2013-04-18 11:33:31 +04:00

1182 lines
45 KiB
C++

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
using namespace cv;
using namespace cv::gpu;
#if !defined (HAVE_CUDA) || defined (CUDA_DISABLER)
void cv::gpu::meanShiftFiltering(const GpuMat&, GpuMat&, int, int, TermCriteria, Stream&) { throw_no_cuda(); }
void cv::gpu::meanShiftProc(const GpuMat&, GpuMat&, GpuMat&, int, int, TermCriteria, Stream&) { throw_no_cuda(); }
void cv::gpu::drawColorDisp(const GpuMat&, GpuMat&, int, Stream&) { throw_no_cuda(); }
void cv::gpu::reprojectImageTo3D(const GpuMat&, GpuMat&, const Mat&, int, Stream&) { throw_no_cuda(); }
void cv::gpu::buildWarpPlaneMaps(Size, Rect, const Mat&, const Mat&, const Mat&, float, GpuMat&, GpuMat&, Stream&) { throw_no_cuda(); }
void cv::gpu::buildWarpCylindricalMaps(Size, Rect, const Mat&, const Mat&, float, GpuMat&, GpuMat&, Stream&) { throw_no_cuda(); }
void cv::gpu::buildWarpSphericalMaps(Size, Rect, const Mat&, const Mat&, float, GpuMat&, GpuMat&, Stream&) { throw_no_cuda(); }
void cv::gpu::rotate(const GpuMat&, GpuMat&, Size, double, double, double, int, Stream&) { throw_no_cuda(); }
void cv::gpu::evenLevels(GpuMat&, int, int, int) { throw_no_cuda(); }
void cv::gpu::histEven(const GpuMat&, GpuMat&, int, int, int, Stream&) { throw_no_cuda(); }
void cv::gpu::histEven(const GpuMat&, GpuMat&, GpuMat&, int, int, int, Stream&) { throw_no_cuda(); }
void cv::gpu::histEven(const GpuMat&, GpuMat*, int*, int*, int*, Stream&) { throw_no_cuda(); }
void cv::gpu::histEven(const GpuMat&, GpuMat*, GpuMat&, int*, int*, int*, Stream&) { throw_no_cuda(); }
void cv::gpu::histRange(const GpuMat&, GpuMat&, const GpuMat&, Stream&) { throw_no_cuda(); }
void cv::gpu::histRange(const GpuMat&, GpuMat&, const GpuMat&, GpuMat&, Stream&) { throw_no_cuda(); }
void cv::gpu::histRange(const GpuMat&, GpuMat*, const GpuMat*, Stream&) { throw_no_cuda(); }
void cv::gpu::histRange(const GpuMat&, GpuMat*, const GpuMat*, GpuMat&, Stream&) { throw_no_cuda(); }
void cv::gpu::calcHist(const GpuMat&, GpuMat&, Stream&) { throw_no_cuda(); }
void cv::gpu::equalizeHist(const GpuMat&, GpuMat&, Stream&) { throw_no_cuda(); }
void cv::gpu::equalizeHist(const GpuMat&, GpuMat&, GpuMat&, GpuMat&, Stream&) { throw_no_cuda(); }
void cv::gpu::cornerHarris(const GpuMat&, GpuMat&, int, int, double, int) { throw_no_cuda(); }
void cv::gpu::cornerHarris(const GpuMat&, GpuMat&, GpuMat&, GpuMat&, int, int, double, int) { throw_no_cuda(); }
void cv::gpu::cornerHarris(const GpuMat&, GpuMat&, GpuMat&, GpuMat&, GpuMat&, int, int, double, int, Stream&) { throw_no_cuda(); }
void cv::gpu::cornerMinEigenVal(const GpuMat&, GpuMat&, int, int, int) { throw_no_cuda(); }
void cv::gpu::cornerMinEigenVal(const GpuMat&, GpuMat&, GpuMat&, GpuMat&, int, int, int) { throw_no_cuda(); }
void cv::gpu::cornerMinEigenVal(const GpuMat&, GpuMat&, GpuMat&, GpuMat&, GpuMat&, int, int, int, Stream&) { throw_no_cuda(); }
void cv::gpu::Canny(const GpuMat&, GpuMat&, double, double, int, bool) { throw_no_cuda(); }
void cv::gpu::Canny(const GpuMat&, CannyBuf&, GpuMat&, double, double, int, bool) { throw_no_cuda(); }
void cv::gpu::Canny(const GpuMat&, const GpuMat&, GpuMat&, double, double, bool) { throw_no_cuda(); }
void cv::gpu::Canny(const GpuMat&, const GpuMat&, CannyBuf&, GpuMat&, double, double, bool) { throw_no_cuda(); }
void cv::gpu::CannyBuf::create(const Size&, int) { throw_no_cuda(); }
void cv::gpu::CannyBuf::release() { throw_no_cuda(); }
cv::Ptr<cv::gpu::CLAHE> cv::gpu::createCLAHE(double, cv::Size) { throw_no_cuda(); return cv::Ptr<cv::gpu::CLAHE>(); }
void cv::gpu::alphaComp(const GpuMat&, const GpuMat&, GpuMat&, int, Stream&) { throw_no_cuda(); }
#else /* !defined (HAVE_CUDA) */
////////////////////////////////////////////////////////////////////////
// meanShiftFiltering_GPU
namespace cv { namespace gpu { namespace cudev
{
namespace imgproc
{
void meanShiftFiltering_gpu(const PtrStepSzb& src, PtrStepSzb dst, int sp, int sr, int maxIter, float eps, cudaStream_t stream);
}
}}}
void cv::gpu::meanShiftFiltering(const GpuMat& src, GpuMat& dst, int sp, int sr, TermCriteria criteria, Stream& stream)
{
using namespace ::cv::gpu::cudev::imgproc;
if( src.empty() )
CV_Error( cv::Error::StsBadArg, "The input image is empty" );
if( src.depth() != CV_8U || src.channels() != 4 )
CV_Error( cv::Error::StsUnsupportedFormat, "Only 8-bit, 4-channel images are supported" );
dst.create( src.size(), CV_8UC4 );
if( !(criteria.type & TermCriteria::MAX_ITER) )
criteria.maxCount = 5;
int maxIter = std::min(std::max(criteria.maxCount, 1), 100);
float eps;
if( !(criteria.type & TermCriteria::EPS) )
eps = 1.f;
eps = (float)std::max(criteria.epsilon, 0.0);
meanShiftFiltering_gpu(src, dst, sp, sr, maxIter, eps, StreamAccessor::getStream(stream));
}
////////////////////////////////////////////////////////////////////////
// meanShiftProc_GPU
namespace cv { namespace gpu { namespace cudev
