1250 lines
		
	
	
		
			46 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1250 lines
		
	
	
		
			46 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // Copyright 2012 Google Inc. All Rights Reserved.
 | |
| //
 | |
| // Use of this source code is governed by a BSD-style license
 | |
| // that can be found in the COPYING file in the root of the source
 | |
| // tree. An additional intellectual property rights grant can be found
 | |
| // in the file PATENTS. All contributing project authors may
 | |
| // be found in the AUTHORS file in the root of the source tree.
 | |
| // -----------------------------------------------------------------------------
 | |
| //
 | |
| // main entry for the decoder
 | |
| //
 | |
| // Authors: Vikas Arora (vikaas.arora@gmail.com)
 | |
| //          Jyrki Alakuijala (jyrki@google.com)
 | |
| 
 | |
| #include <stdio.h>
 | |
| #include <stdlib.h>
 | |
| #include "./vp8li.h"
 | |
| #include "../dsp/lossless.h"
 | |
| #include "../dsp/yuv.h"
 | |
| #include "../utils/huffman.h"
 | |
| #include "../utils/utils.h"
 | |
| 
 | |
| #if defined(__cplusplus) || defined(c_plusplus)
 | |
| extern "C" {
 | |
| #endif
 | |
| 
 | |
| #define NUM_ARGB_CACHE_ROWS          16
 | |
| 
 | |
| static const int kCodeLengthLiterals = 16;
 | |
| static const int kCodeLengthRepeatCode = 16;
 | |
| static const int kCodeLengthExtraBits[3] = { 2, 3, 7 };
 | |
| static const int kCodeLengthRepeatOffsets[3] = { 3, 3, 11 };
 | |
| 
 | |
| // -----------------------------------------------------------------------------
 | |
| //  Five Huffman codes are used at each meta code:
 | |
| //  1. green + length prefix codes + color cache codes,
 | |
| //  2. alpha,
 | |
| //  3. red,
 | |
| //  4. blue, and,
 | |
| //  5. distance prefix codes.
 | |
| typedef enum {
 | |
|   GREEN = 0,
 | |
|   RED   = 1,
 | |
|   BLUE  = 2,
 | |
|   ALPHA = 3,
 | |
|   DIST  = 4
 | |
| } HuffIndex;
 | |
| 
 | |
| static const uint16_t kAlphabetSize[HUFFMAN_CODES_PER_META_CODE] = {
 | |
|   NUM_LITERAL_CODES + NUM_LENGTH_CODES,
 | |
|   NUM_LITERAL_CODES, NUM_LITERAL_CODES, NUM_LITERAL_CODES,
 | |
|   NUM_DISTANCE_CODES
 | |
| };
 | |
| 
 | |
| 
 | |
| #define NUM_CODE_LENGTH_CODES       19
 | |
| static const uint8_t kCodeLengthCodeOrder[NUM_CODE_LENGTH_CODES] = {
 | |
|   17, 18, 0, 1, 2, 3, 4, 5, 16, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
 | |
| };
 | |
| 
 | |
| #define CODE_TO_PLANE_CODES        120
 | |
| static const uint8_t code_to_plane_lut[CODE_TO_PLANE_CODES] = {
 | |
|   0x18, 0x07, 0x17, 0x19, 0x28, 0x06, 0x27, 0x29, 0x16, 0x1a,
 | |
|   0x26, 0x2a, 0x38, 0x05, 0x37, 0x39, 0x15, 0x1b, 0x36, 0x3a,
 | |
|   0x25, 0x2b, 0x48, 0x04, 0x47, 0x49, 0x14, 0x1c, 0x35, 0x3b,
 | |
|   0x46, 0x4a, 0x24, 0x2c, 0x58, 0x45, 0x4b, 0x34, 0x3c, 0x03,
 | |
|   0x57, 0x59, 0x13, 0x1d, 0x56, 0x5a, 0x23, 0x2d, 0x44, 0x4c,
 | |
|   0x55, 0x5b, 0x33, 0x3d, 0x68, 0x02, 0x67, 0x69, 0x12, 0x1e,
 | |
|   0x66, 0x6a, 0x22, 0x2e, 0x54, 0x5c, 0x43, 0x4d, 0x65, 0x6b,
 | |
|   0x32, 0x3e, 0x78, 0x01, 0x77, 0x79, 0x53, 0x5d, 0x11, 0x1f,
 | |
|   0x64, 0x6c, 0x42, 0x4e, 0x76, 0x7a, 0x21, 0x2f, 0x75, 0x7b,
 | |
|   0x31, 0x3f, 0x63, 0x6d, 0x52, 0x5e, 0x00, 0x74, 0x7c, 0x41,
 | |
|   0x4f, 0x10, 0x20, 0x62, 0x6e, 0x30, 0x73, 0x7d, 0x51, 0x5f,
 | |
|   0x40, 0x72, 0x7e, 0x61, 0x6f, 0x50, 0x71, 0x7f, 0x60, 0x70
 | |
| };
 | |
| 
 | |
| static int DecodeImageStream(int xsize, int ysize,
 | |
|                              int is_level0,
 | |
|                              VP8LDecoder* const dec,
 | |
|                              uint32_t** const decoded_data);
 | |
| 
 | |
| //------------------------------------------------------------------------------
 | |
| 
 | |
| int VP8LCheckSignature(const uint8_t* const data, size_t size) {
 | |
|   return (size >= 1) && (data[0] == VP8L_MAGIC_BYTE);
 | |
| }
 | |
| 
 | |
| static int ReadImageInfo(VP8LBitReader* const br,
 | |
|                          int* const width, int* const height,
 | |
|                          int* const has_alpha) {
 | |
|   const uint8_t signature = VP8LReadBits(br, 8);
 | |
|   if (!VP8LCheckSignature(&signature, 1)) {
 | |
|     return 0;
 | |
|   }
 | |
|   *width = VP8LReadBits(br, VP8L_IMAGE_SIZE_BITS) + 1;
 | |
|   *height = VP8LReadBits(br, VP8L_IMAGE_SIZE_BITS) + 1;
 | |
|   *has_alpha = VP8LReadBits(br, 1);
 | |
|   VP8LReadBits(br, VP8L_VERSION_BITS);  // Read/ignore the version number.
 | |
|   return 1;
 | |
| }
 | |
| 
 | |
| int VP8LGetInfo(const uint8_t* data, size_t data_size,
 | |
|                 int* const width, int* const height, int* const has_alpha) {
 | |
|   if (data == NULL || data_size < VP8L_FRAME_HEADER_SIZE) {
 | |
|     return 0;         // not enough data
 | |
|   } else {
 | |
|     int w, h, a;
 | |
|     VP8LBitReader br;
 | |
|     VP8LInitBitReader(&br, data, data_size);
 | |
|     if (!ReadImageInfo(&br, &w, &h, &a)) {
 | |
|       return 0;
 | |
|     }
 | |
|     if (width != NULL) *width = w;
 | |
|     if (height != NULL) *height = h;
 | |
|     if (has_alpha != NULL) *has_alpha = a;
 | |
|     return 1;
 | |
|   }
 | |
| }
 | |
| 
 | |
| //------------------------------------------------------------------------------
 | |
| 
 | |
| static WEBP_INLINE int GetCopyDistance(int distance_symbol,
 | |
|                                        VP8LBitReader* const br) {
 | |
|   int extra_bits, offset;
 | |
|   if (distance_symbol < 4) {
 | |
|     return distance_symbol + 1;
 | |
|   }
 | |
|   extra_bits = (distance_symbol - 2) >> 1;
 | |
|   offset = (2 + (distance_symbol & 1)) << extra_bits;
 | |
|   return offset + VP8LReadBits(br, extra_bits) + 1;
 | |
| }
 | |
| 
 | |
| static WEBP_INLINE int GetCopyLength(int length_symbol,
 | |
|                                      VP8LBitReader* const br) {
 | |
|   // Length and distance prefixes are encoded the same way.
