578 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			578 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| #include "clapack.h"
 | |
| 
 | |
| /* Subroutine */ int dsytf2_(char *uplo, integer *n, doublereal *a, integer *
 | |
| 	lda, integer *ipiv, integer *info)
 | |
| {
 | |
| /*  -- LAPACK routine (version 3.1) --   
 | |
|        Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..   
 | |
|        November 2006   
 | |
| 
 | |
| 
 | |
|     Purpose   
 | |
|     =======   
 | |
| 
 | |
|     DSYTF2 computes the factorization of a real symmetric matrix A using   
 | |
|     the Bunch-Kaufman diagonal pivoting method:   
 | |
| 
 | |
|        A = U*D*U'  or  A = L*D*L'   
 | |
| 
 | |
|     where U (or L) is a product of permutation and unit upper (lower)   
 | |
|     triangular matrices, U' is the transpose of U, and D is symmetric and   
 | |
|     block diagonal with 1-by-1 and 2-by-2 diagonal blocks.   
 | |
| 
 | |
|     This is the unblocked version of the algorithm, calling Level 2 BLAS.   
 | |
| 
 | |
|     Arguments   
 | |
|     =========   
 | |
| 
 | |
|     UPLO    (input) CHARACTER*1   
 | |
|             Specifies whether the upper or lower triangular part of the   
 | |
|             symmetric matrix A is stored:   
 | |
|             = 'U':  Upper triangular   
 | |
|             = 'L':  Lower triangular   
 | |
| 
 | |
|     N       (input) INTEGER   
 | |
|             The order of the matrix A.  N >= 0.   
 | |
| 
 | |
|     A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)   
 | |
|             On entry, the symmetric matrix A.  If UPLO = 'U', the leading   
 | |
|             n-by-n upper triangular part of A contains the upper   
 | |
|             triangular part of the matrix A, and the strictly lower   
 | |
|             triangular part of A is not referenced.  If UPLO = 'L', the   
 | |
|             leading n-by-n lower triangular part of A contains the lower   
 | |
|             triangular part of the matrix A, and the strictly upper   
 | |
|             triangular part of A is not referenced.   
 | |
| 
 | |
|             On exit, the block diagonal matrix D and the multipliers used   
 | |
|             to obtain the factor U or L (see below for further details).   
 | |
| 
 | |
|     LDA     (input) INTEGER   
 | |
|             The leading dimension of the array A.  LDA >= max(1,N).   
 | |
| 
 | |
|     IPIV    (output) INTEGER array, dimension (N)   
 | |
|             Details of the interchanges and the block structure of D.   
 | |
|             If IPIV(k) > 0, then rows and columns k and IPIV(k) were   
 | |
|             interchanged and D(k,k) is a 1-by-1 diagonal block.   
 | |
|             If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and   
 | |
|             columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k)   
 | |
|             is a 2-by-2 diagonal block.  If UPLO = 'L' and IPIV(k) =   
 | |
|             IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were   
 | |
|             interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block.   
 | |
| 
 | |
|     INFO    (output) INTEGER   
 | |
|             = 0: successful exit   
 | |
|             < 0: if INFO = -k, the k-th argument had an illegal value   
 | |
|             > 0: if INFO = k, D(k,k) is exactly zero.  The factorization   
 | |
|                  has been completed, but the block diagonal matrix D is   
 | |
|                  exactly singular, and division by zero will occur if it   
 | |
|                  is used to solve a system of equations.   
