspective
 | 
						|
 | 
						|
struct WarpPerspective : WarpTestBase {};
 | 
						|
 | 
						|
TEST_P(WarpPerspective, Mat)
 | 
						|
{
 | 
						|
    static const double coeffs[3][3] =
 | 
						|
    {
 | 
						|
        {cos(3.14 / 6), -sin(3.14 / 6), 100.0},
 | 
						|
        {sin(3.14 / 6), cos(3.14 / 6), -100.0},
 | 
						|
        {0.0, 0.0, 1.0}
 | 
						|
    };
 | 
						|
    Mat M(3, 3, CV_64F, (void *)coeffs);
 | 
						|
 | 
						|
    for(int j = 0; j < LOOP_TIMES; j++)
 | 
						|
    {
 | 
						|
        random_roi();
 | 
						|
 | 
						|
        cv::warpPerspective(mat1_roi, dst_roi, M, size, interpolation);
 | 
						|
        cv::ocl::warpPerspective(gmat1, gdst, M, size, interpolation);
 | 
						|
 | 
						|
        cv::Mat cpu_dst;
 | 
						|
        gdst_whole.download(cpu_dst);
 | 
						|
        char sss[1024];
 | 
						|
        sprintf(sss, "src_roicols=%d,src_roirows=%d,dst_roicols=%d,dst_roirows=%d,src1x =%d,src1y=%d,dstx=%d,dsty=%d", src_roicols, src_roirows, dst_roicols, dst_roirows, src1x, src1y, dstx, dsty);
 | 
						|
 | 
						|
        EXPECT_MAT_NEAR(dst, cpu_dst, 1.0, sss);
 | 
						|
    }
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/////////////////////////////////////////////////////////////////////////////////////////////////
 | 
						|
// remap
 | 
						|
//////////////////////////////////////////////////////////////////////////////////////////////////
 | 
						|
 | 
						|
PARAM_TEST_CASE(Remap, MatType, MatType, MatType, int, int)
 | 
						|
{
 | 
						|
    int srcType;
 | 
						|
    int map1Type;
 | 
						|
    int map2Type;
 | 
						|
    cv::Scalar val;
 | 
						|
 | 
						|
    int interpolation;
 | 
						|
    int bordertype;
 | 
						|
 | 
						|
    cv::Mat src;
 | 
						|
    cv::Mat dst;
 | 
						|
    cv::Mat map1;
 | 
						|
    cv::Mat map2;
 | 
						|
 | 
						|
    //std::vector<cv::ocl::Info> oclinfo;
 | 
						|
    
 | 
						|
    int src_roicols;
 | 
						|
    int src_roirows;
 | 
						|
    int dst_roicols;
 | 
						|
    int dst_roirows;
 | 
						|
    int map1_roicols;
 | 
						|
    int map1_roirows;
 | 
						|
    int map2_roicols;
 | 
						|
    int map2_roirows;
 | 
						|
    int srcx;
 | 
						|
    int srcy;
 | 
						|
    int dstx;
 | 
						|
    int dsty;
 | 
						|
    int map1x;
 | 
						|
    int map1y;
 | 
						|
    int map2x;
 | 
						|
    int map2y;
 | 
						|
 | 
						|
    cv::Mat src_roi;
 | 
						|
    cv::Mat dst_roi;
 | 
						|
    cv::Mat map1_roi;
 | 
						|
    cv::Mat map2_roi;
 | 
						|
 | 
						|
    //ocl mat for testing
 | 
						|
    cv::ocl::oclMat gdst;
 | 
						|
 | 
						|
    //ocl mat with roi
 | 
						|
    cv::ocl::oclMat gsrc_roi;
 | 
						|
    cv::ocl::oclMat gdst_roi;
 | 
						|
    cv::ocl::oclMat gmap1_roi;
 | 
						|
    cv::ocl::oclMat gmap2_roi;
 | 
						|
 | 
						|
    virtual void SetUp()
 | 
						|
    {
 | 
						|
        srcType = GET_PARAM(0);
 | 
						|
        map1Type = GET_PARAM(1);
 | 
						|
        map2Type = GET_PARAM(2);
 | 
						|
        interpolation = GET_PARAM(3);
 | 
						|
        bordertype = GET_PARAM(4);
 | 
						|
 | 
						|
        //int devnums = getDevice(oclinfo, OPENCV_DEFAULT_OPENCL_DEVICE);
 | 
						|
        //CV_Assert(devnums > 0);
 | 
						|
 | 
						|
        cv::RNG& rng = TS::ptr()->get_rng();
 | 
						|
        cv::Size srcSize = cv::Size(MWIDTH, MHEIGHT);
 | 
						|
        cv::Size dstSize = cv::Size(MWIDTH, MHEIGHT);
 | 
						|
        cv::Size map1Size = cv::Size(MWIDTH, MHEIGHT);
 | 
						|
        double min = 5, max = 16;
 | 
						|
 | 
						|
        if(srcType != nulltype)
 | 
						|
        {
 | 
						|
            src = randomMat(rng, srcSize, srcType, min, max, false);
 | 
						|
        }
 | 
						|
        if((map1Type == CV_16SC2 && map2Type == nulltype) || (map1Type == CV_32FC2 && map2Type == nulltype))
 | 
						|
        {
 | 
						|
            map1 = randomMat(rng, map1Size, map1Type, min, max, false);
 | 
						|
        }
 | 
						|
        else if (map1Type == CV_32FC1 && map2Type == CV_32FC1)
 | 
						|
        {
 | 
						|
            map1 = randomMat(rng, map1Size, map1Type, min, max, false);
 | 
						|
            map2 = randomMat(rng, map1Size, map1Type, min, max, false);
 | 
						|
        }
 | 
						|
 | 
						|
        else
 | 
						|
        {
 | 
						|
            cout<<"The wrong input type"<<endl;
 | 
						|
            return;
 | 
						|
        }
 | 
						|
 | 
						|
        dst = randomMat(rng, map1Size, srcType, min, max, false);
 | 
						|
        switch (src.channels())
 | 
						|
        {
 | 
						|
            case 1:
 | 
						|
                val = cv::Scalar(rng.uniform(0.0, 10.0), 0, 0, 0);