 | |
|   return GetCopyDistance(length_symbol, br);
 | |
| }
 | |
| 
 | |
| static WEBP_INLINE int PlaneCodeToDistance(int xsize, int plane_code) {
 | |
|   if (plane_code > CODE_TO_PLANE_CODES) {
 | |
|     return plane_code - CODE_TO_PLANE_CODES;
 | |
|   } else {
 | |
|     const int dist_code = code_to_plane_lut[plane_code - 1];
 | |
|     const int yoffset = dist_code >> 4;
 | |
|     const int xoffset = 8 - (dist_code & 0xf);
 | |
|     const int dist = yoffset * xsize + xoffset;
 | |
|     return (dist >= 1) ? dist : 1;
 | |
|   }
 | |
| }
 | |
| 
 | |
| //------------------------------------------------------------------------------
 | |
| // Decodes the next Huffman code from bit-stream.
 | |
| // FillBitWindow(br) needs to be called at minimum every second call
 | |
| // to ReadSymbol, in order to pre-fetch enough bits.
 | |
| static WEBP_INLINE int ReadSymbol(const HuffmanTree* tree,
 | |
|                                   VP8LBitReader* const br) {
 | |
|   const HuffmanTreeNode* node = tree->root_;
 | |
|   int num_bits = 0;
 | |
|   uint32_t bits = VP8LPrefetchBits(br);
 | |
|   assert(node != NULL);
 | |
|   while (!HuffmanTreeNodeIsLeaf(node)) {
 | |
|     node = HuffmanTreeNextNode(node, bits & 1);
 | |
|     bits >>= 1;
 | |
|     ++num_bits;
 | |
|   }
 | |
|   VP8LDiscardBits(br, num_bits);
 | |
|   return node->symbol_;
 | |
| }
 | |
| 
 | |
| static int ReadHuffmanCodeLengths(
 | |
|     VP8LDecoder* const dec, const int* const code_length_code_lengths,
 | |
|     int num_symbols, int* const code_lengths) {
 | |
|   int ok = 0;
 | |
|   VP8LBitReader* const br = &dec->br_;
 | |
|   int symbol;
 | |
|   int max_symbol;
 | |
|   int prev_code_len = DEFAULT_CODE_LENGTH;
 | |
|   HuffmanTree tree;
 | |
| 
 | |
|   if (!HuffmanTreeBuildImplicit(&tree, code_length_code_lengths,
 | |
|                                 NUM_CODE_LENGTH_CODES)) {
 | |
|     dec->status_ = VP8_STATUS_BITSTREAM_ERROR;
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   if (VP8LReadBits(br, 1)) {    // use length
 | |
|     const int length_nbits = 2 + 2 * VP8LReadBits(br, 3);
 | |
|     max_symbol = 2 + VP8LReadBits(br, length_nbits);
 | |
|     if (max_symbol > num_symbols) {
 | |
|       dec->status_ = VP8_STATUS_BITSTREAM_ERROR;
 | |
|       goto End;
 | |
|     }
 | |
|   } else {
 | |
|     max_symbol = num_symbols;
 | |
|   }
 | |
| 
 | |
|   symbol = 0;
 | |
|   while (symbol < num_symbols) {
 | |
|     int code_len;
 | |
|     if (max_symbol-- == 0) break;
 | |
|     VP8LFillBitWindow(br);
 | |
|     code_len = ReadSymbol(&tree, br);
 | |
|     if (code_len < kCodeLengthLiterals) {
 | |
|       code_lengths[symbol++] = code_len;
 | |
|       if (code_len != 0) prev_code_len = code_len;
 | |
|     } else {
 | |
|       const int use_prev = (code_len == kCodeLengthRepeatCode);
 | |
|       const int slot = code_len - kCodeLengthLiterals;
 | |
|       const int extra_bits = kCodeLengthExtraBits[slot];
 | |
|       const int repeat_offset = kCodeLengthRepeatOffsets[slot];
 | |
|       int repeat = VP8LReadBits(br, extra_bits) + repeat_offset;
 | |
|       if (symbol + repeat > num_symbols) {
 | |
|         dec->status_ = VP8_STATUS_BITSTREAM_ERROR;
 | |
|         goto End;
 | |
|       } else {
 | |
|         const int length = use_prev ? prev_code_len : 0;
 | |
|         while (repeat-- > 0) code_lengths[symbol++] = length;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   ok = 1;
 | |
| 
 | |
|  End:
 | |
|   HuffmanTreeRelease(&tree);
 | |
|   return ok;
 | |
| }
 | |
| 
 | |
| static int ReadHuffmanCode(int alphabet_size, VP8LDecoder* const dec,
 | |
|                            HuffmanTree* const tree) {
 | |
|   int ok = 0;
 | |
|   VP8LBitReader* const br = &dec->br_;
 | |
|   const int simple_code = VP8LReadBits(br, 1);
 | |
| 
 | |
|   if (simple_code) {  // Read symbols, codes & code lengths directly.
 | |
|     int symbols[2];
 | |
|     int codes[2];
 | |
|     int code_lengths[2];
 | |
|     const int num_symbols = VP8LReadBits(br, 1) + 1;
 | |
|     const int first_symbol_len_code = VP8LReadBits(br, 1);
 | |
|     // The first code is either 1 bit or 8 bit code.
 | |
|     symbols[0] = VP8LReadBits(br, (first_symbol_len_code == 0) ? 1 : 8);
 | |
|     codes[0] = 0;
 | |
|     code_lengths[0] = num_symbols - 1;
 | |
|     // The second code (if present), is always 8 bit long.
 | |
|     if (num_symbols == 2) {
 | |
|       symbols[1] = VP8LReadBits(br, 8);
 | |
|       codes[1] = 1;
 | |
|       code_lengths[1] = num_symbols - 1;
 | |
|     }
 | |
|     ok = HuffmanTreeBuildExplicit(tree, code_lengths, codes, symbols,
 | |
|                                   alphabet_size, num_symbols);
 | |
|   } else {  // Decode Huffman-coded code lengths.
 | |
|     int* code_lengths = NULL;
 | |
|     int i;
 | |
|     int code_length_code_lengths[NUM_CODE_LENGTH_CODES] = { 0 };
 | |
|     const int num_codes = VP8LReadBits(br, 4) + 4;
 | |
|     if (num_codes > NUM_CODE_LENGTH_CODES) {
 | |
|       dec->status_ = VP8_STATUS_BITSTREAM_ERROR;
 | |
|       return 0;
 | |
|     }
 | |
| 
 | |
|     code_lengths =
 | |
|         (int*)WebPSafeCalloc((uint64_t)alphabet_size, sizeof(*code_lengths));
 | |
|     if (code_lengths == NULL) {
 | |
|       dec->status_ = VP8_STATUS_OUT_OF_MEMORY;
 | |
|       return 0;
 | |
|     }
 | |
| 
 | |
|     for (i = 0; i < num_codes; ++i) {
 | |
|       code_length_code_lengths[kCodeLengthCodeOrder[i]] = VP8LReadBits(br, 3);
 | |
|     }
 | |
|     ok = ReadHuffmanCodeLengths(dec, code_length_code_lengths, alphabet_size,
 | |
|                                 code_lengths);
 | |
|     if (ok) {
 | |
|       ok = HuffmanTreeBuildImplicit(tree, code_lengths, alphabet_size);
 | |
|     }
 | |
|     free(code_lengths);
 | |
|   }
 | |
|   ok = ok && !br->error_;
 | |
|   if (!ok) {
 | |
|     dec->status_ = VP8_STATUS_BITSTREAM_ERROR;
 | |
|     return 0;
 | |
|   }
 | |
|   return 1;
 | |
| }
 | |
| 
 | |
| static void DeleteHtreeGroups(HTreeGroup* htree_groups, int num_htree_groups) {
 | |
|   if (htree_groups != NULL) {
 | |
|     int i, j;
 | |
|     for (i = 0; i < num_htree_groups; ++i) {
 | |
|       HuffmanTree* const htrees = htree_groups[i].htrees_;
 | |
|       for (j = 0; j < HUFFMAN_CODES_PER_META_CODE; ++j) {
 | |
|         HuffmanTreeRelease(&htrees[j]);
 | |
|       }
 | |
|     }
 | |
|     free(htree_groups);
 | |
|   }
 | |
| }
 | |
| 
 | |
| static int ReadHuffmanCodes(VP8LDecoder* const dec, int xsize, int ysize,
 | |
|                             int color_cache_bits, int allow_recursion) {
 | |
|   int i, j;
 | |
|   VP8LBitReader* const br = &dec->br_;
 | |
|   VP8LMetadata* const hdr = &dec->hdr_;
 | |
|   uint32_t* huffman_image = NULL;
 | |
|   HTreeGroup* htree_groups = NULL;
 | |
|   int num_htree_groups = 1;
 | |
| 
 | |
|   if (allow_recursion && VP8LReadBits(br, 1)) {
 | |
|     // use meta Huffman codes.