 | |
| 
 | |
|     Further Details   
 | |
|     ===============   
 | |
| 
 | |
|     09-29-06 - patch from   
 | |
|       Bobby Cheng, MathWorks   
 | |
| 
 | |
|       Replace l.204 and l.372   
 | |
|            IF( MAX( ABSAKK, COLMAX ).EQ.ZERO ) THEN   
 | |
|       by   
 | |
|            IF( (MAX( ABSAKK, COLMAX ).EQ.ZERO) .OR. DISNAN(ABSAKK) ) THEN   
 | |
| 
 | |
|     01-01-96 - Based on modifications by   
 | |
|       J. Lewis, Boeing Computer Services Company   
 | |
|       A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA   
 | |
|     1-96 - Based on modifications by J. Lewis, Boeing Computer Services   
 | |
|            Company   
 | |
| 
 | |
|     If UPLO = 'U', then A = U*D*U', where   
 | |
|        U = P(n)*U(n)* ... *P(k)U(k)* ...,   
 | |
|     i.e., U is a product of terms P(k)*U(k), where k decreases from n to   
 | |
|     1 in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1   
 | |
|     and 2-by-2 diagonal blocks D(k).  P(k) is a permutation matrix as   
 | |
|     defined by IPIV(k), and U(k) is a unit upper triangular matrix, such   
 | |
|     that if the diagonal block D(k) is of order s (s = 1 or 2), then   
 | |
| 
 | |
|                (   I    v    0   )   k-s   
 | |
|        U(k) =  (   0    I    0   )   s   
 | |
|                (   0    0    I   )   n-k   
 | |
|                   k-s   s   n-k   
 | |
| 
 | |
|     If s = 1, D(k) overwrites A(k,k), and v overwrites A(1:k-1,k).   
 | |
|     If s = 2, the upper triangle of D(k) overwrites A(k-1,k-1), A(k-1,k),   
 | |
|     and A(k,k), and v overwrites A(1:k-2,k-1:k).   
 | |
| 
 | |
|     If UPLO = 'L', then A = L*D*L', where   
 | |
|        L = P(1)*L(1)* ... *P(k)*L(k)* ...,   
 | |
|     i.e., L is a product of terms P(k)*L(k), where k increases from 1 to   
 | |
|     n in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1   
 | |
|     and 2-by-2 diagonal blocks D(k).  P(k) is a permutation matrix as   
 | |
|     defined by IPIV(k), and L(k) is a unit lower triangular matrix, such   
 | |
|     that if the diagonal block D(k) is of order s (s = 1 or 2), then   
 | |
| 
 | |
|                (   I    0     0   )  k-1   
 | |
|        L(k) =  (   0    I     0   )  s   
 | |
|                (   0    v     I   )  n-k-s+1   
 | |
|                   k-1   s  n-k-s+1   
 | |
| 
 | |
|     If s = 1, D(k) overwrites A(k,k), and v overwrites A(k+1:n,k).   
 | |
|     If s = 2, the lower triangle of D(k) overwrites A(k,k), A(k+1,k),   
 | |
|     and A(k+1,k+1), and v overwrites A(k+2:n,k:k+1).   
 | |
| 
 | |
|     =====================================================================   
 | |
| 
 | |
| 
 | |
|        Test the input parameters.   
 | |
| 
 | |
|        Parameter adjustments */
 | |
|     /* Table of constant values */
 | |
|     static integer c__1 = 1;
 | |