 | 
						|
                break;
 | 
						|
            case 2:
 | 
						|
                val = cv::Scalar(rng.uniform(0.0, 10.0), rng.uniform(0.0, 10.0), 0, 0);
 | 
						|
                break;
 | 
						|
            case 3:
 | 
						|
                val = cv::Scalar(rng.uniform(0.0, 10.0), rng.uniform(0.0, 10.0), rng.uniform(0.0, 10.0), 0);
 | 
						|
                break;
 | 
						|
            case 4:
 | 
						|
                val = cv::Scalar(rng.uniform(0.0, 10.0), rng.uniform(0.0, 10.0), rng.uniform(0.0, 10.0), rng.uniform(0.0, 10.0));
 | 
						|
                break;
 | 
						|
        }
 | 
						|
 | 
						|
    }
 | 
						|
    void random_roi()
 | 
						|
    {
 | 
						|
        cv::RNG& rng = TS::ptr()->get_rng();
 | 
						|
 | 
						|
        dst_roicols = rng.uniform(1, dst.cols);
 | 
						|
        dst_roirows = rng.uniform(1, dst.rows);
 | 
						|
 | 
						|
        src_roicols = rng.uniform(1, src.cols);
 | 
						|
        src_roirows = rng.uniform(1, src.rows);
 | 
						|
 | 
						|
         
 | 
						|
        srcx = rng.uniform(0, src.cols - src_roicols);
 | 
						|
        srcy = rng.uniform(0, src.rows - src_roirows);
 | 
						|
        dstx = rng.uniform(0, dst.cols - dst_roicols);
 | 
						|
        dsty = rng.uniform(0, dst.rows - dst_roirows);
 | 
						|
        map1_roicols = dst_roicols;
 | 
						|
        map1_roirows = dst_roirows;
 | 
						|
        map2_roicols = dst_roicols;
 | 
						|
        map2_roirows = dst_roirows;
 | 
						|
        map1x = dstx;
 | 
						|
        map1y = dsty;
 | 
						|
        map2x = dstx;
 | 
						|
        map2y = dsty;
 | 
						|
 | 
						|
        if((map1Type == CV_16SC2 && map2Type == nulltype) || (map1Type == CV_32FC2 && map2Type == nulltype))
 | 
						|
        {
 | 
						|
            map1_roi = map1(Rect(map1x,map1y,map1_roicols,map1_roirows));
 | 
						|
            gmap1_roi = map1_roi;
 | 
						|
        }
 | 
						|
 | 
						|
        else if (map1Type == CV_32FC1 && map2Type == CV_32FC1)
 | 
						|
        {
 | 
						|
            map1_roi = map1(Rect(map1x,map1y,map1_roicols,map1_roirows));
 | 
						|
            gmap1_roi = map1_roi;
 | 
						|
            map2_roi = map2(Rect(map2x,map2y,map2_roicols,map2_roirows));
 | 
						|
            gmap2_roi = map2_roi;
 | 
						|
        }
 | 
						|
        src_roi = src(Rect(srcx,srcy,src_roicols,src_roirows));
 | 
						|
        dst_roi = dst(Rect(dstx, dsty, dst_roicols, dst_roirows)); 
 | 
						|
        gsrc_roi = src_roi;
 | 
						|
        gdst = dst;
 | 
						|
        gdst_roi = gdst(Rect(dstx, dsty, dst_roicols, dst_roirows));
 | 
						|
    }
 | 
						|
};
 | 
						|
 | 
						|
TEST_P(Remap, Mat)
 | 
						|
{
 | 
						|
    if((interpolation == 1 && map1Type == CV_16SC2) ||(map1Type == CV_32FC1 && map2Type == nulltype) || (map1Type == CV_16SC2 && map2Type == CV_32FC1) || (map1Type == CV_32FC2 && map2Type == CV_32FC1))
 | 
						|
    {
 | 
						|
        cout << "Don't support the dataType" << endl;
 | 
						|
        return;                
 | 
						|
    }
 | 
						|
    int bordertype[] = {cv::BORDER_CONSTANT,cv::BORDER_REPLICATE/*,BORDER_REFLECT,BORDER_WRAP,BORDER_REFLECT_101*/};
 | 
						|
    const char* borderstr[]={"BORDER_CONSTANT", "BORDER_REPLICATE"/*, "BORDER_REFLECT","BORDER_WRAP","BORDER_REFLECT_101"*/};
 | 
						|
    // for(int i = 0; i < sizeof(bordertype)/sizeof(int); i++)
 | 
						|
    for(int j=0; j<100; j++)
 | 
						|
    {
 | 
						|
        random_roi();
 | 
						|
        cv::remap(src_roi, dst_roi, map1_roi, map2_roi, interpolation, bordertype[0], val);
 | 
						|
        cv::ocl::remap(gsrc_roi, gdst_roi, gmap1_roi, gmap2_roi, interpolation, bordertype[0], val);
 | 
						|
        cv::Mat cpu_dst;
 | 
						|
        gdst.download(cpu_dst);
 | 
						|
 | 
						|
        char sss[1024];
 | 
						|
        sprintf(sss, "src_roicols=%d,src_roirows=%d,dst_roicols=%d,dst_roirows=%d,src1x =%d,src1y=%d,dstx=%d,dsty=%d", src_roicols, src_roirows, dst_roicols, dst_roirows, srcx, srcy, dstx, dsty);
 | 
						|
 | 
						|
   
 | 
						|
        if(interpolation == 0)
 | 
						|
            EXPECT_MAT_NEAR(dst, cpu_dst, 1.0, sss);
 | 
						|
        EXPECT_MAT_NEAR(dst, cpu_dst, 2.0, sss);
 | 
						|
 
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
/////////////////////////////////////////////////////////////////////////////////////////////////
 | 
						|
// resize
 | 
						|
 | 
						|
PARAM_TEST_CASE(Resize, MatType, cv::Size, double, double, int)
 | 
						|
{
 | 
						|
    int type;
 | 
						|
    cv::Size dsize;
 | 
						|
    double fx, fy;
 | 
						|
    int interpolation;
 | 
						|
 | 
						|
    //src mat
 | 
						|
    cv::Mat mat1;