{
namespace imgproc
{
void meanShiftProc_gpu(const PtrStepSzb& src, PtrStepSzb dstr, PtrStepSzb dstsp, int sp, int sr, int maxIter, float eps, cudaStream_t stream);
}
}}}
void cv::gpu::meanShiftProc(const GpuMat& src, GpuMat& dstr, GpuMat& dstsp, int sp, int sr, TermCriteria criteria, Stream& stream)
{
using namespace ::cv::gpu::cudev::imgproc;
if( src.empty() )
CV_Error( cv::Error::StsBadArg, "The input image is empty" );
if( src.depth() != CV_8U || src.channels() != 4 )
CV_Error( cv::Error::StsUnsupportedFormat, "Only 8-bit, 4-channel images are supported" );
dstr.create( src.size(), CV_8UC4 );
dstsp.create( src.size(), CV_16SC2 );
if( !(criteria.type & TermCriteria::MAX_ITER) )
criteria.maxCount = 5;
int maxIter = std::min(std::max(criteria.maxCount, 1), 100);
float eps;
if( !(criteria.type & TermCriteria::EPS) )
eps = 1.f;
eps = (float)std::max(criteria.epsilon, 0.0);
meanShiftProc_gpu(src, dstr, dstsp, sp, sr, maxIter, eps, StreamAccessor::getStream(stream));
}
////////////////////////////////////////////////////////////////////////
// drawColorDisp
namespace cv { namespace gpu { namespace cudev
{
namespace imgproc
{
void drawColorDisp_gpu(const PtrStepSzb& src, const PtrStepSzb& dst, int ndisp, const cudaStream_t& stream);
void drawColorDisp_gpu(const PtrStepSz<short>& src, const PtrStepSzb& dst, int ndisp, const cudaStream_t& stream);
}
}}}
namespace
{
template <typename T>
void drawColorDisp_caller(const GpuMat& src, GpuMat& dst, int ndisp, const cudaStream_t& stream)
{
using namespace ::cv::gpu::cudev::imgproc;
dst.create(src.size(), CV_8UC4);
drawColorDisp_gpu((PtrStepSz<T>)src, dst, ndisp, stream);
}
typedef void (*drawColorDisp_caller_t)(const GpuMat& src, GpuMat& dst, int ndisp, const cudaStream_t& stream);
const drawColorDisp_caller_t drawColorDisp_callers[] = {drawColorDisp_caller<unsigned char>, 0, 0, drawColorDisp_caller<short>, 0, 0, 0, 0};
}
void cv::gpu::drawColorDisp(const GpuMat& src, GpuMat& dst, int ndisp, Stream& stream)
{
CV_Assert(src.type() == CV_8U || src.type() == CV_16S);
drawColorDisp_callers[src.type()](src, dst, ndisp, StreamAccessor::getStream(stream));
}
////////////////////////////////////////////////////////////////////////
// reprojectImageTo3D
namespace cv { namespace gpu { namespace cudev
{
namespace imgproc
{
template <typename T, typename D>
void reprojectImageTo3D_gpu(const PtrStepSzb disp, PtrStepSzb xyz, const float* q, cudaStream_t stream);
}
}}}
void cv::gpu::reprojectImageTo3D(const GpuMat& disp, GpuMat& xyz, const Mat& Q, int dst_cn, Stream& stream)
{
using namespace cv::gpu::cudev::imgproc;
typedef void (*func_t)(const PtrStepSzb disp, PtrStepSzb xyz, const float* q, cudaStream_t stream);
static const func_t funcs[2][4] =
{
{reprojectImageTo3D_gpu<uchar, float3>, 0, 0, reprojectImageTo3D_gpu<short, float3>},
{reprojectImageTo3D_gpu<uchar, float4>, 0, 0, reprojectImageTo3D_gpu<short, float4>}
};
CV_Assert(disp.type() == CV_8U || disp.type() == CV_16S);
CV_Assert(Q.type() == CV_32F && Q.rows == 4 && Q.cols == 4 && Q.isContinuous());
CV_Assert(dst_cn == 3 || dst_cn == 4);
xyz.create(disp.size(), CV_MAKE_TYPE(CV_32F, dst_cn));
funcs[dst_cn == 4][disp.type()](disp, xyz, Q.ptr<float>(), StreamAccessor::getStream(stream));
}
//////////////////////////////////////////////////////////////////////////////
// buildWarpPlaneMaps
namespace cv { namespace gpu { namespace cudev
{
namespace imgproc
{
void buildWarpPlaneMaps(int tl_u, int tl_v, PtrStepSzf map_x, PtrStepSzf map_y,
const float k_rinv[9], const float r_kinv[9], const float t[3], float scale,
cudaStream_t stream);
}
}}}
void cv::gpu::buildWarpPlaneMaps(Size src_size, Rect dst_roi, const Mat &K, const Mat& R, const Mat &T,
float scale, GpuMat& map_x, GpuMat& map_y, Stream& stream)
{
(void)src_size;
using namespace ::cv::gpu::cudev::imgproc;
CV_Assert(K.size() == Size(3,3) && K.type() == CV_32F);
CV_Assert(R.size() == Size(3,3) && R.type() == CV_32F);
CV_Assert((T.size() == Size(3,1) || T.size() == Size(1,3)) && T.type() == CV_32F && T.isContinuous());
Mat K_Rinv = K * R.t();
Mat R_Kinv = R * K.inv();
CV_Assert(K_Rinv.isContinuous());
CV_Assert(R_Kinv.isContinuous());
map_x.create(dst_roi.size(), CV_32F);
map_y.create(dst_roi.size(), CV_32F);
cudev::imgproc::buildWarpPlaneMaps(dst_roi.tl().x, dst_roi.tl().y, map_x, map_y, K_Rinv.ptr<float>(), R_Kinv.ptr<float>(),
T.ptr<float>(), scale, StreamAccessor::getStream(stream));
}
//////////////////////////////////////////////////////////////////////////////
// buildWarpCylyndricalMaps
namespace cv { namespace gpu { namespace cudev
{
namespace imgproc
{
void buildWarpCylindricalMaps(int tl_u, int tl_v, PtrStepSzf map_x, PtrStepSzf map_y,
const float k_rinv[9], const float r_kinv[9], float scale,
cudaStream_t stream);
}
}}}
void cv::gpu::buildWarpCylindricalMaps(Size src_size, Rect dst_roi, const Mat &K, const Mat& R, float scale,
