132 lines
		
	
	
		
			4.6 KiB
		
	
	
	
		
			Java
		
	
	
	
	
	
			
		
		
	
	
			132 lines
		
	
	
		
			4.6 KiB
		
	
	
	
		
			Java
		
	
	
	
	
	
| package org.opencv.test.features2d;
 | |
| 
 | |
| import java.util.Arrays;
 | |
| 
 | |
| import org.opencv.core.Core;
 | |
| import org.opencv.core.CvType;
 | |
| import org.opencv.core.Mat;
 | |
| import org.opencv.core.MatOfKeyPoint;
 | |
| import org.opencv.core.Point;
 | |
| import org.opencv.core.Scalar;
 | |
| import org.opencv.features2d.FeatureDetector;
 | |
| import org.opencv.core.KeyPoint;
 | |
| import org.opencv.test.OpenCVTestCase;
 | |
| import org.opencv.test.OpenCVTestRunner;
 | |
| import org.opencv.imgproc.Imgproc;
 | |
| 
 | |
| public class STARFeatureDetectorTest extends OpenCVTestCase {
 | |
| 
 | |
|     FeatureDetector detector;
 | |
|     int matSize;
 | |
|     KeyPoint[] truth;
 | |
| 
 | |
|     private Mat getMaskImg() {
 | |
|         Mat mask = new Mat(matSize, matSize, CvType.CV_8U, new Scalar(255));
 | |
|         Mat right = mask.submat(0, matSize, matSize / 2, matSize);
 | |
|         right.setTo(new Scalar(0));
 | |
|         return mask;
 | |
|     }
 | |
| 
 | |
|     private Mat getTestImg() {
 | |
|         Scalar color = new Scalar(0);
 | |
|         int center = matSize / 2;
 | |
|         int radius = 6;
 | |
|         int offset = 40;
 | |
| 
 | |
|         Mat img = new Mat(matSize, matSize, CvType.CV_8U, new Scalar(255));
 | |
|         Imgproc.circle(img, new Point(center - offset, center), radius, color, -1);
 | |
|         Imgproc.circle(img, new Point(center + offset, center), radius, color, -1);
 | |
|         Imgproc.circle(img, new Point(center, center - offset), radius, color, -1);
 | |
|         Imgproc.circle(img, new Point(center, center + offset), radius, color, -1);
 | |
|         Imgproc.circle(img, new Point(center, center), radius, color, -1);
 | |
|         return img;
 | |
|     }
 | |
| 
 | |
|     protected void setUp() throws Exception {
 | |
|         super.setUp();
 | |
|         detector = FeatureDetector.create(FeatureDetector.STAR);
 | |
|         matSize = 200;
 | |
|         truth = new KeyPoint[] {
 | |
|                 new KeyPoint( 95,  80, 22, -1, 31.5957f, 0, -1),
 | |
|                 new KeyPoint(105,  80, 22, -1, 31.5957f, 0, -1),
 | |
|                 new KeyPoint( 80,  95, 22, -1, 31.5957f, 0, -1),
 | |
|                 new KeyPoint(120,  95, 22, -1, 31.5957f, 0, -1),
 | |
|                 new KeyPoint(100, 100,  8, -1, 30.f,     0, -1),
 | |
|                 new KeyPoint( 80, 105, 22, -1, 31.5957f, 0, -1),
 | |
|                 new KeyPoint(120, 105, 22, -1, 31.5957f, 0, -1),
 | |
|                 new KeyPoint( 95, 120, 22, -1, 31.5957f, 0, -1),
 | |
|                 new KeyPoint(105, 120, 22, -1, 31.5957f, 0, -1)
 | |
|             };
 | |
|     }
 | |
| 
 | |
|     public void testCreate() {
 | |
|         assertNotNull(detector);
 | |
|     }
 | |
| 
 | |
|     public void testDetectListOfMatListOfListOfKeyPoint() {
 | |
|         fail("Not yet implemented");
 | |
|     }
 | |
| 
 | |
|     public void testDetectListOfMatListOfListOfKeyPointListOfMat() {
 | |
|         fail("Not yet implemented");
 | |
|     }
 | |
| 
 | |
|     public void testDetectMatListOfKeyPoint() {
 | |
|         Mat img = getTestImg();
 | |
|         MatOfKeyPoint keypoints = new MatOfKeyPoint();
 | |
| 
 | |
|         detector.detect(img, keypoints);
 | |
| 
 | |
|         assertListKeyPointEquals(Arrays.asList(truth), keypoints.toList(), EPS);
 | |
|     }
 | |
| 
 | |
|     public void testDetectMatListOfKeyPointMat() {
 | |
|         Mat img = getTestImg();
 | |
|         Mat mask = getMaskImg();
 | |
|         MatOfKeyPoint keypoints = new MatOfKeyPoint();
 | |
| 
 | |
|         detector.detect(img, keypoints, mask);
 | |
| 
 | |
|         assertListKeyPointEquals(Arrays.asList(truth[0], truth[2], truth[5], truth[7]), keypoints.toList(), EPS);
 | |
|     }
 | |
| 
 | |
|     public void testEmpty() {
 | |
|         assertFalse(detector.empty());
 | |
|     }
 | |
| 
 | |
|     public void testRead() {
 | |
|         Mat img = getTestImg();
 | |
| 
 | |
|         MatOfKeyPoint keypoints1 = new MatOfKeyPoint();
 | |
|         detector.detect(img, keypoints1);
 | |
| 
 | |
|         String filename = OpenCVTestRunner.getTempFileName("yml");
 | |
|         writeFile(filename, "%YAML:1.0\nmaxSize: 45\nresponseThreshold: 150\nlineThresholdProjected: 10\nlineThresholdBinarized: 8\nsuppressNonmaxSize: 5\n");
 | |
|         detector.read(filename);
 | |
| 
 | |
|         MatOfKeyPoint keypoints2 = new MatOfKeyPoint();
 | |
|         detector.detect(img, keypoints2);
 | |
| 
 | |
|         assertTrue(keypoints2.total() <= keypoints1.total());
 | |
|     }
 | |
| 
 | |
|     public void testWrite() {
 | |
|         String filename = OpenCVTestRunner.getTempFileName("xml");
 | |
| 
 | |
|         detector.write(filename);
 | |
| 
 | |
|         String truth = "<?xml version=\"1.0\"?>\n<opencv_storage>\n<name>Feature2D.STAR</name>\n<lineThresholdBinarized>8</lineThresholdBinarized>\n<lineThresholdProjected>10</lineThresholdProjected>\n<maxSize>45</maxSize>\n<responseThreshold>30</responseThreshold>\n<suppressNonmaxSize>5</suppressNonmaxSize>\n</opencv_storage>\n";
 | |
|         assertEquals(truth, readFile(filename));
 | |
|     }
 | |
| 
 | |
|     public void testWriteYml() {
 | |
|         String filename = OpenCVTestRunner.getTempFileName("yml");
 | |
| 
 | |
|         detector.write(filename);
 | |
| 
 | |
|         String truth = "%YAML:1.0\nname: \"Feature2D.STAR\"\nlineThresholdBinarized: 8\nlineThresholdProjected: 10\nmaxSize: 45\nresponseThreshold: 30\nsuppressNonmaxSize: 5\n";
 | |
|         assertEquals(truth, readFile(filename));
 | |
|     }
 | |
| 
 | |
| }
 | 