 | 
						|
    cv::Mat dst;
 | 
						|
 | 
						|
    // set up roi
 | 
						|
    int src_roicols;
 | 
						|
    int src_roirows;
 | 
						|
    int dst_roicols;
 | 
						|
    int dst_roirows;
 | 
						|
    int src1x;
 | 
						|
    int src1y;
 | 
						|
    int dstx;
 | 
						|
    int dsty;
 | 
						|
 | 
						|
    //std::vector<cv::ocl::Info> oclinfo;
 | 
						|
    //src mat with roi
 | 
						|
    cv::Mat mat1_roi;
 | 
						|
    cv::Mat dst_roi;
 | 
						|
 | 
						|
    //ocl dst mat for testing
 | 
						|
    cv::ocl::oclMat gdst_whole;
 | 
						|
 | 
						|
    //ocl mat with roi
 | 
						|
    cv::ocl::oclMat gmat1;
 | 
						|
    cv::ocl::oclMat gdst;
 | 
						|
 | 
						|
    virtual void SetUp()
 | 
						|
    {
 | 
						|
        type = GET_PARAM(0);
 | 
						|
        dsize = GET_PARAM(1);
 | 
						|
        fx = GET_PARAM(2);
 | 
						|
        fy = GET_PARAM(3);
 | 
						|
        interpolation = GET_PARAM(4);
 | 
						|
 | 
						|
        cv::RNG &rng = TS::ptr()->get_rng();
 | 
						|
 | 
						|
        cv::Size size(MWIDTH, MHEIGHT);
 | 
						|
 | 
						|
        if(dsize == cv::Size() && !(fx > 0 && fy > 0))
 | 
						|
        {
 | 
						|
            cout << "invalid dsize and fx fy" << endl;
 | 
						|
            return;
 | 
						|
        }
 | 
						|
 | 
						|
        if(dsize == cv::Size())
 | 
						|
        {
 | 
						|
            dsize.width = (int)(size.width * fx);
 | 
						|
            dsize.height = (int)(size.height * fy);
 | 
						|
        }
 | 
						|
 | 
						|
        mat1 = randomMat(rng, size, type, 5, 16, false);
 | 
						|
        dst  = randomMat(rng, dsize, type, 5, 16, false);
 | 
						|
 | 
						|
        //int devnums = getDevice(oclinfo, OPENCV_DEFAULT_OPENCL_DEVICE);
 | 
						|
        //CV_Assert(devnums > 0);
 | 
						|
        ////if you want to use undefault device, set it here
 | 
						|
        ////setDevice(oclinfo[0]);
 | 
						|
    }
 | 
						|
 | 
						|
    void random_roi()
 | 
						|
    {        
 | 
						|
#ifdef RANDOMROI
 | 
						|
        //randomize ROI
 | 
						|
		cv::RNG &rng = TS::ptr()->get_rng();
 | 
						|
        src_roicols = rng.uniform(1, mat1.cols);
 | 
						|
        src_roirows = rng.uniform(1, mat1.rows);
 | 
						|
        dst_roicols = (int)(src_roicols*fx);
 | 
						|
        dst_roirows = (int)(src_roirows*fy);
 | 
						|
        src1x   = rng.uniform(0, mat1.cols - src_roicols);
 | 
						|
        src1y   = rng.uniform(0, mat1.rows - src_roirows);
 | 
						|
        dstx    = rng.uniform(0, dst.cols  - dst_roicols);
 | 
						|
        dsty    = rng.uniform(0, dst.rows  - dst_roirows);
 | 
						|
#else
 | 
						|
        src_roicols = mat1.cols;
 | 
						|
        src_roirows = mat1.rows;
 | 
						|
        dst_roicols = dst.cols;
 | 
						|
        dst_roirows = dst.rows;
 | 
						|
        src1x   = 0;
 | 
						|
        src1y   = 0;
 | 
						|
        dstx    = 0;
 | 
						|
        dsty    = 0;
 | 
						|
#endif
 | 
						|
        dsize.width = dst_roicols;
 | 
						|
        dsize.height = dst_roirows;
 | 
						|
        mat1_roi = mat1(Rect(src1x, src1y, src_roicols, src_roirows));
 | 
						|
        dst_roi  = dst(Rect(dstx, dsty, dst_roicols, dst_roirows));
 | 
						|
 | 
						|
        gdst_whole = dst;
 | 
						|
        gdst = gdst_whole(Rect(dstx, dsty, dst_roicols, dst_roirows));
 | 
						|
 | 
						|
        dsize.width = (int)(mat1_roi.size().width * fx);
 | 
						|
        dsize.height = (int)(mat1_roi.size().height * fy);
 | 
						|
 | 
						|
        gmat1 = mat1_roi;
 | 
						|
    }
 | 
						|
 | 
						|
};
 | 
						|
 | 
						|
TEST_P(Resize, Mat)
 | 
						|
{
 | 
						|
    for(int j = 0; j < LOOP_TIMES; j++)
 | 
						|
    {
 | 
						|
        random_roi();
 | 
						|
 | 
						|
        // cv::resize(mat1_roi, dst_roi, dsize, fx, fy, interpolation);
 | 
						|
        // cv::ocl::resize(gmat1, gdst, dsize, fx, fy, interpolation);
 | 
						|
        if(dst_roicols<1||dst_roirows<1) continue;
 | 
						|
        cv::resize(mat1_roi, dst_roi, dsize, fx, fy, interpolation);
 | 
						|
        cv::ocl::resize(gmat1, gdst, dsize, fx, fy, interpolation);
 | 
						|
 | 
						|
        cv::Mat cpu_dst;
 | 
						|
        gdst_whole.download(cpu_dst);
 | 
						|
        char sss[1024];
 | 
						|
        sprintf(sss, "src_roicols=%d,src_roirows=%d,dst_roicols=%d,dst_roirows=%d,src1x =%d,src1y=%d,dstx=%d,dsty=%d", src_roicols, src_roirows, dst_roicols, dst_roirows, src1x, src1y, dstx, dsty);
 | 
						|
 | 
						|
        EXPECT_MAT_NEAR(dst, cpu_dst, 1.0, sss);
 | 
						|
    }
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/////////////////////////////////////////////////////////////////////////////////////////////////