|     
 | |
|     /* System generated locals */
 | |
|     integer a_dim1, a_offset, i__1, i__2;
 | |
|     doublereal d__1, d__2, d__3;
 | |
|     /* Builtin functions */
 | |
|     double sqrt(doublereal);
 | |
|     /* Local variables */
 | |
|     static integer i__, j, k;
 | |
|     static doublereal t, r1, d11, d12, d21, d22;
 | |
|     static integer kk, kp;
 | |
|     static doublereal wk, wkm1, wkp1;
 | |
|     static integer imax, jmax;
 | |
|     extern /* Subroutine */ int dsyr_(char *, integer *, doublereal *, 
 | |
| 	    doublereal *, integer *, doublereal *, integer *);
 | |
|     static doublereal alpha;
 | |
|     extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *, 
 | |
| 	    integer *);
 | |
|     extern logical lsame_(char *, char *);
 | |
|     extern /* Subroutine */ int dswap_(integer *, doublereal *, integer *, 
 | |
| 	    doublereal *, integer *);
 | |
|     static integer kstep;
 | |
|     static logical upper;
 | |
|     static doublereal absakk;
 | |
|     extern integer idamax_(integer *, doublereal *, integer *);
 | |
|     extern logical disnan_(doublereal *);
 | |
|     extern /* Subroutine */ int xerbla_(char *, integer *);
 | |
|     static doublereal colmax, rowmax;
 | |
| 
 | |
| 
 | |
|     a_dim1 = *lda;
 | |
|     a_offset = 1 + a_dim1;
 | |
|     a -= a_offset;
 | |
|     --ipiv;
 | |
| 
 | |
|     /* Function Body */
 | |
|     *info = 0;
 | |
|     upper = lsame_(uplo, "U");
 | |
|     if (! upper && ! lsame_(uplo, "L")) {
 | |
| 	*info = -1;
 | |
|     } else if (*n < 0) {
 | |
| 	*info = -2;
 | |
|     } else if (*lda < max(1,*n)) {
 | |
| 	*info = -4;
 | |
|     }
 | |
|     if (*info != 0) {
 | |
| 	i__1 = -(*info);
 | |
| 	xerbla_("DSYTF2", &i__1);
 | |
| 	return 0;
 | |
|     }
 | |
| 
 | |
| /*     Initialize ALPHA for use in choosing pivot block size. */
 | |
| 
 | |
|     alpha = (sqrt(17.) + 1.) / 8.;
 | |
| 
 | |
|     if (upper) {
 | |
| 
 | |
| /*        Factorize A as U*D*U' using the upper triangle of A   
 | |
| 
 | |
|           K is the main loop index, decreasing from N to 1 in steps of   
 | |
|           1 or 2 */
 | |
| 
 | |
| 	k = *n;
 | |
| L10:
 | |
| 
 | |
| /*        If K < 1, exit from loop */
 | |
| 
 | |
| 	if (k < 1) {
 | |
| 	    goto L70;
 | |
| 	}
 | |
| 	kstep = 1;
 | |
| 
 | |
| /*        Determine rows and columns to be interchanged and whether   
 | |
|           a 1-by-1 or 2-by-2 pivot block will be used */
 | |
| 
 | |
| 	absakk = (d__1 = a[k + k * a_dim1], abs(d__1));
 | |
| 
 | |
| /*        IMAX is the row-index of the largest off-diagonal element in   
 | |
|           column K, and COLMAX is its absolute value */
 | |
| 
 | |
| 	if (k > 1) {
 | |
| 	    i__1 = k - 1;
 | |
| 	    imax = idamax_(&i__1, &a[k * a_dim1 + 1], &c__1);
 | |
| 	    colmax = (d__1 = a[imax + k * a_dim1], abs(d__1));