GpuMat& map_x, GpuMat& map_y, Stream& stream)
{
(void)src_size;
using namespace ::cv::gpu::cudev::imgproc;
CV_Assert(K.size() == Size(3,3) && K.type() == CV_32F);
CV_Assert(R.size() == Size(3,3) && R.type() == CV_32F);
Mat K_Rinv = K * R.t();
Mat R_Kinv = R * K.inv();
CV_Assert(K_Rinv.isContinuous());
CV_Assert(R_Kinv.isContinuous());
map_x.create(dst_roi.size(), CV_32F);
map_y.create(dst_roi.size(), CV_32F);
cudev::imgproc::buildWarpCylindricalMaps(dst_roi.tl().x, dst_roi.tl().y, map_x, map_y, K_Rinv.ptr<float>(), R_Kinv.ptr<float>(), scale, StreamAccessor::getStream(stream));
}
//////////////////////////////////////////////////////////////////////////////
// buildWarpSphericalMaps
namespace cv { namespace gpu { namespace cudev
{
namespace imgproc
{
void buildWarpSphericalMaps(int tl_u, int tl_v, PtrStepSzf map_x, PtrStepSzf map_y,
const float k_rinv[9], const float r_kinv[9], float scale,
cudaStream_t stream);
}
}}}
void cv::gpu::buildWarpSphericalMaps(Size src_size, Rect dst_roi, const Mat &K, const Mat& R, float scale,
GpuMat& map_x, GpuMat& map_y, Stream& stream)
{
(void)src_size;
using namespace ::cv::gpu::cudev::imgproc;
CV_Assert(K.size() == Size(3,3) && K.type() == CV_32F);
CV_Assert(R.size() == Size(3,3) && R.type() == CV_32F);
Mat K_Rinv = K * R.t();
Mat R_Kinv = R * K.inv();
CV_Assert(K_Rinv.isContinuous());
CV_Assert(R_Kinv.isContinuous());
map_x.create(dst_roi.size(), CV_32F);
map_y.create(dst_roi.size(), CV_32F);
cudev::imgproc::buildWarpSphericalMaps(dst_roi.tl().x, dst_roi.tl().y, map_x, map_y, K_Rinv.ptr<float>(), R_Kinv.ptr<float>(), scale, StreamAccessor::getStream(stream));
}
////////////////////////////////////////////////////////////////////////
// rotate
namespace
{
template<int DEPTH> struct NppTypeTraits;
template<> struct NppTypeTraits<CV_8U> { typedef Npp8u npp_t; };
template<> struct NppTypeTraits<CV_8S> { typedef Npp8s npp_t; };
template<> struct NppTypeTraits<CV_16U> { typedef Npp16u npp_t; };
template<> struct NppTypeTraits<CV_16S> { typedef Npp16s npp_t; };
template<> struct NppTypeTraits<CV_32S> { typedef Npp32s npp_t; };
template<> struct NppTypeTraits<CV_32F> { typedef Npp32f npp_t; };
template<> struct NppTypeTraits<CV_64F> { typedef Npp64f npp_t; };
template <int DEPTH> struct NppRotateFunc
{
typedef typename NppTypeTraits<DEPTH>::npp_t npp_t;
typedef NppStatus (*func_t)(const npp_t* pSrc, NppiSize oSrcSize, int nSrcStep, NppiRect oSrcROI,
npp_t* pDst, int nDstStep, NppiRect oDstROI,
double nAngle, double nShiftX, double nShiftY, int eInterpolation);
};
template <int DEPTH, typename NppRotateFunc<DEPTH>::func_t func> struct NppRotate
{
typedef typename NppRotateFunc<DEPTH>::npp_t npp_t;
static void call(const GpuMat& src, GpuMat& dst, Size dsize, double angle, double xShift, double yShift, int interpolation, cudaStream_t stream)
{
(void)dsize;
static const int npp_inter[] = {NPPI_INTER_NN, NPPI_INTER_LINEAR, NPPI_INTER_CUBIC};
NppStreamHandler h(stream);
NppiSize srcsz;
srcsz.height = src.rows;
srcsz.width = src.cols;
NppiRect srcroi;
srcroi.x = srcroi.y = 0;
srcroi.height = src.rows;
srcroi.width = src.cols;
NppiRect dstroi;
dstroi.x = dstroi.y = 0;
dstroi.height = dst.rows;
dstroi.width = dst.cols;
nppSafeCall( func(src.ptr<npp_t>(), srcsz, static_cast<int>(src.step), srcroi,
dst.ptr<npp_t>(), static_cast<int>(dst.step), dstroi, angle, xShift, yShift, npp_inter[interpolation]) );
if (stream == 0)
cudaSafeCall( cudaDeviceSynchronize() );
}
};
}
void cv::gpu::rotate(const GpuMat& src, GpuMat& dst, Size dsize, double angle, double xShift, double yShift, int interpolation, Stream& stream)
{
typedef void (*func_t)(const GpuMat& src, GpuMat& dst, Size dsize, double angle, double xShift, double yShift, int interpolation, cudaStream_t stream);
static const func_t funcs[6][4] =
{
{NppRotate<CV_8U, nppiRotate_8u_C1R>::call, 0, NppRotate<CV_8U, nppiRotate_8u_C3R>::call, NppRotate<CV_8U, nppiRotate_8u_C4R>::call},
{0,0,0,0},
{NppRotate<CV_16U, nppiRotate_16u_C1R>::call, 0, NppRotate<CV_16U, nppiRotate_16u_C3R>::call, NppRotate<CV_16U, nppiRotate_16u_C4R>::call},
{0,0,0,0},
{0,0,0,0},
{NppRotate<CV_32F, nppiRotate_32f_C1R>::call, 0, NppRotate<CV_32F, nppiRotate_32f_C3R>::call, NppRotate<CV_32F, nppiRotate_32f_C4R>::call}
};
CV_Assert(src.depth() == CV_8U || src.depth() == CV_16U || src.depth() == CV_32F);
CV_Assert(src.channels() == 1 || src.channels() == 3 || src.channels() == 4);
CV_Assert(interpolation == INTER_NEAREST || interpolation == INTER_LINEAR || interpolation == INTER_CUBIC);
dst.create(dsize, src.type());
dst.setTo(Scalar::all(0));
funcs[src.depth()][src.channels() - 1](src, dst, dsize, angle, xShift, yShift, interpolation, StreamAccessor::getStream(stream));
}
////////////////////////////////////////////////////////////////////////
// Histogram
namespace
{
typedef NppStatus (*get_buf_size_c1_t)(NppiSize oSizeROI, int nLevels, int* hpBufferSize);