 | 
						|
//threshold
 | 
						|
 | 
						|
PARAM_TEST_CASE(Threshold, MatType, ThreshOp)
 | 
						|
{
 | 
						|
    int type;
 | 
						|
    int threshOp;
 | 
						|
 | 
						|
    //src mat
 | 
						|
    cv::Mat mat1;
 | 
						|
    cv::Mat dst;
 | 
						|
 | 
						|
    // set up roi
 | 
						|
    int roicols;
 | 
						|
    int roirows;
 | 
						|
    int src1x;
 | 
						|
    int src1y;
 | 
						|
    int dstx;
 | 
						|
    int dsty;
 | 
						|
 | 
						|
    //src mat with roi
 | 
						|
    cv::Mat mat1_roi;
 | 
						|
    cv::Mat dst_roi;
 | 
						|
    //std::vector<cv::ocl::Info> oclinfo;
 | 
						|
    //ocl dst mat for testing
 | 
						|
    cv::ocl::oclMat gdst_whole;
 | 
						|
 | 
						|
    //ocl mat with roi
 | 
						|
    cv::ocl::oclMat gmat1;
 | 
						|
    cv::ocl::oclMat gdst;
 | 
						|
 | 
						|
    virtual void SetUp()
 | 
						|
    {
 | 
						|
        type = GET_PARAM(0);
 | 
						|
        threshOp = GET_PARAM(1);
 | 
						|
 | 
						|
        cv::RNG &rng = TS::ptr()->get_rng();
 | 
						|
        cv::Size size(MWIDTH, MHEIGHT);
 | 
						|
 | 
						|
        mat1 = randomMat(rng, size, type, 5, 16, false);
 | 
						|
        dst  = randomMat(rng, size, type, 5, 16, false);
 | 
						|
 | 
						|
        //int devnums = getDevice(oclinfo, OPENCV_DEFAULT_OPENCL_DEVICE);
 | 
						|
        //CV_Assert(devnums > 0);
 | 
						|
        ////if you want to use undefault device, set it here
 | 
						|
        ////setDevice(oclinfo[0]);
 | 
						|
    }
 | 
						|
 | 
						|
    void random_roi()
 | 
						|
    {       
 | 
						|
#ifdef RANDOMROI
 | 
						|
        //randomize ROI
 | 
						|
		cv::RNG &rng = TS::ptr()->get_rng();
 | 
						|
        roicols = rng.uniform(1, mat1.cols);
 | 
						|
        roirows = rng.uniform(1, mat1.rows);
 | 
						|
        src1x   = rng.uniform(0, mat1.cols - roicols);
 | 
						|
        src1y   = rng.uniform(0, mat1.rows - roirows);
 | 
						|
        dstx    = rng.uniform(0, dst.cols  - roicols);
 | 
						|
        dsty    = rng.uniform(0, dst.rows  - roirows);
 | 
						|
#else
 | 
						|
        roicols = mat1.cols;
 | 
						|
        roirows = mat1.rows;
 | 
						|
        src1x   = 0;
 | 
						|
        src1y   = 0;
 | 
						|
        dstx    = 0;
 | 
						|
        dsty    = 0;
 | 
						|
#endif
 | 
						|
 | 
						|
        mat1_roi = mat1(Rect(src1x, src1y, roicols, roirows));
 | 
						|
        dst_roi  = dst(Rect(dstx, dsty, roicols, roirows));
 | 
						|
 | 
						|
        gdst_whole = dst;
 | 
						|
        gdst = gdst_whole(Rect(dstx, dsty, roicols, roirows));
 | 
						|
 | 
						|
 | 
						|
        gmat1 = mat1_roi;
 | 
						|
    }
 | 
						|
 | 
						|
};
 | 
						|
 | 
						|
TEST_P(Threshold, Mat)
 | 
						|
{
 | 
						|
    for(int j = 0; j < LOOP_TIMES; j++)
 | 
						|
    {
 | 
						|
        random_roi();
 | 
						|
        double maxVal = randomDouble(20.0, 127.0);
 | 
						|
        double thresh = randomDouble(0.0, maxVal);
 | 
						|
 | 
						|
        cv::threshold(mat1_roi, dst_roi, thresh, maxVal, threshOp);
 | 
						|
        cv::ocl::threshold(gmat1, gdst, thresh, maxVal, threshOp);
 | 
						|
 | 
						|
        cv::Mat cpu_dst;
 | 
						|
        gdst_whole.download(cpu_dst);
 | 
						|
 | 
						|
        //EXPECT_MAT_NEAR(dst, cpu_dst, 1e-5)
 | 
						|
        char sss[1024];
 | 
						|
        sprintf(sss, "roicols=%d,roirows=%d,src1x =%d,src1y=%d,dstx=%d,dsty=%d", roicols, roirows, src1x , src1y, dstx, dsty);
 | 
						|
 | 
						|
        EXPECT_MAT_NEAR(dst, cpu_dst, 1, sss);
 | 
						|
    }
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
PARAM_TEST_CASE(meanShiftTestBase, MatType, MatType, int, int, cv::TermCriteria)
 | 
						|
{
 | 
						|
    int type, typeCoor;
 | 
						|
    int sp, sr;
 | 
						|
    cv::TermCriteria crit;
 | 
						|
    //src mat
 | 
						|
    cv::Mat src;
 | 
						|
    cv::Mat dst;
 | 
						|
    cv::Mat dstCoor;
 | 
						|
 | 
						|
    //set up roi
 | 
						|
    int roicols;
 | 
						|
    int roirows;
 | 
						|
    int srcx;
 | 
						|
    int srcy;
 | 
						|
    int dstx;
 | 
						|
    int dsty;
 | 
						|
 | 
						|
    //src mat with roi
 | 
						|
    cv::Mat src_roi;
 | 
						|
    cv::Mat dst_roi;
 | 
						|
    cv::Mat dstCoor_roi;
 | 
						|
 | 
						|
    //ocl dst mat
 | 
						|
    cv::ocl::oclMat gdst;
 | 
						|
    cv::ocl::oclMat gdstCoor;
 | 
						|
 | 
						|
    //std::vector<cv::ocl::Info> oclinfo;
 | 
						|
    //ocl mat with roi
 | 
						|
    cv::ocl::oclMat gsrc_roi;
 | 
						|
    cv::ocl::oclMat gdst_roi;
 | 
						|
    cv::ocl::oclMat gdstCoor_roi;
 | 
						|
 | 