 | |
| 	} else {
 | |
| 	    colmax = 0.;
 | |
| 	}
 | |
| 
 | |
| 	if (max(absakk,colmax) == 0. || disnan_(&absakk)) {
 | |
| 
 | |
| /*           Column K is zero or contains a NaN: set INFO and continue */
 | |
| 
 | |
| 	    if (*info == 0) {
 | |
| 		*info = k;
 | |
| 	    }
 | |
| 	    kp = k;
 | |
| 	} else {
 | |
| 	    if (absakk >= alpha * colmax) {
 | |
| 
 | |
| /*              no interchange, use 1-by-1 pivot block */
 | |
| 
 | |
| 		kp = k;
 | |
| 	    } else {
 | |
| 
 | |
| /*              JMAX is the column-index of the largest off-diagonal   
 | |
|                 element in row IMAX, and ROWMAX is its absolute value */
 | |
| 
 | |
| 		i__1 = k - imax;
 | |
| 		jmax = imax + idamax_(&i__1, &a[imax + (imax + 1) * a_dim1], 
 | |
| 			lda);
 | |
| 		rowmax = (d__1 = a[imax + jmax * a_dim1], abs(d__1));
 | |
| 		if (imax > 1) {
 | |
| 		    i__1 = imax - 1;
 | |
| 		    jmax = idamax_(&i__1, &a[imax * a_dim1 + 1], &c__1);
 | |
| /* Computing MAX */
 | |
| 		    d__2 = rowmax, d__3 = (d__1 = a[jmax + imax * a_dim1], 
 | |
| 			    abs(d__1));
 | |
| 		    rowmax = max(d__2,d__3);
 | |
| 		}
 | |
| 
 | |
| 		if (absakk >= alpha * colmax * (colmax / rowmax)) {
 | |
| 
 | |
| /*                 no interchange, use 1-by-1 pivot block */
 | |
| 
 | |
| 		    kp = k;
 | |
| 		} else if ((d__1 = a[imax + imax * a_dim1], abs(d__1)) >= 
 | |
| 			alpha * rowmax) {
 | |
| 
 | |
| /*                 interchange rows and columns K and IMAX, use 1-by-1   
 | |
|                    pivot block */
 | |
| 
 | |
| 		    kp = imax;
 | |
| 		} else {
 | |
| 
 | |
| /*                 interchange rows and columns K-1 and IMAX, use 2-by-2   
 | |
|                    pivot block */
 | |
| 
 | |
| 		    kp = imax;
 | |
| 		    kstep = 2;
 | |
| 		}
 | |
| 	    }
 | |
| 
 | |
| 	    kk = k - kstep + 1;
 | |
| 	    if (kp != kk) {
 | |
| 
 | |
| /*              Interchange rows and columns KK and KP in the leading   
 | |
|                 submatrix A(1:k,1:k) */
 | |
| 
 | |
| 		i__1 = kp - 1;
 | |
| 		dswap_(&i__1, &a[kk * a_dim1 + 1], &c__1, &a[kp * a_dim1 + 1], 
 | |
| 			 &c__1);
 | |
| 		i__1 = kk - kp - 1;
 | |
| 		dswap_(&i__1, &a[kp + 1 + kk * a_dim1], &c__1, &a[kp + (kp + 
 | |
| 			1) * a_dim1], lda);
 | |
| 		t = a[kk + kk * a_dim1];
 | |
| 		a[kk + kk * a_dim1] = a[kp + kp * a_dim1];
 | |
| 		a[kp + kp * a_dim1] = t;
 | |
| 		if (kstep == 2) {
 | |
| 		    t = a[k - 1 + k * a_dim1];
 | |
| 		    a[k - 1 + k * a_dim1] = a[kp + k * a_dim1];
 | |
| 		    a[kp + k * a_dim1] = t;
 | |
| 		}
 | |
| 	    }
 | |
| 
 | |
| /*           Update the leading submatrix */
 | |
| 
 | |
| 	    if (kstep == 1) {
 | |
| 
 | |
| /*              1-by-1 pivot block D(k): column k now holds   
 | |
| 
 | |
|                 W(k) = U(k)*D(k)   
 | |
| 
 | |
|                 where U(k) is the k-th column of U   