 | |
|     const int huffman_precision = VP8LReadBits(br, 3) + 2;
 | |
|     const int huffman_xsize = VP8LSubSampleSize(xsize, huffman_precision);
 | |
|     const int huffman_ysize = VP8LSubSampleSize(ysize, huffman_precision);
 | |
|     const int huffman_pixs = huffman_xsize * huffman_ysize;
 | |
|     if (!DecodeImageStream(huffman_xsize, huffman_ysize, 0, dec,
 | |
|                            &huffman_image)) {
 | |
|       dec->status_ = VP8_STATUS_BITSTREAM_ERROR;
 | |
|       goto Error;
 | |
|     }
 | |
|     hdr->huffman_subsample_bits_ = huffman_precision;
 | |
|     for (i = 0; i < huffman_pixs; ++i) {
 | |
|       // The huffman data is stored in red and green bytes.
 | |
|       const int group = (huffman_image[i] >> 8) & 0xffff;
 | |
|       huffman_image[i] = group;
 | |
|       if (group >= num_htree_groups) {
 | |
|         num_htree_groups = group + 1;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (br->error_) goto Error;
 | |
| 
 | |
|   assert(num_htree_groups <= 0x10000);
 | |
|   htree_groups =
 | |
|       (HTreeGroup*)WebPSafeCalloc((uint64_t)num_htree_groups,
 | |
|                                   sizeof(*htree_groups));
 | |
|   if (htree_groups == NULL) {
 | |
|     dec->status_ = VP8_STATUS_OUT_OF_MEMORY;
 | |
|     goto Error;
 | |
|   }
 | |
| 
 | |
|   for (i = 0; i < num_htree_groups; ++i) {
 | |
|     HuffmanTree* const htrees = htree_groups[i].htrees_;
 | |
|     for (j = 0; j < HUFFMAN_CODES_PER_META_CODE; ++j) {
 | |
|       int alphabet_size = kAlphabetSize[j];
 | |
|       if (j == 0 && color_cache_bits > 0) {
 | |
|         alphabet_size += 1 << color_cache_bits;
 | |
|       }
 | |
|       if (!ReadHuffmanCode(alphabet_size, dec, htrees + j)) goto Error;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // All OK. Finalize pointers and return.
 | |
|   hdr->huffman_image_ = huffman_image;
 | |
|   hdr->num_htree_groups_ = num_htree_groups;
 | |
|   hdr->htree_groups_ = htree_groups;
 | |
|   return 1;
 | |
| 
 | |
|  Error:
 | |
|   free(huffman_image);
 | |
|   DeleteHtreeGroups(htree_groups, num_htree_groups);
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| //------------------------------------------------------------------------------
 | |
| // Scaling.
 | |
| 
 | |
| static int AllocateAndInitRescaler(VP8LDecoder* const dec, VP8Io* const io) {
 | |
|   const int num_channels = 4;
 | |
|   const int in_width = io->mb_w;
 | |
|   const int out_width = io->scaled_width;
 | |
|   const int in_height = io->mb_h;
 | |
|   const int out_height = io->scaled_height;
 | |
|   const uint64_t work_size = 2 * num_channels * (uint64_t)out_width;
 | |
|   int32_t* work;        // Rescaler work area.
 | |
|   const uint64_t scaled_data_size = num_channels * (uint64_t)out_width;
 | |
|   uint32_t* scaled_data;  // Temporary storage for scaled BGRA data.
 | |
|   const uint64_t memory_size = sizeof(*dec->rescaler) +
 | |
|                                work_size * sizeof(*work) +
 | |
|                                scaled_data_size * sizeof(*scaled_data);
 | |
|   uint8_t* memory = (uint8_t*)WebPSafeCalloc(memory_size, sizeof(*memory));
 | |
|   if (memory == NULL) {
 | |
|     dec->status_ = VP8_STATUS_OUT_OF_MEMORY;
 | |
|     return 0;
 | |
|   }
 | |
|   assert(dec->rescaler_memory == NULL);
 | |
|   dec->rescaler_memory = memory;
 | |
| 
 | |
|   dec->rescaler = (WebPRescaler*)memory;
 | |
|   memory += sizeof(*dec->rescaler);
 | |
|   work = (int32_t*)memory;
 | |
|   memory += work_size * sizeof(*work);
 | |
|   scaled_data = (uint32_t*)memory;
 | |
| 
 | |
|   WebPRescalerInit(dec->rescaler, in_width, in_height, (uint8_t*)scaled_data,
 | |
|                    out_width, out_height, 0, num_channels,
 | |
|                    in_width, out_width, in_height, out_height, work);
 | |
|   return 1;
 | |
| }
 | |
| 
 | |
| //------------------------------------------------------------------------------
 | |
| // Export to ARGB
 | |
| 
 | |
| // We have special "export" function since we need to convert from BGRA
 | |
| static int Export(WebPRescaler* const rescaler, WEBP_CSP_MODE colorspace,
 | |
|                   int rgba_stride, uint8_t* const rgba) {
 | |
|   const uint32_t* const src = (const uint32_t*)rescaler->dst;
 | |
|   const int dst_width = rescaler->dst_width;
 | |
|   int num_lines_out = 0;
 | |
|   while (WebPRescalerHasPendingOutput(rescaler)) {
 | |
|     uint8_t* const dst = rgba + num_lines_out * rgba_stride;
 | |
|     WebPRescalerExportRow(rescaler);
 | |
|     VP8LConvertFromBGRA(src, dst_width, colorspace, dst);
 | |
|     ++num_lines_out;
 | |
|   }
 | |
|   return num_lines_out;
 | |
| }
 | |
| 
 | |
| // Emit scaled rows.
 | |
| static int EmitRescaledRows(const VP8LDecoder* const dec,
 | |
|                             const uint32_t* const data, int in_stride, int mb_h,
 | |
|                             uint8_t* const out, int out_stride) {
 | |
|   const WEBP_CSP_MODE colorspace = dec->output_->colorspace;
 | |
|   const uint8_t* const in = (const uint8_t*)data;
 | |
|   int num_lines_in = 0;
 | |
|   int num_lines_out = 0;
 | |
|   while (num_lines_in < mb_h) {
 | |
|     const uint8_t* const row_in = in + num_lines_in * in_stride;
 | |
|     uint8_t* const row_out = out + num_lines_out * out_stride;
 | |
|     num_lines_in += WebPRescalerImport(dec->rescaler, mb_h - num_lines_in,
 | |
|                                        row_in, in_stride);
 | |
|     num_lines_out += Export(dec->rescaler, colorspace, out_stride, row_out);
 | |
|   }
 | |
|   return num_lines_out;
 | |
| }
 | |
| 
 | |
| // Emit rows without any scaling.
 | |
| static int EmitRows(WEBP_CSP_MODE colorspace,
 | |
|                     const uint32_t* const data, int in_stride,
 | |
|                     int mb_w, int mb_h,
 | |
|                     uint8_t* const out, int out_stride) {
 | |
|   int lines = mb_h;
 | |
|   const uint8_t* row_in = (const uint8_t*)data;
 | |
|   uint8_t* row_out = out;
 | |
|   while (lines-- > 0) {
 | |
|     VP8LConvertFromBGRA((const uint32_t*)row_in, mb_w, colorspace, row_out);
 | |
|     row_in += in_stride;
 | |
|     row_out += out_stride;
 | |
|   }
 | |
|   return mb_h;  // Num rows out == num rows in.