						|
    virtual void SetUp()
 | 
						|
    {
 | 
						|
        type     = GET_PARAM(0);
 | 
						|
        typeCoor = GET_PARAM(1);
 | 
						|
        sp       = GET_PARAM(2);
 | 
						|
        sr       = GET_PARAM(3);
 | 
						|
        crit     = GET_PARAM(4);
 | 
						|
 | 
						|
        cv::RNG &rng = TS::ptr()->get_rng();
 | 
						|
 | 
						|
        // MWIDTH=256, MHEIGHT=256. defined in utility.hpp
 | 
						|
        cv::Size size = cv::Size(MWIDTH, MHEIGHT);
 | 
						|
 | 
						|
        src = randomMat(rng, size, type, 5, 16, false);
 | 
						|
        dst = randomMat(rng, size, type, 5, 16, false);
 | 
						|
        dstCoor = randomMat(rng, size, typeCoor, 5, 16, false);
 | 
						|
 | 
						|
        //int devnums = getDevice(oclinfo, OPENCV_DEFAULT_OPENCL_DEVICE);
 | 
						|
        //CV_Assert(devnums > 0);
 | 
						|
        ////if you want to use undefault device, set it here
 | 
						|
        ////setDevice(oclinfo[0]);
 | 
						|
    }
 | 
						|
 | 
						|
    void random_roi()
 | 
						|
    {
 | 
						|
#ifdef RANDOMROI
 | 
						|
        cv::RNG &rng = TS::ptr()->get_rng();
 | 
						|
 | 
						|
        //randomize ROI
 | 
						|
        roicols = rng.uniform(1, src.cols);
 | 
						|
        roirows = rng.uniform(1, src.rows);
 | 
						|
        srcx = rng.uniform(0, src.cols - roicols);
 | 
						|
        srcy = rng.uniform(0, src.rows - roirows);
 | 
						|
        dstx = rng.uniform(0, dst.cols - roicols);
 | 
						|
        dsty = rng.uniform(0, dst.rows - roirows);
 | 
						|
#else
 | 
						|
        roicols = src.cols;
 | 
						|
        roirows = src.rows;
 | 
						|
        srcx = 0;
 | 
						|
        srcy = 0;
 | 
						|
        dstx = 0;
 | 
						|
        dsty = 0;
 | 
						|
#endif
 | 
						|
        src_roi = src(Rect(srcx, srcy, roicols, roirows));
 | 
						|
        dst_roi = dst(Rect(dstx, dsty, roicols, roirows));
 | 
						|
        dstCoor_roi = dstCoor(Rect(dstx, dsty, roicols, roirows));
 | 
						|
 | 
						|
        gdst = dst;
 | 
						|
        gdstCoor = dstCoor;
 | 
						|
 | 
						|
        gsrc_roi = src_roi;
 | 
						|
        gdst_roi = gdst(Rect(dstx, dsty, roicols, roirows));  //gdst_roi
 | 
						|
        gdstCoor_roi = gdstCoor(Rect(dstx, dsty, roicols, roirows));
 | 
						|
    }
 | 
						|
};
 | 
						|
 | 
						|
/////////////////////////meanShiftFiltering/////////////////////////////
 | 
						|
struct meanShiftFiltering : meanShiftTestBase {};
 | 
						|
 | 
						|
TEST_P(meanShiftFiltering, Mat)
 | 
						|
{
 | 
						|
 | 
						|
    for(int j = 0; j < LOOP_TIMES; j++)
 | 
						|
    {
 | 
						|
        random_roi();
 | 
						|
 | 
						|
        cv::Mat cpu_gdst;
 | 
						|
        gdst.download(cpu_gdst);
 | 
						|
 | 
						|
        meanShiftFiltering_(src_roi, dst_roi, sp, sr, crit);
 | 
						|
        cv::ocl::meanShiftFiltering(gsrc_roi, gdst_roi, sp, sr, crit);
 | 
						|
 | 
						|
        gdst.download(cpu_gdst);
 | 
						|
 | 
						|
        char sss[1024];
 | 
						|
        sprintf(sss, "roicols=%d,roirows=%d,srcx=%d,srcy=%d,dstx=%d,dsty=%d\n", roicols, roirows, srcx, srcy, dstx, dsty);
 | 
						|
        EXPECT_MAT_NEAR(dst, cpu_gdst, 0.0, sss);
 | 
						|
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
///////////////////////////meanShiftProc//////////////////////////////////
 | 
						|
struct meanShiftProc : meanShiftTestBase {};
 | 
						|
 | 
						|
TEST_P(meanShiftProc, Mat)
 | 
						|
{
 | 
						|
 | 
						|
    for(int j = 0; j < LOOP_TIMES; j++)
 | 
						|
    {
 | 
						|
        random_roi();
 | 
						|
 | 
						|
        cv::Mat cpu_gdst;
 | 
						|
        cv::Mat cpu_gdstCoor;
 | 
						|
 | 
						|
        meanShiftProc_(src_roi, dst_roi, dstCoor_roi, sp, sr, crit);
 | 
						|
        cv::ocl::meanShiftProc(gsrc_roi, gdst_roi, gdstCoor_roi, sp, sr, crit);
 | 
						|
 | 
						|
        gdst.download(cpu_gdst);
 | 
						|
        gdstCoor.download(cpu_gdstCoor);
 | 
						|
 | 
						|
        char sss[1024];
 | 
						|
        sprintf(sss, "roicols=%d,roirows=%d,srcx=%d,srcy=%d,dstx=%d,dsty=%d\n", roicols, roirows, srcx, srcy, dstx, dsty);
 | 
						|
        EXPECT_MAT_NEAR(dst, cpu_gdst, 0.0, sss);
 | 
						|
        EXPECT_MAT_NEAR(dstCoor, cpu_gdstCoor, 0.0, sss);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
///////////////////////////////////////////////////////////////////////////////////////
 | 
						|
//hist
 | 
						|
void calcHistGold(const cv::Mat& src, cv::Mat& hist)
 | 
						|
{
 | 
						|
    hist.create(1, 256, CV_32SC1);
 | 
						|
    hist.setTo(cv::Scalar::all(0));
 | 
						|
 | 
						|
    int* hist_row = hist.ptr<int>();
 | 
						|
    for (int y = 0; y < src.rows; ++y)
 | 
