opencv/samples/ocl/facedetect.cpp
Konstantin Matskevich e38ba1999b facedetect
2013-12-05 09:20:36 +04:00

422 lines
12 KiB
C++

#include "opencv2/objdetect/objdetect.hpp"
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/ocl/ocl.hpp"
#include <iostream>
#include <stdio.h>
using namespace std;
using namespace cv;
#define LOOP_NUM 10
///////////////////////////////////////detectfaces with multithreading////////////////////////////////////////////
#define MAX_THREADS 8
#if defined _WIN32|| defined _WIN64
#include <process.h>
#include <windows.h>
HANDLE handleThreads[MAX_THREADS];
#endif
#if defined __linux__ || defined __APPLE__
#include <pthread.h>
#include <vector>
#endif
using namespace cv;
#if defined _WIN32|| defined _WIN64
void detectFaces(void* str)
#elif defined __linux__ || defined __APPLE__
void* detectFaces(void* str)
#endif
{
std::string fileName = *(std::string*)str;
ocl::OclCascadeClassifier cascade;
cascade.load("cv/cascadeandhog/cascades/haarcascade_frontalface_alt.xml" );//path to haarcascade_frontalface_alt.xml
Mat img = imread(fileName, CV_LOAD_IMAGE_COLOR);
if (img.empty())
{
std::cout << "cann't open file " + fileName <<std::endl;
return;
}
ocl::oclMat d_img;
d_img.upload(img);
std::vector<Rect> oclfaces;
cascade.detectMultiScale(d_img, oclfaces, 1.1, 3, 0|CV_HAAR_SCALE_IMAGE, Size(30, 30), Size(0, 0));
for(int i = 0; i<oclfaces.size(); i++)
rectangle(img, Point(oclfaces[i].x, oclfaces[i].y), Point(oclfaces[i].x + oclfaces[i].width, oclfaces[i].y + oclfaces[i].height), Scalar( 0, 255, 255 ), 3);
imwrite("path to result-images location/filename", img);
}
class Thread
{
private:
Thread* thread;
public:
Thread(int _idx, std::string _fileName);
virtual ~Thread()
{
delete(thread);
}
virtual void run()
{
thread->run();
}
int idx;
std::string fileName;
protected:
Thread():thread(NULL){}
};
class Thread_Win : public Thread
{
private:
friend class Thread;
Thread_Win(){}
public:
~Thread_Win(){};
void run()
{
#if defined _WIN32|| defined _WIN64
handleThreads[idx] = (HANDLE)_beginthread(detectFaces, 0, (void*)&fileName);
WaitForMultipleObjects(MAX_THREADS, handleThreads, TRUE, INFINITE);
#endif
}
};
class Thread_Lin : public Thread
{
private:
friend class Thread;
Thread_Lin(){}
public:
~Thread_Lin(){};
void run()
{
#if defined __linux__ || defined __APPLE__
pthread_t thread;
pthread_create(&thread, NULL, detectFaces, (void*)&fileName);
pthread_join (thread, NULL);
#endif
}
};
Thread::Thread(int _idx, std::string _fileName)
{
#if defined _WIN32|| defined _WIN64
thread = new Thread_Win();
#endif
#if defined __linux__ || defined __APPLE__
thread = new Thread_Lin();
#endif
thread->idx = _idx;
thread->fileName = _fileName;
}
///////////////////////////simple-threading faces detecting///////////////////////////////
const static Scalar colors[] = { CV_RGB(0,0,255),
CV_RGB(0,128,255),
CV_RGB(0,255,255),
CV_RGB(0,255,0),
CV_RGB(255,128,0),
CV_RGB(255,255,0),
CV_RGB(255,0,0),
CV_RGB(255,0,255)
} ;
int64 work_begin = 0;
int64 work_end = 0;
string outputName;
static void workBegin()
{
work_begin = getTickCount();
}
static void workEnd()
{
work_end += (getTickCount() - work_begin);
}
static double getTime()
{
return work_end /((double)cvGetTickFrequency() * 1000.);
}
static void detect( Mat& img, vector<Rect>& faces,
ocl::OclCascadeClassifier& cascade,
double scale, bool calTime);
static void detectCPU( Mat& img, vector<Rect>& faces,
CascadeClassifier& cascade,
double scale, bool calTime);
static void Draw(Mat& img, vector<Rect>& faces, double scale);
// This function test if gpu_rst matches cpu_rst.