 | |
| }
 | |
| 
 | |
| //------------------------------------------------------------------------------
 | |
| // Export to YUVA
 | |
| 
 | |
| static void ConvertToYUVA(const uint32_t* const src, int width, int y_pos,
 | |
|                           const WebPDecBuffer* const output) {
 | |
|   const WebPYUVABuffer* const buf = &output->u.YUVA;
 | |
|   // first, the luma plane
 | |
|   {
 | |
|     int i;
 | |
|     uint8_t* const y = buf->y + y_pos * buf->y_stride;
 | |
|     for (i = 0; i < width; ++i) {
 | |
|       const uint32_t p = src[i];
 | |
|       y[i] = VP8RGBToY((p >> 16) & 0xff, (p >> 8) & 0xff, (p >> 0) & 0xff);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // then U/V planes
 | |
|   {
 | |
|     uint8_t* const u = buf->u + (y_pos >> 1) * buf->u_stride;
 | |
|     uint8_t* const v = buf->v + (y_pos >> 1) * buf->v_stride;
 | |
|     const int uv_width = width >> 1;
 | |
|     int i;
 | |
|     for (i = 0; i < uv_width; ++i) {
 | |
|       const uint32_t v0 = src[2 * i + 0];
 | |
|       const uint32_t v1 = src[2 * i + 1];
 | |
|       // VP8RGBToU/V expects four accumulated pixels. Hence we need to
 | |
|       // scale r/g/b value by a factor 2. We just shift v0/v1 one bit less.
 | |
|       const int r = ((v0 >> 15) & 0x1fe) + ((v1 >> 15) & 0x1fe);
 | |
|       const int g = ((v0 >>  7) & 0x1fe) + ((v1 >>  7) & 0x1fe);
 | |
|       const int b = ((v0 <<  1) & 0x1fe) + ((v1 <<  1) & 0x1fe);
 | |
|       if (!(y_pos & 1)) {  // even lines: store values
 | |
|         u[i] = VP8RGBToU(r, g, b);
 | |
|         v[i] = VP8RGBToV(r, g, b);
 | |
|       } else {             // odd lines: average with previous values
 | |
|         const int tmp_u = VP8RGBToU(r, g, b);
 | |
|         const int tmp_v = VP8RGBToV(r, g, b);
 | |
|         // Approximated average-of-four. But it's an acceptable diff.
 | |
|         u[i] = (u[i] + tmp_u + 1) >> 1;
 | |
|         v[i] = (v[i] + tmp_v + 1) >> 1;
 | |
|       }
 | |
|     }
 | |
|     if (width & 1) {       // last pixel
 | |
|       const uint32_t v0 = src[2 * i + 0];
 | |
|       const int r = (v0 >> 14) & 0x3fc;
 | |
|       const int g = (v0 >>  6) & 0x3fc;
 | |
|       const int b = (v0 <<  2) & 0x3fc;
 | |
|       if (!(y_pos & 1)) {  // even lines
 | |
|         u[i] = VP8RGBToU(r, g, b);
 | |
|         v[i] = VP8RGBToV(r, g, b);
 | |
|       } else {             // odd lines (note: we could just skip this)
 | |
|         const int tmp_u = VP8RGBToU(r, g, b);
 | |
|         const int tmp_v = VP8RGBToV(r, g, b);
 | |
|         u[i] = (u[i] + tmp_u + 1) >> 1;
 | |
|         v[i] = (v[i] + tmp_v + 1) >> 1;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   // Lastly, store alpha if needed.
 | |
|   if (buf->a != NULL) {
 | |
|     int i;
 | |
|     uint8_t* const a = buf->a + y_pos * buf->a_stride;
 | |
|     for (i = 0; i < width; ++i) a[i] = (src[i] >> 24);
 | |
|   }
 | |
| }
 | |
| 
 | |
| static int ExportYUVA(const VP8LDecoder* const dec, int y_pos) {
 | |
|   WebPRescaler* const rescaler = dec->rescaler;
 | |
|   const uint32_t* const src = (const uint32_t*)rescaler->dst;
 | |
|   const int dst_width = rescaler->dst_width;
 | |
|   int num_lines_out = 0;
 | |
|   while (WebPRescalerHasPendingOutput(rescaler)) {
 | |
|     WebPRescalerExportRow(rescaler);
 | |
|     ConvertToYUVA(src, dst_width, y_pos, dec->output_);
 | |
|     ++y_pos;
 | |
|     ++num_lines_out;
 | |
|   }
 | |
|   return num_lines_out;
 | |
| }
 | |
| 
 | |
| static int EmitRescaledRowsYUVA(const VP8LDecoder* const dec,
 | |
|                                 const uint32_t* const data,
 | |
|                                 int in_stride, int mb_h) {
 | |
|   const uint8_t* const in = (const uint8_t*)data;
 | |
|   int num_lines_in = 0;
 | |
|   int y_pos = dec->last_out_row_;
 | |
|   while (num_lines_in < mb_h) {
 | |
|     const uint8_t* const row_in = in + num_lines_in * in_stride;
 | |
|     num_lines_in += WebPRescalerImport(dec->rescaler, mb_h - num_lines_in,
 | |
|                                        row_in, in_stride);
 | |
|     y_pos += ExportYUVA(dec, y_pos);
 | |
|   }
 | |
|   return y_pos;
 | |
| }
 | |
| 
 | |
| static int EmitRowsYUVA(const VP8LDecoder* const dec,
 | |
|                         const uint32_t* const data, int in_stride,
 | |
|                         int mb_w, int num_rows) {
 | |
|   int y_pos = dec->last_out_row_;
 | |
|   const uint8_t* row_in = (const uint8_t*)data;
 | |
|   while (num_rows-- > 0) {
 | |
|     ConvertToYUVA((const uint32_t*)row_in, mb_w, y_pos, dec->output_);
 | |
|     row_in += in_stride;
 | |
|     ++y_pos;
 | |
|   }
 | |
|   return y_pos;
 | |
| }
 | |
| 
 | |
| //------------------------------------------------------------------------------
 | |
| // Cropping.
 | |
| 
 | |
| // Sets io->mb_y, io->mb_h & io->mb_w according to start row, end row and
 | |
| // crop options. Also updates the input data pointer, so that it points to the
 | |
| // start of the cropped window.
 | |
| // Note that 'pixel_stride' is in units of 'uint32_t' (and not 'bytes).
 | |
| // Returns true if the crop window is not empty.
 | |
| static int SetCropWindow(VP8Io* const io, int y_start, int y_end,
 | |
|                          const uint32_t** const in_data, int pixel_stride) {
 | |
|   assert(y_start < y_end);
 | |
|   assert(io->crop_left < io->crop_right);
 | |
|   if (y_end > io->crop_bottom) {
 | |
|     y_end = io->crop_bottom;  // make sure we don't overflow on last row.
 | |
|   }
 | |
|   if (y_start < io->crop_top) {
 | |
|     const int delta = io->crop_top - y_start;
 | |
|     y_start = io->crop_top;
 | |
|     *in_data += pixel_stride * delta;
 | |
|   }
 | |
|   if (y_start >= y_end) return 0;  // Crop window is empty.
 | |
| 
 | |
|   *in_data += io->crop_left;
 | |
| 
 | |
|   io->mb_y = y_start - io->crop_top;
 | |
|   io->mb_w = io->crop_right - io->crop_left;
 | |
|   io->mb_h = y_end - y_start;
 | |
|   return 1;  // Non-empty crop window.
 | |
| }
 | |
| 
 | |
| //------------------------------------------------------------------------------
 | |
| 
 | |
| static WEBP_INLINE int GetMetaIndex(
 | |
|     const uint32_t* const image, int xsize, int bits, int x, int y) {
 | |
|   if (bits == 0) return 0;
 | |
|   return image[xsize * (y >> bits) + (x >> bits)];
 | |
| }
 | |
| 
 | |
| static WEBP_INLINE HTreeGroup* GetHtreeGroupForPos(VP8LMetadata* const hdr,
 | |
|                                                    int x, int y) {
 | |
|   const int meta_index = GetMetaIndex(hdr->huffman_image_, hdr->huffman_xsize_,
 | |
|                                       hdr->huffman_subsample_bits_, x, y);
 | |
|   assert(meta_index < hdr->num_htree_groups_);
 | |
|   return hdr->htree_groups_ + meta_index;
 | |
| }
 | |
| 
 | |
| //------------------------------------------------------------------------------
 | |
| // Main loop, with custom row-processing function
 | |
| 
 | |
| typedef void (*ProcessRowsFunc)(VP8LDecoder* const dec, int row);
 | |
| 
 | |
| static void ApplyInverseTransforms(VP8LDecoder* const dec, int num_rows,
 | |
|                                    const uint32_t* const rows) {
 | |
|   int n = dec->next_transform_;
 | |
|   const int cache_pixs = dec->width_ * num_rows;
 | |
|   const int start_row = dec->last_row_;
 | |
|   const int end_row = start_row + num_rows;
 | |
|   const uint32_t* rows_in = rows;
 | |
|   uint32_t* const rows_out = dec->argb_cache_;
 | |
| 
 | |
|   // Inverse transforms.