 | |
| 
 | |
|                 Perform a rank-1 update of A(1:k-1,1:k-1) as   
 | |
| 
 | |
|                 A := A - U(k)*D(k)*U(k)' = A - W(k)*1/D(k)*W(k)' */
 | |
| 
 | |
| 		r1 = 1. / a[k + k * a_dim1];
 | |
| 		i__1 = k - 1;
 | |
| 		d__1 = -r1;
 | |
| 		dsyr_(uplo, &i__1, &d__1, &a[k * a_dim1 + 1], &c__1, &a[
 | |
| 			a_offset], lda);
 | |
| 
 | |
| /*              Store U(k) in column k */
 | |
| 
 | |
| 		i__1 = k - 1;
 | |
| 		dscal_(&i__1, &r1, &a[k * a_dim1 + 1], &c__1);
 | |
| 	    } else {
 | |
| 
 | |
| /*              2-by-2 pivot block D(k): columns k and k-1 now hold   
 | |
| 
 | |
|                 ( W(k-1) W(k) ) = ( U(k-1) U(k) )*D(k)   
 | |
| 
 | |
|                 where U(k) and U(k-1) are the k-th and (k-1)-th columns   
 | |
|                 of U   
 | |
| 
 | |
|                 Perform a rank-2 update of A(1:k-2,1:k-2) as   
 | |
| 
 | |
|                 A := A - ( U(k-1) U(k) )*D(k)*( U(k-1) U(k) )'   
 | |
|                    = A - ( W(k-1) W(k) )*inv(D(k))*( W(k-1) W(k) )' */
 | |
| 
 | |
| 		if (k > 2) {
 | |
| 
 | |
| 		    d12 = a[k - 1 + k * a_dim1];
 | |
| 		    d22 = a[k - 1 + (k - 1) * a_dim1] / d12;
 | |
| 		    d11 = a[k + k * a_dim1] / d12;
 | |
| 		    t = 1. / (d11 * d22 - 1.);
 | |
| 		    d12 = t / d12;
 | |
| 
 | |
| 		    for (j = k - 2; j >= 1; --j) {
 | |
| 			wkm1 = d12 * (d11 * a[j + (k - 1) * a_dim1] - a[j + k 
 | |
| 				* a_dim1]);
 | |
| 			wk = d12 * (d22 * a[j + k * a_dim1] - a[j + (k - 1) * 
 | |
| 				a_dim1]);
 | |
| 			for (i__ = j; i__ >= 1; --i__) {
 | |
| 			    a[i__ + j * a_dim1] = a[i__ + j * a_dim1] - a[i__ 
 | |
| 				    + k * a_dim1] * wk - a[i__ + (k - 1) * 
 | |
| 				    a_dim1] * wkm1;
 | |
| /* L20: */
 | |
| 			}
 | |
| 			a[j + k * a_dim1] = wk;
 | |
| 			a[j + (k - 1) * a_dim1] = wkm1;
 | |
| /* L30: */
 | |
| 		    }
 | |
| 
 | |
| 		}
 | |
| 
 | |
| 	    }
 | |
| 	}
 | |
| 
 | |
| /*        Store details of the interchanges in IPIV */
 | |
| 
 | |
| 	if (kstep == 1) {
 | |
| 	    ipiv[k] = kp;
 | |
| 	} else {
 | |
| 	    ipiv[k] = -kp;
 | |
| 	    ipiv[k - 1] = -kp;
 | |
| 	}
 | |
| 
 | |
| /*        Decrease K and return to the start of the main loop */
 | |
| 
 | |
| 	k -= kstep;
 | |
| 	goto L10;
 | |
| 
 | |
|     } else {
 | |
| 
 | |
| /*        Factorize A as L*D*L' using the lower triangle of A   
 | |
| 
 | |
|           K is the main loop index, increasing from 1 to N in steps of   
 | |
|           1 or 2 */
 | |
| 
 | |
| 	k = 1;
 | |
| L40:
 | |
| 
 | |
| /*        If K > N, exit from loop */
 | |
| 
 | |
| 	if (k > *n) {
 | |
| 	    goto L70;
 | |
| 	}
 | |
| 	kstep = 1;
 | |
| 
 | |
| /*        Determine rows and columns to be interchanged and whether   
 | |
|           a 1-by-1 or 2-by-2 pivot block will be used */
 | |
| 
 | |
| 	absakk = (d__1 = a[k + k * a_dim1], abs(d__1));