typedef NppStatus (*get_buf_size_c4_t)(NppiSize oSizeROI, int nLevels[], int* hpBufferSize);
template<int SDEPTH> struct NppHistogramEvenFuncC1
{
typedef typename NppTypeTraits<SDEPTH>::npp_t src_t;
typedef NppStatus (*func_ptr)(const src_t* pSrc, int nSrcStep, NppiSize oSizeROI, Npp32s * pHist,
int nLevels, Npp32s nLowerLevel, Npp32s nUpperLevel, Npp8u * pBuffer);
};
template<int SDEPTH> struct NppHistogramEvenFuncC4
{
typedef typename NppTypeTraits<SDEPTH>::npp_t src_t;
typedef NppStatus (*func_ptr)(const src_t* pSrc, int nSrcStep, NppiSize oSizeROI,
Npp32s * pHist[4], int nLevels[4], Npp32s nLowerLevel[4], Npp32s nUpperLevel[4], Npp8u * pBuffer);
};
template<int SDEPTH, typename NppHistogramEvenFuncC1<SDEPTH>::func_ptr func, get_buf_size_c1_t get_buf_size>
struct NppHistogramEvenC1
{
typedef typename NppHistogramEvenFuncC1<SDEPTH>::src_t src_t;
static void hist(const GpuMat& src, GpuMat& hist, GpuMat& buffer, int histSize, int lowerLevel, int upperLevel, cudaStream_t stream)
{
int levels = histSize + 1;
hist.create(1, histSize, CV_32S);
NppiSize sz;
sz.width = src.cols;
sz.height = src.rows;
int buf_size;
get_buf_size(sz, levels, &buf_size);
ensureSizeIsEnough(1, buf_size, CV_8U, buffer);
NppStreamHandler h(stream);
nppSafeCall( func(src.ptr<src_t>(), static_cast<int>(src.step), sz, hist.ptr<Npp32s>(), levels,
lowerLevel, upperLevel, buffer.ptr<Npp8u>()) );
if (stream == 0)
cudaSafeCall( cudaDeviceSynchronize() );
}
};
template<int SDEPTH, typename NppHistogramEvenFuncC4<SDEPTH>::func_ptr func, get_buf_size_c4_t get_buf_size>
struct NppHistogramEvenC4
{
typedef typename NppHistogramEvenFuncC4<SDEPTH>::src_t src_t;
static void hist(const GpuMat& src, GpuMat hist[4], GpuMat& buffer, int histSize[4], int lowerLevel[4], int upperLevel[4], cudaStream_t stream)
{
int levels[] = {histSize[0] + 1, histSize[1] + 1, histSize[2] + 1, histSize[3] + 1};
hist[0].create(1, histSize[0], CV_32S);
hist[1].create(1, histSize[1], CV_32S);
hist[2].create(1, histSize[2], CV_32S);
hist[3].create(1, histSize[3], CV_32S);
NppiSize sz;
sz.width = src.cols;
sz.height = src.rows;
Npp32s* pHist[] = {hist[0].ptr<Npp32s>(), hist[1].ptr<Npp32s>(), hist[2].ptr<Npp32s>(), hist[3].ptr<Npp32s>()};
int buf_size;
get_buf_size(sz, levels, &buf_size);
ensureSizeIsEnough(1, buf_size, CV_8U, buffer);
NppStreamHandler h(stream);
nppSafeCall( func(src.ptr<src_t>(), static_cast<int>(src.step), sz, pHist, levels, lowerLevel, upperLevel, buffer.ptr<Npp8u>()) );
if (stream == 0)
cudaSafeCall( cudaDeviceSynchronize() );
}
};
template<int SDEPTH> struct NppHistogramRangeFuncC1
{
typedef typename NppTypeTraits<SDEPTH>::npp_t src_t;
typedef Npp32s level_t;
enum {LEVEL_TYPE_CODE=CV_32SC1};
typedef NppStatus (*func_ptr)(const src_t* pSrc, int nSrcStep, NppiSize oSizeROI, Npp32s* pHist,
const Npp32s* pLevels, int nLevels, Npp8u* pBuffer);
};
template<> struct NppHistogramRangeFuncC1<CV_32F>
{
typedef Npp32f src_t;
typedef Npp32f level_t;
enum {LEVEL_TYPE_CODE=CV_32FC1};
typedef NppStatus (*func_ptr)(const Npp32f* pSrc, int nSrcStep, NppiSize oSizeROI, Npp32s* pHist,
const Npp32f* pLevels, int nLevels, Npp8u* pBuffer);
};
template<int SDEPTH> struct NppHistogramRangeFuncC4
{
typedef typename NppTypeTraits<SDEPTH>::npp_t src_t;
typedef Npp32s level_t;
enum {LEVEL_TYPE_CODE=CV_32SC1};
typedef NppStatus (*func_ptr)(const src_t* pSrc, int nSrcStep, NppiSize oSizeROI, Npp32s* pHist[4],
const Npp32s* pLevels[4], int nLevels[4], Npp8u* pBuffer);
};
template<> struct NppHistogramRangeFuncC4<CV_32F>
{
typedef Npp32f src_t;
typedef Npp32f level_t;
enum {LEVEL_TYPE_CODE=CV_32FC1};
typedef NppStatus (*func_ptr)(const Npp32f* pSrc, int nSrcStep, NppiSize oSizeROI, Npp32s* pHist[4],
const Npp32f* pLevels[4], int nLevels[4], Npp8u* pBuffer);
};
template<int SDEPTH, typename NppHistogramRangeFuncC1<SDEPTH>::func_ptr func, get_buf_size_c1_t get_buf_size>
struct NppHistogramRangeC1
{
typedef typename NppHistogramRangeFuncC1<SDEPTH>::src_t src_t;
typedef typename NppHistogramRangeFuncC1<SDEPTH>::level_t level_t;
enum {LEVEL_TYPE_CODE=NppHistogramRangeFuncC1<SDEPTH>::LEVEL_TYPE_CODE};
static void hist(const GpuMat& src, GpuMat& hist, const GpuMat& levels, GpuMat& buffer, cudaStream_t stream)
{
CV_Assert(levels.type() == LEVEL_TYPE_CODE && levels.rows == 1);
hist.create(1, levels.cols - 1, CV_32S);
NppiSize sz;
sz.width = src.cols;
sz.height = src.rows;
int buf_size;
get_buf_size(sz, levels.cols, &buf_size);
ensureSizeIsEnough(1, buf_size, CV_8U, buffer);
NppStreamHandler h(stream);
nppSafeCall( func(src.ptr<src_t>(), static_cast<int>(src.step), sz, hist.ptr<Npp32s>(), levels.ptr<level_t>(), levels.cols, buffer.ptr<Npp8u>()) );
if (stream == 0)
cudaSafeCall( cudaDeviceSynchronize() );
}
};
template<int SDEPTH, typename NppHistogramRangeFuncC4<SDEPTH>::func_ptr func, get_buf_size_c4_t get_buf_size>
struct NppHistogramRangeC4
{