 | |
|   // TODO: most transforms only need to operate on the cropped region only.
 | |
|   memcpy(rows_out, rows_in, cache_pixs * sizeof(*rows_out));
 | |
|   while (n-- > 0) {
 | |
|     VP8LTransform* const transform = &dec->transforms_[n];
 | |
|     VP8LInverseTransform(transform, start_row, end_row, rows_in, rows_out);
 | |
|     rows_in = rows_out;
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Special method for paletted alpha data.
 | |
| static void ApplyInverseTransformsAlpha(VP8LDecoder* const dec, int num_rows,
 | |
|                                         const uint8_t* const rows) {
 | |
|   const int start_row = dec->last_row_;
 | |
|   const int end_row = start_row + num_rows;
 | |
|   const uint8_t* rows_in = rows;
 | |
|   uint8_t* rows_out = (uint8_t*)dec->io_->opaque + dec->io_->width * start_row;
 | |
|   VP8LTransform* const transform = &dec->transforms_[0];
 | |
|   assert(dec->next_transform_ == 1);
 | |
|   assert(transform->type_ == COLOR_INDEXING_TRANSFORM);
 | |
|   VP8LColorIndexInverseTransformAlpha(transform, start_row, end_row, rows_in,
 | |
|                                       rows_out);
 | |
| }
 | |
| 
 | |
| // Processes (transforms, scales & color-converts) the rows decoded after the
 | |
| // last call.
 | |
| static void ProcessRows(VP8LDecoder* const dec, int row) {
 | |
|   const uint32_t* const rows = dec->pixels_ + dec->width_ * dec->last_row_;
 | |
|   const int num_rows = row - dec->last_row_;
 | |
| 
 | |
|   if (num_rows <= 0) return;  // Nothing to be done.
 | |
|   ApplyInverseTransforms(dec, num_rows, rows);
 | |
| 
 | |
|   // Emit output.
 | |
|   {
 | |
|     VP8Io* const io = dec->io_;
 | |
|     const uint32_t* rows_data = dec->argb_cache_;
 | |
|     if (!SetCropWindow(io, dec->last_row_, row, &rows_data, io->width)) {
 | |
|       // Nothing to output (this time).
 | |
|     } else {
 | |
|       const WebPDecBuffer* const output = dec->output_;
 | |
|       const int in_stride = io->width * sizeof(*rows_data);
 | |
|       if (output->colorspace < MODE_YUV) {  // convert to RGBA
 | |
|         const WebPRGBABuffer* const buf = &output->u.RGBA;
 | |
|         uint8_t* const rgba = buf->rgba + dec->last_out_row_ * buf->stride;
 | |
|         const int num_rows_out = io->use_scaling ?
 | |
|             EmitRescaledRows(dec, rows_data, in_stride, io->mb_h,
 | |
|                              rgba, buf->stride) :
 | |
|             EmitRows(output->colorspace, rows_data, in_stride,
 | |
|                      io->mb_w, io->mb_h, rgba, buf->stride);
 | |
|         // Update 'last_out_row_'.
 | |
|         dec->last_out_row_ += num_rows_out;
 | |
|       } else {                              // convert to YUVA
 | |
|         dec->last_out_row_ = io->use_scaling ?
 | |
|             EmitRescaledRowsYUVA(dec, rows_data, in_stride, io->mb_h) :
 | |
|             EmitRowsYUVA(dec, rows_data, in_stride, io->mb_w, io->mb_h);
 | |
|       }
 | |
|       assert(dec->last_out_row_ <= output->height);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Update 'last_row_'.
 | |
|   dec->last_row_ = row;
 | |
|   assert(dec->last_row_ <= dec->height_);
 | |
| }
 | |
| 
 | |
| #define DECODE_DATA_FUNC(FUNC_NAME, TYPE, STORE_PIXEL)                         \
 | |
| static int FUNC_NAME(VP8LDecoder* const dec, TYPE* const data, int width,      \
 | |
|                      int height, ProcessRowsFunc process_func) {               \
 | |
|   int ok = 1;                                                                  \
 | |
|   int col = 0, row = 0;                                                        \
 | |
|   VP8LBitReader* const br = &dec->br_;                                         \
 | |
|   VP8LMetadata* const hdr = &dec->hdr_;                                        \
 | |
|   HTreeGroup* htree_group = hdr->htree_groups_;                                \
 | |
|   TYPE* src = data;                                                            \
 | |
|   TYPE* last_cached = data;                                                    \
 | |
|   TYPE* const src_end = data + width * height;                                 \
 | |
|   const int len_code_limit = NUM_LITERAL_CODES + NUM_LENGTH_CODES;             \
 | |
|   const int color_cache_limit = len_code_limit + hdr->color_cache_size_;       \
 | |
|   VP8LColorCache* const color_cache =                                          \
 | |
|       (hdr->color_cache_size_ > 0) ? &hdr->color_cache_ : NULL;                \
 | |
|   const int mask = hdr->huffman_mask_;                                         \
 | |
|   assert(htree_group != NULL);                                                 \
 | |
|   while (!br->eos_ && src < src_end) {                                         \
 | |
|     int code;                                                                  \
 | |
|     /* Only update when changing tile. Note we could use this test:        */  \
 | |
|     /* if "((((prev_col ^ col) | prev_row ^ row)) > mask)" -> tile changed */  \
 | |
|     /* but that's actually slower and needs storing the previous col/row.  */  \
 | |
|     if ((col & mask) == 0) {                                                   \
 | |
|       htree_group = GetHtreeGroupForPos(hdr, col, row);                        \
 | |
|     }                                                                          \
 | |
|     VP8LFillBitWindow(br);                                                     \
 | |
|     code = ReadSymbol(&htree_group->htrees_[GREEN], br);                       \
 | |
|     if (code < NUM_LITERAL_CODES) {  /* Literal*/                              \
 | |
|       int red, green, blue, alpha;                                             \
 | |
|       red = ReadSymbol(&htree_group->htrees_[RED], br);                        \
 | |
|       green = code;                                                            \
 | |
|       VP8LFillBitWindow(br);                                                   \
 | |
|       blue = ReadSymbol(&htree_group->htrees_[BLUE], br);                      \
 | |
|       alpha = ReadSymbol(&htree_group->htrees_[ALPHA], br);                    \
 | |
|       *src = STORE_PIXEL(alpha, red, green, blue);                             \
 | |
|     AdvanceByOne:                                                              \
 | |
|       ++src;                                                                   \
 | |
|       ++col;                                                                   \
 | |
|       if (col >= width) {                                                      \
 | |
|         col = 0;                                                               \
 | |
|         ++row;                                                                 \
 | |
|         if ((process_func != NULL) && (row % NUM_ARGB_CACHE_ROWS == 0)) {      \
 | |
|           process_func(dec, row);                                              \
 | |
|         }                                                                      \
 | |
|         if (color_cache != NULL) {                                             \
 | |
|           while (last_cached < src) {                                          \
 | |
|             VP8LColorCacheInsert(color_cache, *last_cached++);                 \
 | |
|           }                                                                    \
 | |
|         }                                                                      \
 | |
|       }                                                                        \
 | |
|     } else if (code < len_code_limit) {  /* Backward reference */              \
 | |
|       int dist_code, dist;                                                     \