						|
    {
 | 
						|
        const uchar* src_row = src.ptr(y);
 | 
						|
 | 
						|
        for (int x = 0; x < src.cols; ++x)
 | 
						|
            ++hist_row[src_row[x]];
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
PARAM_TEST_CASE(histTestBase, MatType, MatType)
 | 
						|
{
 | 
						|
    int type_src;
 | 
						|
 | 
						|
    //src mat
 | 
						|
    cv::Mat src;
 | 
						|
    cv::Mat dst_hist;
 | 
						|
    //set up roi
 | 
						|
    int roicols;
 | 
						|
    int roirows;
 | 
						|
    int srcx;
 | 
						|
    int srcy;
 | 
						|
    //src mat with roi
 | 
						|
    cv::Mat src_roi;
 | 
						|
    //ocl dst mat, dst_hist and gdst_hist don't have roi
 | 
						|
    cv::ocl::oclMat gdst_hist;
 | 
						|
    //ocl mat with roi
 | 
						|
    cv::ocl::oclMat gsrc_roi;
 | 
						|
//    std::vector<cv::ocl::Info> oclinfo;
 | 
						|
 | 
						|
    virtual void SetUp()
 | 
						|
    {
 | 
						|
        type_src   = GET_PARAM(0);
 | 
						|
        
 | 
						|
        cv::RNG &rng = TS::ptr()->get_rng();
 | 
						|
        cv::Size size = cv::Size(MWIDTH, MHEIGHT);
 | 
						|
 | 
						|
        src = randomMat(rng, size, type_src, 0, 256, false);
 | 
						|
 | 
						|
//        int devnums = getDevice(oclinfo);
 | 
						|
//        CV_Assert(devnums > 0);
 | 
						|
        //if you want to use undefault device, set it here
 | 
						|
        //setDevice(oclinfo[0]);
 | 
						|
    }
 | 
						|
 | 
						|
    void random_roi()
 | 
						|
    {
 | 
						|
#ifdef RANDOMROI
 | 
						|
        cv::RNG &rng = TS::ptr()->get_rng();
 | 
						|
 | 
						|
        //randomize ROI
 | 
						|
        roicols = rng.uniform(1, src.cols);
 | 
						|
        roirows = rng.uniform(1, src.rows);
 | 
						|
        srcx = rng.uniform(0, src.cols - roicols);
 | 
						|
        srcy = rng.uniform(0, src.rows - roirows);
 | 
						|
#else
 | 
						|
        roicols = src.cols;
 | 
						|
        roirows = src.rows;
 | 
						|
        srcx = 0;
 | 
						|
        srcy = 0;
 | 
						|
#endif
 | 
						|
        src_roi = src(Rect(srcx, srcy, roicols, roirows));
 | 
						|
 | 
						|
        gsrc_roi = src_roi;
 | 
						|
    }
 | 
						|
};
 | 
						|
///////////////////////////calcHist///////////////////////////////////////
 | 
						|
struct calcHist : histTestBase {};
 | 
						|
 | 
						|
TEST_P(calcHist, Mat)
 | 
						|
{
 | 
						|
    for(int j = 0; j < LOOP_TIMES; j++)
 | 
						|
    {
 | 
						|
        random_roi();
 | 
						|
 | 
						|
        cv::Mat cpu_hist;
 | 
						|
 | 
						|
        calcHistGold(src_roi, dst_hist);
 | 
						|
        cv::ocl::calcHist(gsrc_roi, gdst_hist);
 | 
						|
 | 
						|
        gdst_hist.download(cpu_hist);
 | 
						|
 | 
						|
        char sss[1024];
 | 
						|
        sprintf(sss, "roicols=%d,roirows=%d,srcx=%d,srcy=%d\n", roicols, roirows, srcx, srcy);
 | 
						|
        EXPECT_MAT_NEAR(dst_hist, cpu_hist, 0.0, sss);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
///////////////////////////Convolve//////////////////////////////////
 | 
						|
PARAM_TEST_CASE(ConvolveTestBase, MatType, bool)
 | 
						|
{
 | 
						|
    int type;
 | 
						|
    //src mat
 | 
						|
    cv::Mat mat1;
 | 
						|
    cv::Mat mat2;
 | 
						|
    cv::Mat dst;
 | 
						|
    cv::Mat dst1; //bak, for two outputs
 | 
						|
    // set up roi
 | 
						|
    int roicols;
 | 
						|
    int roirows;
 | 
						|
    int src1x;
 | 
						|
    int src1y;
 | 
						|
    int src2x;
 | 
						|
    int src2y;
 | 
						|
    int dstx;
 | 
						|
    int dsty;
 | 
						|
    //src mat with roi
 | 
						|
    cv::Mat mat1_roi;
 | 
						|
    cv::Mat mat2_roi;
 | 
						|
    cv::Mat dst_roi;
 | 
						|
    cv::Mat dst1_roi; //bak
 | 
						|
    //ocl dst mat for testing
 | 
						|
    cv::ocl::oclMat gdst_whole;
 | 
						|
    cv::ocl::oclMat gdst1_whole; //bak
 | 
						|
    //ocl mat with roi
 | 
						|
    cv::ocl::oclMat gmat1;
 | 
						|
    cv::ocl::oclMat gmat2;
 | 
						|
    cv::ocl::oclMat gdst;
 | 
						|
    cv::ocl::oclMat gdst1;   //bak
 | 
						|
    virtual void SetUp()
 | 
						|
    {
 | 
						|
        type = GET_PARAM(0);
 | 
						|
 | 
						|
        cv::RNG &rng = TS::ptr()->get_rng();
 | 
						|
 | 
						|
        cv::Size size(MWIDTH, MHEIGHT);
 | 
						|
 | 
						|
        mat1 = randomMat(rng, size, type, 5, 16, false);
 | 
						|
        mat2 = randomMat(rng, size, type, 5, 16, false);
 | 
						|
        dst  = randomMat(rng, size, type, 5, 16, false);
 | 
						|
        dst1  = randomMat(rng, size, type, 5, 16, false);
 | 
						|
    }
 | 
						|
    void random_roi()
 | 
						|
    {
 | 
						|
        cv::RNG &rng = TS::ptr()->get_rng();
 | 