typedef typename NppHistogramRangeFuncC4<SDEPTH>::src_t src_t;
typedef typename NppHistogramRangeFuncC1<SDEPTH>::level_t level_t;
enum {LEVEL_TYPE_CODE=NppHistogramRangeFuncC1<SDEPTH>::LEVEL_TYPE_CODE};
static void hist(const GpuMat& src, GpuMat hist[4], const GpuMat levels[4], GpuMat& buffer, cudaStream_t stream)
{
CV_Assert(levels[0].type() == LEVEL_TYPE_CODE && levels[0].rows == 1);
CV_Assert(levels[1].type() == LEVEL_TYPE_CODE && levels[1].rows == 1);
CV_Assert(levels[2].type() == LEVEL_TYPE_CODE && levels[2].rows == 1);
CV_Assert(levels[3].type() == LEVEL_TYPE_CODE && levels[3].rows == 1);
hist[0].create(1, levels[0].cols - 1, CV_32S);
hist[1].create(1, levels[1].cols - 1, CV_32S);
hist[2].create(1, levels[2].cols - 1, CV_32S);
hist[3].create(1, levels[3].cols - 1, CV_32S);
Npp32s* pHist[] = {hist[0].ptr<Npp32s>(), hist[1].ptr<Npp32s>(), hist[2].ptr<Npp32s>(), hist[3].ptr<Npp32s>()};
int nLevels[] = {levels[0].cols, levels[1].cols, levels[2].cols, levels[3].cols};
const level_t* pLevels[] = {levels[0].ptr<level_t>(), levels[1].ptr<level_t>(), levels[2].ptr<level_t>(), levels[3].ptr<level_t>()};
NppiSize sz;
sz.width = src.cols;
sz.height = src.rows;
int buf_size;
get_buf_size(sz, nLevels, &buf_size);
ensureSizeIsEnough(1, buf_size, CV_8U, buffer);
NppStreamHandler h(stream);
nppSafeCall( func(src.ptr<src_t>(), static_cast<int>(src.step), sz, pHist, pLevels, nLevels, buffer.ptr<Npp8u>()) );
if (stream == 0)
cudaSafeCall( cudaDeviceSynchronize() );
}
};
}
void cv::gpu::evenLevels(GpuMat& levels, int nLevels, int lowerLevel, int upperLevel)
{
Mat host_levels(1, nLevels, CV_32SC1);
nppSafeCall( nppiEvenLevelsHost_32s(host_levels.ptr<Npp32s>(), nLevels, lowerLevel, upperLevel) );
levels.upload(host_levels);
}
void cv::gpu::histEven(const GpuMat& src, GpuMat& hist, int histSize, int lowerLevel, int upperLevel, Stream& stream)
{
GpuMat buf;
histEven(src, hist, buf, histSize, lowerLevel, upperLevel, stream);
}
void cv::gpu::histEven(const GpuMat& src, GpuMat& hist, GpuMat& buf, int histSize, int lowerLevel, int upperLevel, Stream& stream)
{
CV_Assert(src.type() == CV_8UC1 || src.type() == CV_16UC1 || src.type() == CV_16SC1 );
typedef void (*hist_t)(const GpuMat& src, GpuMat& hist, GpuMat& buf, int levels, int lowerLevel, int upperLevel, cudaStream_t stream);
static const hist_t hist_callers[] =
{
NppHistogramEvenC1<CV_8U , nppiHistogramEven_8u_C1R , nppiHistogramEvenGetBufferSize_8u_C1R >::hist,
0,
NppHistogramEvenC1<CV_16U, nppiHistogramEven_16u_C1R, nppiHistogramEvenGetBufferSize_16u_C1R>::hist,
NppHistogramEvenC1<CV_16S, nppiHistogramEven_16s_C1R, nppiHistogramEvenGetBufferSize_16s_C1R>::hist
};
hist_callers[src.depth()](src, hist, buf, histSize, lowerLevel, upperLevel, StreamAccessor::getStream(stream));
}
void cv::gpu::histEven(const GpuMat& src, GpuMat hist[4], int histSize[4], int lowerLevel[4], int upperLevel[4], Stream& stream)
{
GpuMat buf;
histEven(src, hist, buf, histSize, lowerLevel, upperLevel, stream);
}
void cv::gpu::histEven(const GpuMat& src, GpuMat hist[4], GpuMat& buf, int histSize[4], int lowerLevel[4], int upperLevel[4], Stream& stream)
{
CV_Assert(src.type() == CV_8UC4 || src.type() == CV_16UC4 || src.type() == CV_16SC4 );
typedef void (*hist_t)(const GpuMat& src, GpuMat hist[4], GpuMat& buf, int levels[4], int lowerLevel[4], int upperLevel[4], cudaStream_t stream);
static const hist_t hist_callers[] =
{
NppHistogramEvenC4<CV_8U , nppiHistogramEven_8u_C4R , nppiHistogramEvenGetBufferSize_8u_C4R >::hist,
0,
NppHistogramEvenC4<CV_16U, nppiHistogramEven_16u_C4R, nppiHistogramEvenGetBufferSize_16u_C4R>::hist,
NppHistogramEvenC4<CV_16S, nppiHistogramEven_16s_C4R, nppiHistogramEvenGetBufferSize_16s_C4R>::hist
};
hist_callers[src.depth()](src, hist, buf, histSize, lowerLevel, upperLevel, StreamAccessor::getStream(stream));
}
void cv::gpu::histRange(const GpuMat& src, GpuMat& hist, const GpuMat& levels, Stream& stream)
{
GpuMat buf;
histRange(src, hist, levels, buf, stream);
}
void cv::gpu::histRange(const GpuMat& src, GpuMat& hist, const GpuMat& levels, GpuMat& buf, Stream& stream)
{
CV_Assert(src.type() == CV_8UC1 || src.type() == CV_16UC1 || src.type() == CV_16SC1 || src.type() == CV_32FC1);
typedef void (*hist_t)(const GpuMat& src, GpuMat& hist, const GpuMat& levels, GpuMat& buf, cudaStream_t stream);
static const hist_t hist_callers[] =
{
NppHistogramRangeC1<CV_8U , nppiHistogramRange_8u_C1R , nppiHistogramRangeGetBufferSize_8u_C1R >::hist,
0,
NppHistogramRangeC1<CV_16U, nppiHistogramRange_16u_C1R, nppiHistogramRangeGetBufferSize_16u_C1R>::hist,
NppHistogramRangeC1<CV_16S, nppiHistogramRange_16s_C1R, nppiHistogramRangeGetBufferSize_16s_C1R>::hist,
0,
NppHistogramRangeC1<CV_32F, nppiHistogramRange_32f_C1R, nppiHistogramRangeGetBufferSize_32f_C1R>::hist
};
hist_callers[src.depth()](src, hist, levels, buf, StreamAccessor::getStream(stream));
}