 | |
|       const int length_sym = code - NUM_LITERAL_CODES;                         \
 | |
|       const int length = GetCopyLength(length_sym, br);                        \
 | |
|       const int dist_symbol = ReadSymbol(&htree_group->htrees_[DIST], br);     \
 | |
|       VP8LFillBitWindow(br);                                                   \
 | |
|       dist_code = GetCopyDistance(dist_symbol, br);                            \
 | |
|       dist = PlaneCodeToDistance(width, dist_code);                            \
 | |
|       if (src - data < dist || src_end - src < length) {                       \
 | |
|         ok = 0;                                                                \
 | |
|         goto End;                                                              \
 | |
|       }                                                                        \
 | |
|       {                                                                        \
 | |
|         int i;                                                                 \
 | |
|         for (i = 0; i < length; ++i) src[i] = src[i - dist];                   \
 | |
|         src += length;                                                         \
 | |
|       }                                                                        \
 | |
|       col += length;                                                           \
 | |
|       while (col >= width) {                                                   \
 | |
|         col -= width;                                                          \
 | |
|         ++row;                                                                 \
 | |
|         if ((process_func != NULL) && (row % NUM_ARGB_CACHE_ROWS == 0)) {      \
 | |
|           process_func(dec, row);                                              \
 | |
|         }                                                                      \
 | |
|       }                                                                        \
 | |
|       if (src < src_end) {                                                     \
 | |
|         htree_group = GetHtreeGroupForPos(hdr, col, row);                      \
 | |
|         if (color_cache != NULL) {                                             \
 | |
|           while (last_cached < src) {                                          \
 | |
|             VP8LColorCacheInsert(color_cache, *last_cached++);                 \
 | |
|           }                                                                    \
 | |
|         }                                                                      \
 | |
|       }                                                                        \
 | |
|     } else if (code < color_cache_limit) {  /* Color cache */                  \
 | |
|       const int key = code - len_code_limit;                                   \
 | |
|       assert(color_cache != NULL);                                             \
 | |
|       while (last_cached < src) {                                              \
 | |
|         VP8LColorCacheInsert(color_cache, *last_cached++);                     \
 | |
|       }                                                                        \
 | |
|       *src = VP8LColorCacheLookup(color_cache, key);                           \
 | |
|       goto AdvanceByOne;                                                       \
 | |
|     } else {  /* Not reached */                                                \
 | |
|       ok = 0;                                                                  \
 | |
|       goto End;                                                                \
 | |
|     }                                                                          \
 | |
|     ok = !br->error_;                                                          \
 | |
|     if (!ok) goto End;                                                         \
 | |
|   }                                                                            \
 | |
|   /* Process the remaining rows corresponding to last row-block. */            \
 | |
|   if (process_func != NULL) process_func(dec, row);                            \
 | |
| End:                                                                           \
 | |
|   if (br->error_ || !ok || (br->eos_ && src < src_end)) {                      \
 | |
|     ok = 0;                                                                    \
 | |
|     dec->status_ =                                                             \
 | |
|         (!br->eos_) ? VP8_STATUS_BITSTREAM_ERROR : VP8_STATUS_SUSPENDED;       \
 | |
|   } else if (src == src_end) {                                                 \
 | |
|     dec->state_ = READ_DATA;                                                   \
 | |
|   }                                                                            \
 | |
|   return ok;                                                                   \
 | |
| }
 | |
| 
 | |
| static WEBP_INLINE uint32_t GetARGBPixel(int alpha, int red, int green,
 | |
|                                          int blue) {
 | |
|   return (alpha << 24) | (red << 16) | (green << 8) | blue;
 | |
| }
 | |
| 
 | |
| static WEBP_INLINE uint8_t GetAlphaPixel(int alpha, int red, int green,
 | |
|                                          int blue) {
 | |
|   (void)alpha;
 | |
|   (void)red;
 | |
|   (void)blue;
 | |
|   return green;  // Alpha value is stored in green channel.
 | |
| }
 | |
| 
 | |
| DECODE_DATA_FUNC(DecodeImageData, uint32_t, GetARGBPixel)
 | |
| DECODE_DATA_FUNC(DecodeAlphaData, uint8_t, GetAlphaPixel)
 | |
| 
 | |
| #undef DECODE_DATA_FUNC
 | |
| 
 | |
| // -----------------------------------------------------------------------------
 | |
| // VP8LTransform
 | |
| 
 | |
| static void ClearTransform(VP8LTransform* const transform) {
 | |
|   free(transform->data_);
 | |
|   transform->data_ = NULL;
 | |
| }
 | |
| 
 | |
| // For security reason, we need to remap the color map to span
 | |
| // the total possible bundled values, and not just the num_colors.
 | |
| static int ExpandColorMap(int num_colors, VP8LTransform* const transform) {
 | |
|   int i;
 | |
|   const int final_num_colors = 1 << (8 >> transform->bits_);
 | |
|   uint32_t* const new_color_map =
 | |
|       (uint32_t*)WebPSafeMalloc((uint64_t)final_num_colors,
 | |
|                                 sizeof(*new_color_map));
 | |
|   if (new_color_map == NULL) {
 | |
|     return 0;
 | |
|   } else {
 | |
|     uint8_t* const data = (uint8_t*)transform->data_;
 | |
|     uint8_t* const new_data = (uint8_t*)new_color_map;
 | |
|     new_color_map[0] = transform->data_[0];
 | |
|     for (i = 4; i < 4 * num_colors; ++i) {
 | |
|       // Equivalent to AddPixelEq(), on a byte-basis.
 | |
|       new_data[i] = (data[i] + new_data[i - 4]) & 0xff;
 | |
|     }
 | |
|     for (; i < 4 * final_num_colors; ++i)
 | |
|       new_data[i] = 0;  // black tail.
 | |
|     free(transform->data_);
 | |
|     transform->data_ = new_color_map;
 | |
|   }
 | |
|   return 1;
 | |
| }
 | |
| 
 | |
| static int ReadTransform(int* const xsize, int const* ysize,
 | |
|                          VP8LDecoder* const dec) {
 | |
|   int ok = 1;
 | |
|   VP8LBitReader* const br = &dec->br_;
 | |
|   VP8LTransform* transform = &dec->transforms_[dec->next_transform_];
 | |
|   const VP8LImageTransformType type =
 | |
|       (VP8LImageTransformType)VP8LReadBits(br, 2);
 | |
| 
 | |
|   // Each transform type can only be present once in the stream.
 | |
|   if (dec->transforms_seen_ & (1U << type)) {
 | |
|     return 0;  // Already there, let's not accept the second same transform.
