opencv/modules/ocl/test/test_matrix_operation.cpp

491 lines
13 KiB
C++

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2010-2012, Institute Of Software Chinese Academy Of Science, all rights reserved.
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// @Authors
// Jia Haipeng, jiahaipeng95@gmail.com
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other oclMaterials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
#ifdef HAVE_OPENCL
using namespace cvtest;
using namespace testing;
using namespace std;
////////////////////////////////converto/////////////////////////////////////////////////
PARAM_TEST_CASE(ConvertToTestBase, MatType, MatType)
{
int type;
int dst_type;
//src mat
cv::Mat mat;
cv::Mat dst;
// set up roi
int roicols;
int roirows;
int srcx;
int srcy;
int dstx;
int dsty;
//src mat with roi
cv::Mat mat_roi;
cv::Mat dst_roi;
//ocl dst mat for testing
cv::ocl::oclMat gdst_whole;
//ocl mat with roi
cv::ocl::oclMat gmat;
cv::ocl::oclMat gdst;
virtual void SetUp()
{
type = GET_PARAM(0);
dst_type = GET_PARAM(1);
cv::RNG &rng = TS::ptr()->get_rng();
cv::Size size(MWIDTH, MHEIGHT);
mat = randomMat(rng, size, type, 5, 16, false);
dst = randomMat(rng, size, type, 5, 16, false);
}
void random_roi()
{
#ifdef RANDOMROI
//randomize ROI
cv::RNG &rng = TS::ptr()->get_rng();
roicols = rng.uniform(1, mat.cols);
roirows = rng.uniform(1, mat.rows);
srcx = rng.uniform(0, mat.cols - roicols);
srcy = rng.uniform(0, mat.rows - roirows);
dstx = rng.uniform(0, dst.cols - roicols);
dsty = rng.uniform(0, dst.rows - roirows);
#else
roicols = mat.cols;
roirows = mat.rows;
srcx = 0;
srcy = 0;
dstx = 0;
dsty = 0;
#endif
mat_roi = mat(Rect(srcx, srcy, roicols, roirows));
dst_roi = dst(Rect(dstx, dsty, roicols, roirows));
gdst_whole = dst;
gdst = gdst_whole(Rect(dstx, dsty, roicols, roirows));
gmat = mat_roi;
}
};
struct ConvertTo : ConvertToTestBase {};
TEST_P(ConvertTo, Accuracy)
{
for(int j = 0; j < LOOP_TIMES; j++)
{
random_roi();
mat_roi.convertTo(dst_roi, dst_type);
gmat.convertTo(gdst, dst_type);
cv::Mat cpu_dst;
gdst_whole.download(cpu_dst);
char sss[1024];
sprintf(sss, "roicols=%d,roirows=%d,srcx =%d,srcy=%d,dstx=%d,dsty=%d", roicols, roirows, srcx , srcy, dstx, dsty);
EXPECT_MAT_NEAR(dst, cpu_dst, 0.0, sss);
}
}
///////////////////////////////////////////copyto/////////////////////////////////////////////////////////////
PARAM_TEST_CASE(CopyToTestBase, MatType, bool)
{
int type;
cv::Mat mat;
cv::Mat mask;
cv::Mat dst;
// set up roi
int roicols;
int roirows;
int srcx;
int srcy;
int dstx;
int dsty;
int maskx;
int masky;
//src mat with roi
cv::Mat mat_roi;
cv::Mat mask_roi;
cv::Mat dst_roi;
//ocl dst mat for testing
cv::ocl::oclMat gdst_whole;
//ocl mat with roi
cv::ocl::oclMat gmat;
cv::ocl::oclMat gdst;
cv::ocl::oclMat gmask;
virtual void SetUp()
{
type = GET_PARAM(0);
cv::RNG &rng = TS::ptr()->get_rng();
cv::Size size(MWIDTH, MHEIGHT);
mat = randomMat(rng, size, type, 5, 16, false);
dst = randomMat(rng, size, type, 5, 16, false);
mask = randomMat(rng, size, CV_8UC1, 0, 2, false);
cv::threshold(mask, mask, 0.5, 255., CV_8UC1);