void cv::gpu::histRange(const GpuMat& src, GpuMat hist[4], const GpuMat levels[4], Stream& stream)
{
GpuMat buf;
histRange(src, hist, levels, buf, stream);
}
void cv::gpu::histRange(const GpuMat& src, GpuMat hist[4], const GpuMat levels[4], GpuMat& buf, Stream& stream)
{
CV_Assert(src.type() == CV_8UC4 || src.type() == CV_16UC4 || src.type() == CV_16SC4 || src.type() == CV_32FC4);
typedef void (*hist_t)(const GpuMat& src, GpuMat hist[4], const GpuMat levels[4], GpuMat& buf, cudaStream_t stream);
static const hist_t hist_callers[] =
{
NppHistogramRangeC4<CV_8U , nppiHistogramRange_8u_C4R , nppiHistogramRangeGetBufferSize_8u_C4R >::hist,
0,
NppHistogramRangeC4<CV_16U, nppiHistogramRange_16u_C4R, nppiHistogramRangeGetBufferSize_16u_C4R>::hist,
NppHistogramRangeC4<CV_16S, nppiHistogramRange_16s_C4R, nppiHistogramRangeGetBufferSize_16s_C4R>::hist,
0,
NppHistogramRangeC4<CV_32F, nppiHistogramRange_32f_C4R, nppiHistogramRangeGetBufferSize_32f_C4R>::hist
};
hist_callers[src.depth()](src, hist, levels, buf, StreamAccessor::getStream(stream));
}
namespace hist
{
void histogram256(PtrStepSzb src, int* hist, cudaStream_t stream);
void equalizeHist(PtrStepSzb src, PtrStepSzb dst, const int* lut, cudaStream_t stream);
}
void cv::gpu::calcHist(const GpuMat& src, GpuMat& hist, Stream& stream)
{
CV_Assert(src.type() == CV_8UC1);
hist.create(1, 256, CV_32SC1);
hist.setTo(Scalar::all(0));
hist::histogram256(src, hist.ptr<int>(), StreamAccessor::getStream(stream));
}
void cv::gpu::equalizeHist(const GpuMat& src, GpuMat& dst, Stream& stream)
{
GpuMat hist;
GpuMat buf;
equalizeHist(src, dst, hist, buf, stream);
}
void cv::gpu::equalizeHist(const GpuMat& src, GpuMat& dst, GpuMat& hist, GpuMat& buf, Stream& s)
{
CV_Assert(src.type() == CV_8UC1);
dst.create(src.size(), src.type());
int intBufSize;
nppSafeCall( nppsIntegralGetBufferSize_32s(256, &intBufSize) );
ensureSizeIsEnough(1, intBufSize + 256 * sizeof(int), CV_8UC1, buf);
GpuMat intBuf(1, intBufSize, CV_8UC1, buf.ptr());
GpuMat lut(1, 256, CV_32S, buf.ptr() + intBufSize);
calcHist(src, hist, s);
cudaStream_t stream = StreamAccessor::getStream(s);
NppStreamHandler h(stream);
nppSafeCall( nppsIntegral_32s(hist.ptr<Npp32s>(), lut.ptr<Npp32s>(), 256, intBuf.ptr<Npp8u>()) );
hist::equalizeHist(src, dst, lut.ptr<int>(), stream);
}
////////////////////////////////////////////////////////////////////////
// cornerHarris & minEgenVal
namespace cv { namespace gpu { namespace cudev
{
namespace imgproc
{
void cornerHarris_gpu(int block_size, float k, PtrStepSzf Dx, PtrStepSzf Dy, PtrStepSzf dst, int border_type, cudaStream_t stream);
void cornerMinEigenVal_gpu(int block_size, PtrStepSzf Dx, PtrStepSzf Dy, PtrStepSzf dst, int border_type, cudaStream_t stream);
}
}}}
namespace
{
void extractCovData(const GpuMat& src, GpuMat& Dx, GpuMat& Dy, GpuMat& buf, int blockSize, int ksize, int borderType, Stream& stream)
{
double scale = static_cast<double>(1 << ((ksize > 0 ? ksize : 3) - 1)) * blockSize;
if (ksize < 0)
scale *= 2.;
if (src.depth() == CV_8U)
scale *= 255.;
scale = 1./scale;
Dx.create(src.size(), CV_32F);
Dy.create(src.size(), CV_32F);
if (ksize > 0)
{
Sobel(src, Dx, CV_32F, 1, 0, buf, ksize, scale, borderType, -1, stream);
Sobel(src, Dy, CV_32F, 0, 1, buf, ksize, scale, borderType, -1, stream);
}
else
{
Scharr(src, Dx, CV_32F, 1, 0, buf, scale, borderType, -1, stream);
Scharr(src, Dy, CV_32F, 0, 1, buf, scale, borderType, -1, stream);
}
}
}
void cv::gpu::cornerHarris(const GpuMat& src, GpuMat& dst, int blockSize, int ksize, double k, int borderType)
{
GpuMat Dx, Dy;
cornerHarris(src, dst, Dx, Dy, blockSize, ksize, k, borderType);
}
void cv::gpu::cornerHarris(const GpuMat& src, GpuMat& dst, GpuMat& Dx, GpuMat& Dy, int blockSize, int ksize, double k, int borderType)
{
GpuMat buf;
cornerHarris(src, dst, Dx, Dy, buf, blockSize, ksize, k, borderType);
}
void cv::gpu::cornerHarris(const GpuMat& src, GpuMat& dst, GpuMat& Dx, GpuMat& Dy, GpuMat& buf, int blockSize, int ksize, double k, int borderType, Stream& stream)
{
using namespace cv::gpu::cudev::imgproc;
CV_Assert(borderType == cv::BORDER_REFLECT101 || borderType == cv::BORDER_REPLICATE || borderType == cv::BORDER_REFLECT);
int gpuBorderType;
CV_Assert(tryConvertToGpuBorderType(borderType, gpuBorderType));
extractCovData(src, Dx, Dy, buf, blockSize, ksize, borderType, stream);
dst.create(src.size(), CV_32F);
cornerHarris_gpu(blockSize, static_cast<float>(k), Dx, Dy, dst, gpuBorderType, StreamAccessor::getStream(stream));
}
void cv::gpu::cornerMinEigenVal(const GpuMat& src, GpuMat& dst, int blockSize, int ksize, int borderType)
{
GpuMat Dx, Dy;
cornerMinEigenVal(src, dst, Dx, Dy, blockSize, ksize, borderType);
}
void cv::gpu::cornerMinEigenVal(const GpuMat& src, GpuMat& dst, GpuMat& Dx, GpuMat& Dy, int blockSize, int ksize, int borderType)
{
GpuMat buf;
cornerMinEigenVal(src, dst, Dx, Dy, buf, blockSize, ksize, borderType);
}