						|
 | 
						|
#ifdef RANDOMROI
 | 
						|
        //randomize ROI
 | 
						|
        roicols = rng.uniform(1, mat1.cols);
 | 
						|
        roirows = rng.uniform(1, mat1.rows);
 | 
						|
        src1x   = rng.uniform(0, mat1.cols - roicols);
 | 
						|
        src1y   = rng.uniform(0, mat1.rows - roirows);
 | 
						|
        dstx    = rng.uniform(0, dst.cols  - roicols);
 | 
						|
        dsty    = rng.uniform(0, dst.rows  - roirows);
 | 
						|
#else
 | 
						|
        roicols = mat1.cols;
 | 
						|
        roirows = mat1.rows;
 | 
						|
        src1x = 0;
 | 
						|
        src1y = 0;
 | 
						|
        dstx = 0;
 | 
						|
        dsty = 0;
 | 
						|
#endif
 | 
						|
        src2x   = rng.uniform(0, mat2.cols - roicols);
 | 
						|
        src2y   = rng.uniform(0, mat2.rows - roirows);
 | 
						|
        mat1_roi = mat1(Rect(src1x, src1y, roicols, roirows));
 | 
						|
        mat2_roi = mat2(Rect(src2x, src2y, roicols, roirows));
 | 
						|
        dst_roi  = dst(Rect(dstx, dsty, roicols, roirows));
 | 
						|
        dst1_roi = dst1(Rect(dstx, dsty, roicols, roirows));
 | 
						|
 | 
						|
        gdst_whole = dst;
 | 
						|
        gdst = gdst_whole(Rect(dstx, dsty, roicols, roirows));
 | 
						|
 | 
						|
        gdst1_whole = dst1;
 | 
						|
        gdst1 = gdst1_whole(Rect(dstx, dsty, roicols, roirows));
 | 
						|
 | 
						|
        gmat1 = mat1_roi;
 | 
						|
        gmat2 = mat2_roi;
 | 
						|
        //end
 | 
						|
    }
 | 
						|
 | 
						|
};
 | 
						|
struct Convolve : ConvolveTestBase {};
 | 
						|
 | 
						|
void conv2( cv::Mat x, cv::Mat y, cv::Mat z)
 | 
						|
{
 | 
						|
    int N1 = x.rows;
 | 
						|
    int M1 = x.cols;
 | 
						|
    int N2 = y.rows;
 | 
						|
    int M2 = y.cols;
 | 
						|
 | 
						|
    int i,j;
 | 
						|
    int m,n;
 | 
						|
    
 | 
						|
 | 
						|
    float *kerneldata = (float *)(x.data);
 | 
						|
    float *srcdata = (float *)(y.data);
 | 
						|
    float *dstdata = (float *)(z.data);
 | 
						|
 | 
						|
    for(i=0;i<N2;i++)
 | 
						|
        for(j=0;j<M2;j++)
 | 
						|
        {
 | 
						|
            float temp =0;
 | 
						|
            for(m=0;m<N1;m++)
 | 
						|
                for(n=0;n<M1;n++)
 | 
						|
                {
 | 
						|
                    int r, c;
 | 
						|
                    r = min(max((i-N1/2+m), 0), N2-1);
 | 
						|
                    c = min(max((j-M1/2+n), 0), M2-1);
 | 
						|
                        temp += kerneldata[m*(x.step>>2)+n]*srcdata[r*(y.step>>2)+c];
 | 
						|
                }
 | 
						|
            dstdata[i*(z.step >> 2)+j]=temp;
 | 
						|
        }
 | 
						|
}
 | 
						|
TEST_P(Convolve, Mat)
 | 
						|
{
 | 
						|
    if(mat1.type()!=CV_32FC1)
 | 
						|
    {
 | 
						|
        cout<<"\tUnsupported type\t\n";
 | 
						|
    }
 | 
						|
    for(int j=0;j<LOOP_TIMES;j++)
 | 
						|
    {
 | 
						|
        random_roi();
 | 
						|
        cv::ocl::oclMat temp1;
 | 
						|
        cv::Mat kernel_cpu= mat2(Rect(0,0,7,7));
 | 
						|
        temp1 = kernel_cpu;
 | 
						|
 | 
						|
        conv2(kernel_cpu,mat1_roi,dst_roi);
 | 
						|
        cv::ocl::convolve(gmat1,temp1,gdst);
 | 
						|
       
 | 
						|
        cv::Mat cpu_dst;
 | 
						|
        gdst_whole.download(cpu_dst);
 | 
						|
 | 
						|
        char sss[1024];
 | 
						|
        sprintf(sss, "roicols=%d,roirows=%d,src1x=%d,src1y=%d,dstx=%d,dsty=%d,src2x=%d,src2y=%d", roicols, roirows, src1x, src1y, dstx, dsty, src2x, src2y);
 | 
						|
 | 
						|
        EXPECT_MAT_NEAR(dst, cpu_dst, 1e-1, sss);
 | 
						|
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
INSTANTIATE_TEST_CASE_P(ImgprocTestBase, equalizeHist, Combine(
 | 
						|
                            ONE_TYPE(CV_8UC1),
 | 
						|
                            NULL_TYPE,
 | 
						|
                            ONE_TYPE(CV_8UC1),
 | 
						|
                            NULL_TYPE,
 | 
						|
                            NULL_TYPE,
 | 
						|
                            Values(false))); // Values(false) is the reserved parameter
 | 
						|
 | 
						|
//INSTANTIATE_TEST_CASE_P(ImgprocTestBase, bilateralFilter, Combine(
 | 
						|
//	ONE_TYPE(CV_8UC1),
 | 
						|
//	NULL_TYPE,
 | 
						|
//	ONE_TYPE(CV_8UC1),
 | 
						|
//	NULL_TYPE,
 | 
						|
//	NULL_TYPE,
 | 
						|
//	Values(false))); // Values(false) is the reserved parameter
 | 
						|
 | 
						|
 | 
						|
INSTANTIATE_TEST_CASE_P(ImgprocTestBase, CopyMakeBorder, Combine(
 | 
						|
	Values(CV_8UC1, CV_8UC4,CV_32SC1, CV_32SC4,CV_32FC1, CV_32FC4),
 | 
						|
	NULL_TYPE,
 | 
						|
	Values(CV_8UC1,CV_8UC4,CV_32SC1, CV_32SC4,CV_32FC1, CV_32FC4),
 | 
						|
	NULL_TYPE,
 | 
						|
	NULL_TYPE,