 | |
| 
 | |
| /*        IMAX is the row-index of the largest off-diagonal element in   
 | |
|           column K, and COLMAX is its absolute value */
 | |
| 
 | |
| 	if (k < *n) {
 | |
| 	    i__1 = *n - k;
 | |
| 	    imax = k + idamax_(&i__1, &a[k + 1 + k * a_dim1], &c__1);
 | |
| 	    colmax = (d__1 = a[imax + k * a_dim1], abs(d__1));
 | |
| 	} else {
 | |
| 	    colmax = 0.;
 | |
| 	}
 | |
| 
 | |
| 	if (max(absakk,colmax) == 0. || disnan_(&absakk)) {
 | |
| 
 | |
| /*           Column K is zero or contains a NaN: set INFO and continue */
 | |
| 
 | |
| 	    if (*info == 0) {
 | |
| 		*info = k;
 | |
| 	    }
 | |
| 	    kp = k;
 | |
| 	} else {
 | |
| 	    if (absakk >= alpha * colmax) {
 | |
| 
 | |
| /*              no interchange, use 1-by-1 pivot block */
 | |
| 
 | |
| 		kp = k;
 | |
| 	    } else {
 | |
| 
 | |
| /*              JMAX is the column-index of the largest off-diagonal   
 | |
|                 element in row IMAX, and ROWMAX is its absolute value */
 | |
| 
 | |
| 		i__1 = imax - k;
 | |
| 		jmax = k - 1 + idamax_(&i__1, &a[imax + k * a_dim1], lda);
 | |
| 		rowmax = (d__1 = a[imax + jmax * a_dim1], abs(d__1));
 | |
| 		if (imax < *n) {
 | |
| 		    i__1 = *n - imax;
 | |
| 		    jmax = imax + idamax_(&i__1, &a[imax + 1 + imax * a_dim1], 
 | |
| 			     &c__1);
 | |
| /* Computing MAX */
 | |
| 		    d__2 = rowmax, d__3 = (d__1 = a[jmax + imax * a_dim1], 
 | |
| 			    abs(d__1));
 | |
| 		    rowmax = max(d__2,d__3);
 | |
| 		}
 | |
| 
 | |
| 		if (absakk >= alpha * colmax * (colmax / rowmax)) {
 | |
| 
 | |
| /*                 no interchange, use 1-by-1 pivot block */
 | |
| 
 | |
| 		    kp = k;
 | |
| 		} else if ((d__1 = a[imax + imax * a_dim1], abs(d__1)) >= 
 | |
| 			alpha * rowmax) {
 | |
| 
 | |
| /*                 interchange rows and columns K and IMAX, use 1-by-1   
 | |
|                    pivot block */
 | |
| 
 | |
| 		    kp = imax;
 | |
| 		} else {
 | |
| 
 | |
| /*                 interchange rows and columns K+1 and IMAX, use 2-by-2   
 | |
|                    pivot block */
 | |
| 
 | |
| 		    kp = imax;
 | |
| 		    kstep = 2;
 | |
| 		}
 | |
| 	    }
 | |
| 
 | |
| 	    kk = k + kstep - 1;
 | |
| 	    if (kp != kk) {
 | |
| 
 | |
| /*              Interchange rows and columns KK and KP in the trailing   
 | |
|                 submatrix A(k:n,k:n) */
 | |
| 
 | |
| 		if (kp < *n) {
 | |
| 		    i__1 = *n - kp;
 | |
| 		    dswap_(&i__1, &a[kp + 1 + kk * a_dim1], &c__1, &a[kp + 1 
 | |
| 			    + kp * a_dim1], &c__1);
 | |
| 		}
 | |
| 		i__1 = kp - kk - 1;
 | |
| 		dswap_(&i__1, &a[kk + 1 + kk * a_dim1], &c__1, &a[kp + (kk + 
 | |
| 			1) * a_dim1], lda);
 | |
| 		t = a[kk + kk * a_dim1];
 | |
| 		a[kk + kk * a_dim1] = a[kp + kp * a_dim1];
 | |
| 		a[kp + kp * a_dim1] = t;
 | |
| 		if (kstep == 2) {
 | |