void cv::gpu::cornerMinEigenVal(const GpuMat& src, GpuMat& dst, GpuMat& Dx, GpuMat& Dy, GpuMat& buf, int blockSize, int ksize, int borderType, Stream& stream)
{
using namespace ::cv::gpu::cudev::imgproc;
CV_Assert(borderType == cv::BORDER_REFLECT101 || borderType == cv::BORDER_REPLICATE || borderType == cv::BORDER_REFLECT);
int gpuBorderType;
CV_Assert(tryConvertToGpuBorderType(borderType, gpuBorderType));
extractCovData(src, Dx, Dy, buf, blockSize, ksize, borderType, stream);
dst.create(src.size(), CV_32F);
cornerMinEigenVal_gpu(blockSize, Dx, Dy, dst, gpuBorderType, StreamAccessor::getStream(stream));
}
//////////////////////////////////////////////////////////////////////////////
// Canny
void cv::gpu::CannyBuf::create(const Size& image_size, int apperture_size)
{
if (apperture_size > 0)
{
ensureSizeIsEnough(image_size, CV_32SC1, dx);
ensureSizeIsEnough(image_size, CV_32SC1, dy);
if (apperture_size != 3)
{
filterDX = createDerivFilter_GPU(CV_8UC1, CV_32S, 1, 0, apperture_size, BORDER_REPLICATE);
filterDY = createDerivFilter_GPU(CV_8UC1, CV_32S, 0, 1, apperture_size, BORDER_REPLICATE);
}
}
ensureSizeIsEnough(image_size, CV_32FC1, mag);
ensureSizeIsEnough(image_size, CV_32SC1, map);
ensureSizeIsEnough(1, image_size.area(), CV_16UC2, st1);
ensureSizeIsEnough(1, image_size.area(), CV_16UC2, st2);
}
void cv::gpu::CannyBuf::release()
{
dx.release();
dy.release();
mag.release();
map.release();
st1.release();
st2.release();
}
namespace canny
{
void calcMagnitude(PtrStepSzb srcWhole, int xoff, int yoff, PtrStepSzi dx, PtrStepSzi dy, PtrStepSzf mag, bool L2Grad);
void calcMagnitude(PtrStepSzi dx, PtrStepSzi dy, PtrStepSzf mag, bool L2Grad);
void calcMap(PtrStepSzi dx, PtrStepSzi dy, PtrStepSzf mag, PtrStepSzi map, float low_thresh, float high_thresh);
void edgesHysteresisLocal(PtrStepSzi map, ushort2* st1);
void edgesHysteresisGlobal(PtrStepSzi map, ushort2* st1, ushort2* st2);
void getEdges(PtrStepSzi map, PtrStepSzb dst);
}
namespace
{
void CannyCaller(const GpuMat& dx, const GpuMat& dy, CannyBuf& buf, GpuMat& dst, float low_thresh, float high_thresh)
{
using namespace canny;
buf.map.setTo(Scalar::all(0));
calcMap(dx, dy, buf.mag, buf.map, low_thresh, high_thresh);
edgesHysteresisLocal(buf.map, buf.st1.ptr<ushort2>());
edgesHysteresisGlobal(buf.map, buf.st1.ptr<ushort2>(), buf.st2.ptr<ushort2>());
getEdges(buf.map, dst);
}
}
void cv::gpu::Canny(const GpuMat& src, GpuMat& dst, double low_thresh, double high_thresh, int apperture_size, bool L2gradient)
{
CannyBuf buf;
Canny(src, buf, dst, low_thresh, high_thresh, apperture_size, L2gradient);
}
void cv::gpu::Canny(const GpuMat& src, CannyBuf& buf, GpuMat& dst, double low_thresh, double high_thresh, int apperture_size, bool L2gradient)
{
using namespace canny;
CV_Assert(src.type() == CV_8UC1);
if (!deviceSupports(SHARED_ATOMICS))
CV_Error(cv::Error::StsNotImplemented, "The device doesn't support shared atomics");
if( low_thresh > high_thresh )
std::swap( low_thresh, high_thresh);
dst.create(src.size(), CV_8U);
buf.create(src.size(), apperture_size);
if (apperture_size == 3)
{
Size wholeSize;
Point ofs;
src.locateROI(wholeSize, ofs);
GpuMat srcWhole(wholeSize, src.type(), src.datastart, src.step);
calcMagnitude(srcWhole, ofs.x, ofs.y, buf.dx, buf.dy, buf.mag, L2gradient);
}
else
{
buf.filterDX->apply(src, buf.dx, Rect(0, 0, src.cols, src.rows));
buf.filterDY->apply(src, buf.dy, Rect(0, 0, src.cols, src.rows));
calcMagnitude(buf.dx, buf.dy, buf.mag, L2gradient);
}
CannyCaller(buf.dx, buf.dy, buf, dst, static_cast<float>(low_thresh), static_cast<float>(high_thresh));
}
void cv::gpu::Canny(const GpuMat& dx, const GpuMat& dy, GpuMat& dst, double low_thresh, double high_thresh, bool L2gradient)
{
CannyBuf buf;
Canny(dx, dy, buf, dst, low_thresh, high_thresh, L2gradient);
}
void cv::gpu::Canny(const GpuMat& dx, const GpuMat& dy, CannyBuf& buf, GpuMat& dst, double low_thresh, double high_thresh, bool L2gradient)
{
using namespace canny;
CV_Assert(TargetArchs::builtWith(SHARED_ATOMICS) && DeviceInfo().supports(SHARED_ATOMICS));
CV_Assert(dx.type() == CV_32SC1 && dy.type() == CV_32SC1 && dx.size() == dy.size());
if( low_thresh > high_thresh )
std::swap( low_thresh, high_thresh);
dst.create(dx.size(), CV_8U);
buf.create(dx.size(), -1);
calcMagnitude(dx, dy, buf.mag, L2gradient);
CannyCaller(dx, dy, buf, dst, static_cast<float>(low_thresh), static_cast<float>(high_thresh));
}
////////////////////////////////////////////////////////////////////////
// CLAHE
namespace clahe
{
void calcLut(PtrStepSzb src, PtrStepb lut, int tilesX, int tilesY, int2 tileSize, int clipLimit, float lutScale, cudaStream_t stream);
void transform(PtrStepSzb src, PtrStepSzb dst, PtrStepb lut, int tilesX, int tilesY, int2 tileSize, cudaStream_t stream);
}
namespace
{
class CLAHE_Impl : public cv::gpu::CLAHE
{
public:
CLAHE_Impl(double clipLimit = 40.0, int tilesX = 8, int tilesY = 8);