}
void random_roi()
{
#ifdef RANDOMROI
//randomize ROI
cv::RNG &rng = TS::ptr()->get_rng();
roicols = rng.uniform(1, mat.cols);
roirows = rng.uniform(1, mat.rows);
srcx = rng.uniform(0, mat.cols - roicols);
srcy = rng.uniform(0, mat.rows - roirows);
dstx = rng.uniform(0, dst.cols - roicols);
dsty = rng.uniform(0, dst.rows - roirows);
maskx = rng.uniform(0, mask.cols - roicols);
masky = rng.uniform(0, mask.rows - roirows);
#else
roicols = mat.cols;
roirows = mat.rows;
srcx = 0;
srcy = 0;
dstx = 0;
dsty = 0;
maskx = 0;
masky = 0;
#endif
mat_roi = mat(Rect(srcx, srcy, roicols, roirows));
mask_roi = mask(Rect(maskx, masky, roicols, roirows));
dst_roi = dst(Rect(dstx, dsty, roicols, roirows));
gdst_whole = dst;
gdst = gdst_whole(Rect(dstx, dsty, roicols, roirows));
gmat = mat_roi;
gmask = mask_roi;
}
};
struct CopyTo : CopyToTestBase {};
TEST_P(CopyTo, Without_mask)
{
for(int j = 0; j < LOOP_TIMES; j++)
{
random_roi();
mat_roi.copyTo(dst_roi);
gmat.copyTo(gdst);
cv::Mat cpu_dst;
gdst_whole.download(cpu_dst);
char sss[1024];
sprintf(sss, "roicols=%d,roirows=%d,srcx =%d,srcy=%d,dstx=%d,dsty=%d,maskx=%d,masky=%d", roicols, roirows, srcx , srcy, dstx, dsty, maskx, masky);
EXPECT_MAT_NEAR(dst, cpu_dst, 0.0, sss);
}
}
TEST_P(CopyTo, With_mask)
{
for(int j = 0; j < LOOP_TIMES; j++)
{
random_roi();
mat_roi.copyTo(dst_roi, mask_roi);
gmat.copyTo(gdst, gmask);
cv::Mat cpu_dst;
gdst_whole.download(cpu_dst);
char sss[1024];
sprintf(sss, "roicols=%d,roirows=%d,srcx =%d,srcy=%d,dstx=%d,dsty=%d,maskx=%d,masky=%d", roicols, roirows, srcx , srcy, dstx, dsty, maskx, masky);
EXPECT_MAT_NEAR(dst, cpu_dst, 0.0, sss);
}
}
///////////////////////////////////////////copyto/////////////////////////////////////////////////////////////
PARAM_TEST_CASE(SetToTestBase, MatType, bool)
{
int type;
cv::Scalar val;
cv::Mat mat;
cv::Mat mask;
// set up roi
int roicols;
int roirows;
int srcx;
int srcy;
int maskx;
int masky;
//src mat with roi
cv::Mat mat_roi;
cv::Mat mask_roi;
//ocl dst mat for testing
cv::ocl::oclMat gmat_whole;
//ocl mat with roi
cv::ocl::oclMat gmat;
cv::ocl::oclMat gmask;
virtual void SetUp()
{
type = GET_PARAM(0);
cv::RNG &rng = TS::ptr()->get_rng();
cv::Size size(MWIDTH, MHEIGHT);
mat = randomMat(rng, size, type, 5, 16, false);
mask = randomMat(rng, size, CV_8UC1, 0, 2, false);
cv::threshold(mask, mask, 0.5, 255., CV_8UC1);
val = cv::Scalar(rng.uniform(-10.0, 10.0), rng.uniform(-10.0, 10.0), rng.uniform(-10.0, 10.0), rng.uniform(-10.0, 10.0));
}
void random_roi()
{
#ifdef RANDOMROI
//randomize ROI
cv::RNG &rng = TS::ptr()->get_rng();
roicols = rng.uniform(1, mat.cols);
roirows = rng.uniform(1, mat.rows);
srcx = rng.uniform(0, mat.cols - roicols);
srcy = rng.uniform(0, mat.rows - roirows);
maskx = rng.uniform(0, mask.cols - roicols);
masky = rng.uniform(0, mask.rows - roirows);
#else
roicols = mat.cols;
roirows = mat.rows;
srcx = 0;
srcy = 0;
maskx = 0;
masky = 0;
#endif
mat_roi = mat(Rect(srcx, srcy, roicols, roirows));
mask_roi = mask(Rect(maskx, masky, roicols, roirows));
gmat_whole = mat;
gmat = gmat_whole(Rect(srcx, srcy, roicols, roirows));