| 		    t = a[k + 1 + k * a_dim1];
 | |
| 		    a[k + 1 + k * a_dim1] = a[kp + k * a_dim1];
 | |
| 		    a[kp + k * a_dim1] = t;
 | |
| 		}
 | |
| 	    }
 | |
| 
 | |
| /*           Update the trailing submatrix */
 | |
| 
 | |
| 	    if (kstep == 1) {
 | |
| 
 | |
| /*              1-by-1 pivot block D(k): column k now holds   
 | |
| 
 | |
|                 W(k) = L(k)*D(k)   
 | |
| 
 | |
|                 where L(k) is the k-th column of L */
 | |
| 
 | |
| 		if (k < *n) {
 | |
| 
 | |
| /*                 Perform a rank-1 update of A(k+1:n,k+1:n) as   
 | |
| 
 | |
|                    A := A - L(k)*D(k)*L(k)' = A - W(k)*(1/D(k))*W(k)' */
 | |
| 
 | |
| 		    d11 = 1. / a[k + k * a_dim1];
 | |
| 		    i__1 = *n - k;
 | |
| 		    d__1 = -d11;
 | |
| 		    dsyr_(uplo, &i__1, &d__1, &a[k + 1 + k * a_dim1], &c__1, &
 | |
| 			    a[k + 1 + (k + 1) * a_dim1], lda);
 | |
| 
 | |
| /*                 Store L(k) in column K */
 | |
| 
 | |
| 		    i__1 = *n - k;
 | |
| 		    dscal_(&i__1, &d11, &a[k + 1 + k * a_dim1], &c__1);
 | |
| 		}
 | |
| 	    } else {
 | |
| 
 | |
| /*              2-by-2 pivot block D(k) */
 | |
| 
 | |
| 		if (k < *n - 1) {
 | |
| 
 | |
| /*                 Perform a rank-2 update of A(k+2:n,k+2:n) as   
 | |
| 
 | |
|                    A := A - ( (A(k) A(k+1))*D(k)**(-1) ) * (A(k) A(k+1))'   
 | |
| 
 | |
|                    where L(k) and L(k+1) are the k-th and (k+1)-th   
 | |
|                    columns of L */
 | |
| 
 | |
| 		    d21 = a[k + 1 + k * a_dim1];
 | |
| 		    d11 = a[k + 1 + (k + 1) * a_dim1] / d21;
 | |
| 		    d22 = a[k + k * a_dim1] / d21;
 | |
| 		    t = 1. / (d11 * d22 - 1.);
 | |
| 		    d21 = t / d21;
 | |
| 
 | |
| 		    i__1 = *n;
 | |
| 		    for (j = k + 2; j <= i__1; ++j) {
 | |
| 
 | |
| 			wk = d21 * (d11 * a[j + k * a_dim1] - a[j + (k + 1) * 
 | |
| 				a_dim1]);
 | |
| 			wkp1 = d21 * (d22 * a[j + (k + 1) * a_dim1] - a[j + k 
 | |
| 				* a_dim1]);
 | |
| 
 | |
| 			i__2 = *n;
 | |
| 			for (i__ = j; i__ <= i__2; ++i__) {
 | |
| 			    a[i__ + j * a_dim1] = a[i__ + j * a_dim1] - a[i__ 
 | |
| 				    + k * a_dim1] * wk - a[i__ + (k + 1) * 
 | |
| 				    a_dim1] * wkp1;
 | |
| /* L50: */
 | |
| 			}
 | |
| 
 | |
| 			a[j + k * a_dim1] = wk;
 | |
| 			a[j + (k + 1) * a_dim1] = wkp1;
 | |
| 
 | |
| /* L60: */
 | |
| 		    }
 | |
| 		}
 | |
| 	    }
 | |
| 	}
 | |
| 
 | |
| /*        Store details of the interchanges in IPIV */
 | |
| 
 | |
| 	if (kstep == 1) {
 | |
| 	    ipiv[k] = kp;
 | |
| 	} else {
 | |
| 	    ipiv[k] = -kp;
 | |
| 	    ipiv[k + 1] = -kp;
 | |
| 	}
 | |
| 
 | |
| /*        Increase K and return to the start of the main loop */
 | |
| 
 | |
| 	k += kstep;
 | |
| 	goto L40;
 | |
| 
 | |
|     }
 | |
| 
 | |
| L70:
 | |
| 
 | |
|     return 0;
 | |
| 
 | |
| /*     End of DSYTF2 */
 | |
| 
 | |
| } /* dsytf2_ */
 | 