 | 
						|
	Values(false))); // Values(false) is the reserved parameter
 | 
						|
 | 
						|
INSTANTIATE_TEST_CASE_P(ImgprocTestBase, cornerMinEigenVal, Combine(
 | 
						|
	Values(CV_8UC1,CV_32FC1),
 | 
						|
	NULL_TYPE,
 | 
						|
	ONE_TYPE(CV_32FC1),
 | 
						|
	NULL_TYPE,
 | 
						|
	NULL_TYPE,
 | 
						|
	Values(false))); // Values(false) is the reserved parameter
 | 
						|
 | 
						|
INSTANTIATE_TEST_CASE_P(ImgprocTestBase, cornerHarris, Combine(
 | 
						|
	Values(CV_8UC1,CV_32FC1),
 | 
						|
	NULL_TYPE,
 | 
						|
	ONE_TYPE(CV_32FC1),
 | 
						|
	NULL_TYPE,
 | 
						|
	NULL_TYPE,
 | 
						|
	Values(false))); // Values(false) is the reserved parameter
 | 
						|
 | 
						|
 | 
						|
INSTANTIATE_TEST_CASE_P(ImgprocTestBase, integral, Combine(
 | 
						|
                            ONE_TYPE(CV_8UC1),
 | 
						|
                            NULL_TYPE,
 | 
						|
                            ONE_TYPE(CV_32SC1),
 | 
						|
                            ONE_TYPE(CV_32FC1),
 | 
						|
                            NULL_TYPE,
 | 
						|
                            Values(false))); // Values(false) is the reserved parameter
 | 
						|
 | 
						|
INSTANTIATE_TEST_CASE_P(Imgproc, WarpAffine, Combine(
 | 
						|
                            Values(CV_8UC1, CV_8UC3,CV_8UC4, CV_32FC1, CV_32FC4),
 | 
						|
                            Values((MatType)cv::INTER_NEAREST, (MatType)cv::INTER_LINEAR,
 | 
						|
                                    (MatType)cv::INTER_CUBIC, (MatType)(cv::INTER_NEAREST | cv::WARP_INVERSE_MAP),
 | 
						|
                                    (MatType)(cv::INTER_LINEAR | cv::WARP_INVERSE_MAP), (MatType)(cv::INTER_CUBIC | cv::WARP_INVERSE_MAP))));
 | 
						|
 | 
						|
 | 
						|
INSTANTIATE_TEST_CASE_P(Imgproc, WarpPerspective, Combine
 | 
						|
                        (Values(CV_8UC1, CV_8UC3,CV_8UC4, CV_32FC1, CV_32FC4),
 | 
						|
                         Values((MatType)cv::INTER_NEAREST, (MatType)cv::INTER_LINEAR,
 | 
						|
                                (MatType)cv::INTER_CUBIC, (MatType)(cv::INTER_NEAREST | cv::WARP_INVERSE_MAP),
 | 
						|
                                (MatType)(cv::INTER_LINEAR | cv::WARP_INVERSE_MAP), (MatType)(cv::INTER_CUBIC | cv::WARP_INVERSE_MAP))));
 | 
						|
 | 
						|
 | 
						|
INSTANTIATE_TEST_CASE_P(Imgproc, Resize, Combine(
 | 
						|
                            Values(CV_8UC1, CV_8UC3,CV_8UC4, CV_32FC1, CV_32FC4),  Values(cv::Size()),
 | 
						|
                            Values(0.5, 1.5, 2), Values(0.5, 1.5, 2), Values((MatType)cv::INTER_NEAREST, (MatType)cv::INTER_LINEAR)));
 | 
						|
 | 
						|
 | 
						|
INSTANTIATE_TEST_CASE_P(Imgproc, Threshold, Combine(
 | 
						|
                            Values(CV_8UC1, CV_32FC1), Values(ThreshOp(cv::THRESH_BINARY),
 | 
						|
                                    ThreshOp(cv::THRESH_BINARY_INV), ThreshOp(cv::THRESH_TRUNC),
 | 
						|
                                    ThreshOp(cv::THRESH_TOZERO), ThreshOp(cv::THRESH_TOZERO_INV))));
 | 
						|
 | 
						|
 | 
						|
INSTANTIATE_TEST_CASE_P(Imgproc, meanShiftFiltering, Combine(
 | 
						|
                            ONE_TYPE(CV_8UC4),
 | 
						|
                            ONE_TYPE(CV_16SC2),
 | 
						|
                            Values(5),
 | 
						|
                            Values(6),
 | 
						|
                            Values(cv::TermCriteria(cv::TermCriteria::COUNT + cv::TermCriteria::EPS, 5, 1))
 | 
						|
                        ));
 | 
						|
                        
 | 
						|
 | 
						|
INSTANTIATE_TEST_CASE_P(Imgproc, meanShiftProc, Combine(
 | 
						|
       ONE_TYPE(CV_8UC4),
 | 
						|
       ONE_TYPE(CV_16SC2),
 | 
						|
       Values(5),
 | 
						|
       Values(6),
 | 
						|
       Values(cv::TermCriteria(cv::TermCriteria::COUNT+cv::TermCriteria::EPS, 5, 1))
 | 
						|
));
 | 
						|
 | 
						|
INSTANTIATE_TEST_CASE_P(Imgproc, Remap, Combine(
 | 
						|
            Values(CV_8UC1, CV_8UC3,CV_8UC4, CV_32FC1, CV_32FC4),
 | 
						|
            Values(CV_32FC1, CV_16SC2, CV_32FC2),Values(-1,CV_32FC1),
 | 
						|
            Values((int)cv::INTER_NEAREST, (int)cv::INTER_LINEAR), 
 | 
						|
            Values((int)cv::BORDER_CONSTANT)));
 | 
						|
 | 
						|
 | 
						|
INSTANTIATE_TEST_CASE_P(histTestBase, calcHist, Combine(
 | 
						|
                               ONE_TYPE(CV_8UC1),
 | 
						|
                               ONE_TYPE(CV_32SC1) //no use
 | 
						|
));
 | 
						|
 | 
						|
INSTANTIATE_TEST_CASE_P(ConvolveTestBase, Convolve, Combine(
 | 
						|
                            Values(CV_32FC1, CV_32FC1),
 | 
						|
                            Values(false))); // Values(false) is the reserved parameter
 | 
						|
#endif // HAVE_OPENCL
 |