gmask = mask_roi;
}
};
struct SetTo : SetToTestBase {};
TEST_P(SetTo, Without_mask)
{
for(int j = 0; j < LOOP_TIMES; j++)
{
random_roi();
mat_roi.setTo(val);
gmat.setTo(val);
cv::Mat cpu_dst;
gmat_whole.download(cpu_dst);
char sss[1024];
sprintf(sss, "roicols=%d,roirows=%d,srcx =%d,srcy=%d,maskx=%d,masky=%d", roicols, roirows, srcx , srcy, maskx, masky);
EXPECT_MAT_NEAR(mat, cpu_dst, 1., sss);
}
}
TEST_P(SetTo, With_mask)
{
for(int j = 0; j < LOOP_TIMES; j++)
{
random_roi();
mat_roi.setTo(val, mask_roi);
gmat.setTo(val, gmask);
cv::Mat cpu_dst;
gmat_whole.download(cpu_dst);
char sss[1024];
sprintf(sss, "roicols=%d,roirows=%d,srcx =%d,srcy=%d,maskx=%d,masky=%d", roicols, roirows, srcx , srcy, maskx, masky);
EXPECT_MAT_NEAR(mat, cpu_dst, 1., sss);
}
}
//convertC3C4
PARAM_TEST_CASE(convertC3C4, MatType, cv::Size)
{
int type;
cv::Size ksize;
//src mat
cv::Mat mat1;
cv::Mat dst;
// set up roi
int roicols;
int roirows;
int src1x;
int src1y;
int dstx;
int dsty;
//src mat with roi
cv::Mat mat1_roi;
cv::Mat dst_roi;
//ocl dst mat for testing
cv::ocl::oclMat gdst_whole;
//ocl mat with roi
cv::ocl::oclMat gmat1;
cv::ocl::oclMat gdst;
virtual void SetUp()
{
type = GET_PARAM(0);
ksize = GET_PARAM(1);
}
void random_roi()
{
#ifdef RANDOMROI
//randomize ROI
cv::RNG &rng = TS::ptr()->get_rng();
roicols = rng.uniform(2, mat1.cols);
roirows = rng.uniform(2, mat1.rows);
src1x = rng.uniform(0, mat1.cols - roicols);
src1y = rng.uniform(0, mat1.rows - roirows);
dstx = rng.uniform(0, dst.cols - roicols);
dsty = rng.uniform(0, dst.rows - roirows);
#else
roicols = mat1.cols;
roirows = mat1.rows;
src1x = 0;
src1y = 0;
dstx = 0;
dsty = 0;
#endif
mat1_roi = mat1(Rect(src1x, src1y, roicols, roirows));
dst_roi = dst(Rect(dstx, dsty, roicols, roirows));
gdst_whole = dst;
gdst = gdst_whole(Rect(dstx, dsty, roicols, roirows));
gmat1 = mat1_roi;
}
};
TEST_P(convertC3C4, Accuracy)
{
cv::RNG &rng = TS::ptr()->get_rng();
for(int j = 0; j < LOOP_TIMES; j++)
{
//random_roi();
int width = rng.uniform(2, MWIDTH);
int height = rng.uniform(2, MHEIGHT);
cv::Size size(width, height);
mat1 = randomMat(rng, size, type, 0, 40, false);
gmat1 = mat1;
cv::Mat cpu_dst;
gmat1.download(cpu_dst);
char sss[1024];
sprintf(sss, "cols=%d,rows=%d", mat1.cols, mat1.rows);
EXPECT_MAT_NEAR(mat1, cpu_dst, 0.0, sss);
}
}
INSTANTIATE_TEST_CASE_P(MatrixOperation, ConvertTo, Combine(
Values(CV_8UC1, CV_8UC3, CV_8UC4, CV_32SC1, CV_32SC4, CV_32FC1, CV_32FC4),
Values(CV_8UC1, CV_8UC3, CV_8UC4, CV_32SC1, CV_32SC4, CV_32FC1, CV_32FC4)));
INSTANTIATE_TEST_CASE_P(MatrixOperation, CopyTo, Combine(
Values(CV_8UC1, CV_8UC3, CV_8UC4, CV_32SC1, CV_32SC3, CV_32SC4, CV_32FC1, CV_32FC3, CV_32FC4),
Values(false))); // Values(false) is the reserved parameter
INSTANTIATE_TEST_CASE_P(MatrixOperation, SetTo, Combine(
Values(CV_8UC1, CV_8UC3, CV_8UC4, CV_32SC1, CV_32SC3, CV_32SC4, CV_32FC1, CV_32FC3, CV_32FC4),
Values(false))); // Values(false) is the reserved parameter
INSTANTIATE_TEST_CASE_P(MatrixOperation, convertC3C4, Combine(
Values(CV_8UC3, CV_32SC3, CV_32FC3),
Values(cv::Size())));
#endif