cv::AlgorithmInfo* info() const;
void apply(cv::InputArray src, cv::OutputArray dst);
void apply(InputArray src, OutputArray dst, Stream& stream);
void setClipLimit(double clipLimit);
double getClipLimit() const;
void setTilesGridSize(cv::Size tileGridSize);
cv::Size getTilesGridSize() const;
void collectGarbage();
private:
double clipLimit_;
int tilesX_;
int tilesY_;
GpuMat srcExt_;
GpuMat lut_;
};
CLAHE_Impl::CLAHE_Impl(double clipLimit, int tilesX, int tilesY) :
clipLimit_(clipLimit), tilesX_(tilesX), tilesY_(tilesY)
{
}
CV_INIT_ALGORITHM(CLAHE_Impl, "CLAHE_GPU",
obj.info()->addParam(obj, "clipLimit", obj.clipLimit_);
obj.info()->addParam(obj, "tilesX", obj.tilesX_);
obj.info()->addParam(obj, "tilesY", obj.tilesY_))
void CLAHE_Impl::apply(cv::InputArray _src, cv::OutputArray _dst)
{
apply(_src, _dst, Stream::Null());
}
void CLAHE_Impl::apply(InputArray _src, OutputArray _dst, Stream& s)
{
GpuMat src = _src.getGpuMat();
CV_Assert( src.type() == CV_8UC1 );
_dst.create( src.size(), src.type() );
GpuMat dst = _dst.getGpuMat();
const int histSize = 256;
ensureSizeIsEnough(tilesX_ * tilesY_, histSize, CV_8UC1, lut_);
cudaStream_t stream = StreamAccessor::getStream(s);
cv::Size tileSize;
GpuMat srcForLut;
if (src.cols % tilesX_ == 0 && src.rows % tilesY_ == 0)
{
tileSize = cv::Size(src.cols / tilesX_, src.rows / tilesY_);
srcForLut = src;
}
else
{
cv::gpu::copyMakeBorder(src, srcExt_, 0, tilesY_ - (src.rows % tilesY_), 0, tilesX_ - (src.cols % tilesX_), cv::BORDER_REFLECT_101, cv::Scalar(), s);
tileSize = cv::Size(srcExt_.cols / tilesX_, srcExt_.rows / tilesY_);
srcForLut = srcExt_;
}
const int tileSizeTotal = tileSize.area();
const float lutScale = static_cast<float>(histSize - 1) / tileSizeTotal;
int clipLimit = 0;
if (clipLimit_ > 0.0)
{
clipLimit = static_cast<int>(clipLimit_ * tileSizeTotal / histSize);
clipLimit = std::max(clipLimit, 1);
}
clahe::calcLut(srcForLut, lut_, tilesX_, tilesY_, make_int2(tileSize.width, tileSize.height), clipLimit, lutScale, stream);
clahe::transform(src, dst, lut_, tilesX_, tilesY_, make_int2(tileSize.width, tileSize.height), stream);
}
void CLAHE_Impl::setClipLimit(double clipLimit)
{
clipLimit_ = clipLimit;
}
double CLAHE_Impl::getClipLimit() const
{
return clipLimit_;
}
void CLAHE_Impl::setTilesGridSize(cv::Size tileGridSize)
{
tilesX_ = tileGridSize.width;
tilesY_ = tileGridSize.height;
}
cv::Size CLAHE_Impl::getTilesGridSize() const
{
return cv::Size(tilesX_, tilesY_);
}
void CLAHE_Impl::collectGarbage()
{
srcExt_.release();
lut_.release();
}
}
cv::Ptr<cv::gpu::CLAHE> cv::gpu::createCLAHE(double clipLimit, cv::Size tileGridSize)
{
return new CLAHE_Impl(clipLimit, tileGridSize.width, tileGridSize.height);
}
////////////////////////////////////////////////////////////////////////
// alphaComp
namespace
{
template <int DEPTH> struct NppAlphaCompFunc
{
typedef typename NppTypeTraits<DEPTH>::npp_t npp_t;
typedef NppStatus (*func_t)(const npp_t* pSrc1, int nSrc1Step, const npp_t* pSrc2, int nSrc2Step, npp_t* pDst, int nDstStep, NppiSize oSizeROI, NppiAlphaOp eAlphaOp);
};
template <int DEPTH, typename NppAlphaCompFunc<DEPTH>::func_t func> struct NppAlphaComp
{
typedef typename NppTypeTraits<DEPTH>::npp_t npp_t;
static void call(const GpuMat& img1, const GpuMat& img2, GpuMat& dst, NppiAlphaOp eAlphaOp, cudaStream_t stream)
{
NppStreamHandler h(stream);
NppiSize oSizeROI;
oSizeROI.width = img1.cols;
oSizeROI.height = img2.rows;
nppSafeCall( func(img1.ptr<npp_t>(), static_cast<int>(img1.step), img2.ptr<npp_t>(), static_cast<int>(img2.step),
dst.ptr<npp_t>(), static_cast<int>(dst.step), oSizeROI, eAlphaOp) );
if (stream == 0)
cudaSafeCall( cudaDeviceSynchronize() );
}
};
}
void cv::gpu::alphaComp(const GpuMat& img1, const GpuMat& img2, GpuMat& dst, int alpha_op, Stream& stream)
{
static const NppiAlphaOp npp_alpha_ops[] = {
NPPI_OP_ALPHA_OVER,
NPPI_OP_ALPHA_IN,
NPPI_OP_ALPHA_OUT,
NPPI_OP_ALPHA_ATOP,
NPPI_OP_ALPHA_XOR,
NPPI_OP_ALPHA_PLUS,
NPPI_OP_ALPHA_OVER_PREMUL,
NPPI_OP_ALPHA_IN_PREMUL,
NPPI_OP_ALPHA_OUT_PREMUL,
NPPI_OP_ALPHA_ATOP_PREMUL,
NPPI_OP_ALPHA_XOR_PREMUL,
NPPI_OP_ALPHA_PLUS_PREMUL,
NPPI_OP_ALPHA_PREMUL
};
typedef void (*func_t)(const GpuMat& img1, const GpuMat& img2, GpuMat& dst, NppiAlphaOp eAlphaOp, cudaStream_t stream);
static const func_t funcs[] =
{
NppAlphaComp<CV_8U, nppiAlphaComp_8u_AC4R>::call,
0,
NppAlphaComp<CV_16U, nppiAlphaComp_16u_AC4R>::call,
0,
NppAlphaComp<CV_32S, nppiAlphaComp_32s_AC4R>::call,
NppAlphaComp<CV_32F, nppiAlphaComp_32f_AC4R>::call
};
CV_Assert( img1.type() == CV_8UC4 || img1.type() == CV_16UC4 || img1.type() == CV_32SC4 || img1.type() == CV_32FC4 );
CV_Assert( img1.size() == img2.size() && img1.type() == img2.type() );
dst.create(img1.size(), img1.type());
const func_t func = funcs[img1.depth()];
func(img1, img2, dst, npp_alpha_ops[alpha_op], StreamAccessor::getStream(stream));
}
#endif /* !defined (HAVE_CUDA) */