 | |
|   }
 | |
|   dec->transforms_seen_ |= (1U << type);
 | |
| 
 | |
|   transform->type_ = type;
 | |
|   transform->xsize_ = *xsize;
 | |
|   transform->ysize_ = *ysize;
 | |
|   transform->data_ = NULL;
 | |
|   ++dec->next_transform_;
 | |
|   assert(dec->next_transform_ <= NUM_TRANSFORMS);
 | |
| 
 | |
|   switch (type) {
 | |
|     case PREDICTOR_TRANSFORM:
 | |
|     case CROSS_COLOR_TRANSFORM:
 | |
|       transform->bits_ = VP8LReadBits(br, 3) + 2;
 | |
|       ok = DecodeImageStream(VP8LSubSampleSize(transform->xsize_,
 | |
|                                                transform->bits_),
 | |
|                              VP8LSubSampleSize(transform->ysize_,
 | |
|                                                transform->bits_),
 | |
|                              0, dec, &transform->data_);
 | |
|       break;
 | |
|     case COLOR_INDEXING_TRANSFORM: {
 | |
|        const int num_colors = VP8LReadBits(br, 8) + 1;
 | |
|        const int bits = (num_colors > 16) ? 0
 | |
|                       : (num_colors > 4) ? 1
 | |
|                       : (num_colors > 2) ? 2
 | |
|                       : 3;
 | |
|        *xsize = VP8LSubSampleSize(transform->xsize_, bits);
 | |
|        transform->bits_ = bits;
 | |
|        ok = DecodeImageStream(num_colors, 1, 0, dec, &transform->data_);
 | |
|        ok = ok && ExpandColorMap(num_colors, transform);
 | |
|       break;
 | |
|     }
 | |
|     case SUBTRACT_GREEN:
 | |
|       break;
 | |
|     default:
 | |
|       assert(0);    // can't happen
 | |
|       break;
 | |
|   }
 | |
| 
 | |
|   return ok;
 | |
| }
 | |
| 
 | |
| // -----------------------------------------------------------------------------
 | |
| // VP8LMetadata
 | |
| 
 | |
| static void InitMetadata(VP8LMetadata* const hdr) {
 | |
|   assert(hdr);
 | |
|   memset(hdr, 0, sizeof(*hdr));
 | |
| }
 | |
| 
 | |
| static void ClearMetadata(VP8LMetadata* const hdr) {
 | |
|   assert(hdr);
 | |
| 
 | |
|   free(hdr->huffman_image_);
 | |
|   DeleteHtreeGroups(hdr->htree_groups_, hdr->num_htree_groups_);
 | |
|   VP8LColorCacheClear(&hdr->color_cache_);
 | |
|   InitMetadata(hdr);
 | |
| }
 | |
| 
 | |
| // -----------------------------------------------------------------------------
 | |
| // VP8LDecoder
 | |
| 
 | |
| VP8LDecoder* VP8LNew(void) {
 | |
|   VP8LDecoder* const dec = (VP8LDecoder*)calloc(1, sizeof(*dec));
 | |
|   if (dec == NULL) return NULL;
 | |
|   dec->status_ = VP8_STATUS_OK;
 | |
|   dec->action_ = READ_DIM;
 | |
|   dec->state_ = READ_DIM;
 | |
|   return dec;
 | |
| }
 | |
| 
 | |
| void VP8LClear(VP8LDecoder* const dec) {
 | |
|   int i;
 | |
|   if (dec == NULL) return;
 | |
|   ClearMetadata(&dec->hdr_);
 | |
| 
 | |
|   free(dec->pixels_);
 | |
|   dec->pixels_ = NULL;
 | |
|   for (i = 0; i < dec->next_transform_; ++i) {
 | |
|     ClearTransform(&dec->transforms_[i]);
 | |
|   }
 | |
|   dec->next_transform_ = 0;
 | |
|   dec->transforms_seen_ = 0;
 | |
| 
 | |
|   free(dec->rescaler_memory);
 | |
|   dec->rescaler_memory = NULL;
 | |
| 
 | |
|   dec->output_ = NULL;   // leave no trace behind
 | |
| }
 | |
| 
 | |
| void VP8LDelete(VP8LDecoder* const dec) {
 | |
|   if (dec != NULL) {
 | |
|     VP8LClear(dec);
 | |
|     free(dec);
 | |
|   }
 | |
| }
 | |
| 
 | |
| static void UpdateDecoder(VP8LDecoder* const dec, int width, int height) {
 | |
|   VP8LMetadata* const hdr = &dec->hdr_;
 | |
|   const int num_bits = hdr->huffman_subsample_bits_;
 | |
|   dec->width_ = width;
 | |
|   dec->height_ = height;
 | |
| 
 | |
|   hdr->huffman_xsize_ = VP8LSubSampleSize(width, num_bits);
 | |
|   hdr->huffman_mask_ = (num_bits == 0) ? ~0 : (1 << num_bits) - 1;
 | |
| }
 | |
| 
 | |
| static int DecodeImageStream(int xsize, int ysize,
 | |
|                              int is_level0,
 | |
|                              VP8LDecoder* const dec,
 | |
|                              uint32_t** const decoded_data) {
 | |
|   int ok = 1;
 | |
|   int transform_xsize = xsize;
 | |
|   int transform_ysize = ysize;
 | |
|   VP8LBitReader* const br = &dec->br_;
 | |
|   VP8LMetadata* const hdr = &dec->hdr_;
 | |
|   uint32_t* data = NULL;
 | |
|   int color_cache_bits = 0;
 | |
| 
 | |
|   // Read the transforms (may recurse).
 | |
|   if (is_level0) {
 | |
|     while (ok && VP8LReadBits(br, 1)) {
 | |
|       ok = ReadTransform(&transform_xsize, &transform_ysize, dec);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Color cache
 | |
|   if (ok && VP8LReadBits(br, 1)) {
 | |
|     color_cache_bits = VP8LReadBits(br, 4);
 | |
|     ok = (color_cache_bits >= 1 && color_cache_bits <= MAX_CACHE_BITS);
 | |
|     if (!ok) {
 | |
|       dec->status_ = VP8_STATUS_BITSTREAM_ERROR;
 | |
|       goto End;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Read the Huffman codes (may recurse).
 | |
|   ok = ok && ReadHuffmanCodes(dec, transform_xsize, transform_ysize,
 | |
|                               color_cache_bits, is_level0);
 | |
|   if (!ok) {
 | |
|     dec->status_ = VP8_STATUS_BITSTREAM_ERROR;
 | |
|     goto End;
 | |
|   }
 | |
| 
 | |
|   // Finish setting up the color-cache
 | |
|   if (color_cache_bits > 0) {
 | |
|     hdr->color_cache_size_ = 1 << color_cache_bits;
 | |
|     if (!VP8LColorCacheInit(&hdr->color_cache_, color_cache_bits)) {
 | |
|       dec->status_ = VP8_STATUS_OUT_OF_MEMORY;
 | |
|       ok = 0;
 | |
|       goto End;
 | |
|     }
 | |
|   } else {
 | |
|     hdr->color_cache_size_ = 0;
 | |
|   }
 | |
|   UpdateDecoder(dec, transform_xsize, transform_ysize);
 | |
| 
 | |
|   if (is_level0) {   // level 0 complete
 | |
|     dec->state_ = READ_HDR;
 | |
|     goto End;
 | |
|   }
 | |
| 
 | |
|   {
 | |
|     const uint64_t total_size = (uint64_t)transform_xsize * transform_ysize;
 | |
|     data = (uint32_t*)WebPSafeMalloc(total_size, sizeof(*data));
 | |
|     if (data == NULL) {
 | |
|       dec->status_ = VP8_STATUS_OUT_OF_MEMORY;
 | |
|       ok = 0;
 | |
|       goto End;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Use the Huffman trees to decode the LZ77 encoded data.
 | |
|   ok = DecodeImageData(dec, data, transform_xsize, transform_ysize, NULL);
 | |
|   ok = ok && !br->error_;
 | |
| 
 | |
|  End:
 | |
| 
 | |
|   if (!ok) {
 | |
|     free(data);
 | |
|     ClearMetadata(hdr);
 | |
|     // If not enough data (br.eos_) resulted in BIT_STREAM_ERROR, update the
 | |
|     // status appropriately.
 | |
|     if (dec->status_ == VP8_STATUS_BITSTREAM_ERROR && dec->br_.eos_) {
 | |
|       dec->status_ = VP8_STATUS_SUSPENDED;
 | |
|     }
 | |
|   } else {
 | |
|     if (decoded_data != NULL) {
 | |
|       *decoded_data = data;
 | |
|     } else {
 | |
|       // We allocate image data in this function only for transforms. At level 0
 | |
|       // (that is: not the transforms), we shouldn't have allocated anything.
 | |
|       assert(data == NULL);
 | |
|       assert(is_level0);
 | |
|     }
 | |
|     if (!is_level0) ClearMetadata(hdr);  // Clean up temporary data behind.
 | |
|   }
 | |
|   return ok;
 | |
| }
 | |
| 
 | |
| //------------------------------------------------------------------------------
 | |
| // Allocate internal buffers dec->pixels_ and dec->argb_cache_.
 | |
| static int AllocateInternalBuffers(VP8LDecoder* const dec, int final_width,
 | |
|                                    size_t bytes_per_pixel) {
 | |
|   const int argb_cache_needed = (bytes_per_pixel == sizeof(uint32_t));
 | |
|   const uint64_t num_pixels = (uint64_t)dec->width_ * dec->height_;
 | |
|   // Scratch buffer corresponding to top-prediction row for transforming the
 | |
|   // first row in the row-blocks. Not needed for paletted alpha.
 | |
|   const uint64_t cache_top_pixels =
 | |
|       argb_cache_needed ? (uint16_t)final_width : 0ULL;
 | |
|   // Scratch buffer for temporary BGRA storage. Not needed for paletted alpha.
 | |
|   const uint64_t cache_pixels =
 | |
|       argb_cache_needed ? (uint64_t)final_width * NUM_ARGB_CACHE_ROWS : 0ULL;
 | |
|   const uint64_t total_num_pixels =
 | |
|       num_pixels + cache_top_pixels + cache_pixels;
 | |
| 
 | |
|   assert(dec->width_ <= final_width);
 | |
|   dec->pixels_ = (uint32_t*)WebPSafeMalloc(total_num_pixels, bytes_per_pixel);
 | |
|   if (dec->pixels_ == NULL) {
 | |
|     dec->argb_cache_ = NULL;    // for sanity check
 | |
|     dec->status_ = VP8_STATUS_OUT_OF_MEMORY;
 | |
|     return 0;
 | |
|   }
 | |
|   dec->argb_cache_ =
 | |
|       argb_cache_needed ? dec->pixels_ + num_pixels + cache_top_pixels : NULL;
 | |
|   return 1;
 | |
| }
 | |
| 
 | |
| //------------------------------------------------------------------------------
 | |
| 
 | |
| // Special row-processing that only stores the alpha data.
 | |
| static void ExtractAlphaRows(VP8LDecoder* const dec, int row) {
 | |
|   const int num_rows = row - dec->last_row_;
 | |
|   const uint32_t* const in = dec->pixels_ + dec->width_ * dec->last_row_;
 | |
| 
 | |
|   if (num_rows <= 0) return;  // Nothing to be done.
 | |
|   ApplyInverseTransforms(dec, num_rows, in);
 | |
| 
 | |
|   // Extract alpha (which is stored in the green plane).
 | |
|   {
 | |
|     const int width = dec->io_->width;      // the final width (!= dec->width_)
 | |
|     const int cache_pixs = width * num_rows;
 | |
|     uint8_t* const dst = (uint8_t*)dec->io_->opaque + width * dec->last_row_;
 | |
|     const uint32_t* const src = dec->argb_cache_;
 | |
|     int i;
 | |
|     for (i = 0; i < cache_pixs; ++i) dst[i] = (src[i] >> 8) & 0xff;
 | |
|   }
 | |
|   dec->last_row_ = dec->last_out_row_ = row;
 | |
| }
 | |
| 
 | |
| // Row-processing for the special case when alpha data contains only one
 | |
| // transform: color indexing.
 | |
| static void ExtractPalettedAlphaRows(VP8LDecoder* const dec, int row) {
 | |
|   const int num_rows = row - dec->last_row_;
 | |
|   const uint8_t* const in =
 | |
|       (uint8_t*)dec->pixels_ + dec->width_ * dec->last_row_;
 | |
|   if (num_rows <= 0) return;  // Nothing to be done.
 | |
|   ApplyInverseTransformsAlpha(dec, num_rows, in);
 | |
|   dec->last_row_ = dec->last_out_row_ = row;
 | |
| }
 | |
| 
 | |
| int VP8LDecodeAlphaImageStream(int width, int height, const uint8_t* const data,
 | |
|                                size_t data_size, uint8_t* const output) {
 | |
|   VP8Io io;
 | |
|   int ok = 0;
 | |
|   VP8LDecoder* const dec = VP8LNew();
 | |
|   size_t bytes_per_pixel = sizeof(uint32_t);  // Default: BGRA mode.
 | |
|   if (dec == NULL) return 0;
 | |
| 
 | |
|   dec->width_ = width;
 | |
|   dec->height_ = height;
 | |
|   dec->io_ = &io;
 | |
| 
 | |
|   VP8InitIo(&io);
 | |
|   WebPInitCustomIo(NULL, &io);    // Just a sanity Init. io won't be used.
 | |
|   io.opaque = output;
 | |
|   io.width = width;
 | |
|   io.height = height;
 | |
| 
 | |
|   dec->status_ = VP8_STATUS_OK;
 | |
|   VP8LInitBitReader(&dec->br_, data, data_size);
 | |
| 
 | |
|   dec->action_ = READ_HDR;
 | |
|   if (!DecodeImageStream(width, height, 1, dec, NULL)) goto Err;
 | |
| 
 | |
|   // Special case: if alpha data uses only the color indexing transform and
 | |
|   // doesn't use color cache (a frequent case), we will use DecodeAlphaData()
 | |
|   // method that only needs allocation of 1 byte per pixel (alpha channel).
 | |
|   if (dec->next_transform_ == 1 &&
 | |
|       dec->transforms_[0].type_ == COLOR_INDEXING_TRANSFORM &&
 | |
|       dec->hdr_.color_cache_size_ == 0) {
 | |
|     bytes_per_pixel = sizeof(uint8_t);
 | |
|   }
 | |
| 
 | |
|   // Allocate internal buffers (note that dec->width_ may have changed here).
 | |
|   if (!AllocateInternalBuffers(dec, width, bytes_per_pixel)) goto Err;
 | |
| 
 | |
|   // Decode (with special row processing).
 | |
|   dec->action_ = READ_DATA;
 | |
|   ok = (bytes_per_pixel == sizeof(uint8_t)) ?
 | |
|       DecodeAlphaData(dec, (uint8_t*)dec->pixels_, dec->width_, dec->height_,
 | |
|                       ExtractPalettedAlphaRows) :
 | |
|       DecodeImageData(dec, dec->pixels_, dec->width_, dec->height_,
 | |
|                       ExtractAlphaRows);
 | |
| 
 | |
|  Err:
 | |
|   VP8LDelete(dec);
 | |
|   return ok;
 | |
| }
 | |
| 
 | |
| //------------------------------------------------------------------------------
 | |
| 
 | |
| int VP8LDecodeHeader(VP8LDecoder* const dec, VP8Io* const io) {
 | |
|   int width, height, has_alpha;
 | |
| 
 | |
|   if (dec == NULL) return 0;
 | |
|   if (io == NULL) {
 | |
|     dec->status_ = VP8_STATUS_INVALID_PARAM;
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   dec->io_ = io;
 | |
|   dec->status_ = VP8_STATUS_OK;
 | |
|   VP8LInitBitReader(&dec->br_, io->data, io->data_size);
 | |
|   if (!ReadImageInfo(&dec->br_, &width, &height, &has_alpha)) {
 | |
|     dec->status_ = VP8_STATUS_BITSTREAM_ERROR;
 | |
|     goto Error;
 | |
|   }
 | |
|   dec->state_ = READ_DIM;
 | |
|   io->width = width;
 | |
|   io->height = height;
 | |
| 
 | |
|   dec->action_ = READ_HDR;
 | |
|   if (!DecodeImageStream(width, height, 1, dec, NULL)) goto Error;
 | |
|   return 1;
 | |
| 
 | |
|  Error:
 | |
|   VP8LClear(dec);
 | |
|   assert(dec->status_ != VP8_STATUS_OK);
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| int VP8LDecodeImage(VP8LDecoder* const dec) {
 | |
|   const size_t bytes_per_pixel = sizeof(uint32_t);
 | |
|   VP8Io* io = NULL;
 | |
|   WebPDecParams* params = NULL;
 | |
| 
 | |
|   // Sanity checks.
 | |
|   if (dec == NULL) return 0;
 | |
| 
 | |
|   io = dec->io_;
 | |
|   assert(io != NULL);
 | |
|   params = (WebPDecParams*)io->opaque;
 | |
|   assert(params != NULL);
 | |
|   dec->output_ = params->output;
 | |
|   assert(dec->output_ != NULL);
 | |
| 
 | |
|   // Initialization.
 | |
|   if (!WebPIoInitFromOptions(params->options, io, MODE_BGRA)) {
 | |
|     dec->status_ = VP8_STATUS_INVALID_PARAM;
 | |
|     goto Err;
 | |
|   }
 | |
| 
 | |
|   if (!AllocateInternalBuffers(dec, io->width, bytes_per_pixel)) goto Err;
 | |
| 
 | |
|   if (io->use_scaling && !AllocateAndInitRescaler(dec, io)) goto Err;
 | |
| 
 | |
|   // Decode.
 | |
|   dec->action_ = READ_DATA;
 | |
|   if (!DecodeImageData(dec, dec->pixels_, dec->width_, dec->height_,
 | |
|                        ProcessRows)) {
 | |
|     goto Err;
 | |
|   }
 | |
| 
 | |
|   // Cleanup.
 | |
|   params->last_y = dec->last_out_row_;
 | |
|   VP8LClear(dec);
 | |
|   return 1;
 | |
| 
 | |
|  Err:
 | |
|   VP8LClear(dec);
 | |
|   assert(dec->status_ != VP8_STATUS_OK);
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| //------------------------------------------------------------------------------
 | |
| 
 | |
| #if defined(__cplusplus) || defined(c_plusplus)
 | |
| }    // extern "C"
 | |
| #endif
 | 