// If the two vectors are not equal, it will return the difference in vector size
// Else if will return (total diff of each cpu and gpu rects covered pixels)/(total cpu rects covered pixels)
double checkRectSimilarity(Size sz, vector<Rect>& cpu_rst, vector<Rect>& gpu_rst);
int facedetect_one_thread(int argc, const char** argv )
{
const char* keys =
"{ h | help | false | print help message }"
"{ i | input | | specify input image }"
"{ t | template | haarcascade_frontalface_alt.xml |"
" specify template file path }"
"{ c | scale | 1.0 | scale image }"
"{ s | use_cpu | false | use cpu or gpu to process the image }"
"{ o | output | facedetect_output.jpg |"
" specify output image save path(only works when input is images) }";
CommandLineParser cmd(argc, argv, keys);
if (cmd.get<bool>("help"))
{
cout << "Usage : facedetect [options]" << endl;
cout << "Available options:" << endl;
cmd.printParams();
return EXIT_SUCCESS;
}
CvCapture* capture = 0;
Mat frame, frameCopy, image;
bool useCPU = cmd.get<bool>("s");
string inputName = cmd.get<string>("i");
outputName = cmd.get<string>("o");
string cascadeName = cmd.get<string>("t");
double scale = cmd.get<double>("c");
ocl::OclCascadeClassifier cascade;
CascadeClassifier cpu_cascade;
if( !cascade.load( cascadeName ) || !cpu_cascade.load(cascadeName) )
{
cout << "ERROR: Could not load classifier cascade" << endl;
return EXIT_FAILURE;
}
if( inputName.empty() )
{
capture = cvCaptureFromCAM(0);
if(!capture)
cout << "Capture from CAM 0 didn't work" << endl;
}
else
{
image = imread( inputName, CV_LOAD_IMAGE_COLOR );
if( image.empty() )
{
capture = cvCaptureFromAVI( inputName.c_str() );
if(!capture)
cout << "Capture from AVI didn't work" << endl;
return EXIT_FAILURE;
}
}
cvNamedWindow( "result", 1 );
if( capture )
{
cout << "In capture ..." << endl;
for(;;)
{
IplImage* iplImg = cvQueryFrame( capture );
frame = iplImg;
vector<Rect> faces;
if( frame.empty() )
break;
if( iplImg->origin == IPL_ORIGIN_TL )
frame.copyTo( frameCopy );
else
flip( frame, frameCopy, 0 );
if(useCPU)
detectCPU(frameCopy, faces, cpu_cascade, scale, false);
else
detect(frameCopy, faces, cascade, scale, false);
Draw(frameCopy, faces, scale);
if( waitKey( 10 ) >= 0 )
break;
}
cvReleaseCapture( &capture );
}
else
{
cout << "In image read" << endl;
vector<Rect> faces;
vector<Rect> ref_rst;
double accuracy = 0.;
for(int i = 0; i <= LOOP_NUM; i ++)
{
cout << "loop" << i << endl;
if(useCPU)
detectCPU(image, faces, cpu_cascade, scale, i==0?false:true);
else
{
detect(image, faces, cascade, scale, i==0?false:true);
if(i == 0)
{
detectCPU(image, ref_rst, cpu_cascade, scale, false);
accuracy = checkRectSimilarity(image.size(), ref_rst, faces);
}
}
if (i == LOOP_NUM)
{
if (useCPU)
cout << "average CPU time (noCamera) : ";
else
cout << "average GPU time (noCamera) : ";
cout << getTime() / LOOP_NUM << " ms" << endl;
cout << "accuracy value: " << accuracy <<endl;
}
}
Draw(image, faces, scale);
waitKey(0);
}
cvDestroyWindow("result");
std::cout<< "simple-threading sample was finished" <<std::endl;
return 0;
}
void facedetect_multithreading()
{
std::vector<Thread*> threads;
for(int i = 0; i<MAX_THREADS; i++)
threads.push_back(new Thread(i, "cv/cascadeandhog/images/audrybt1.png") );//path to source picture
for(int i = 0; i<MAX_THREADS; i++)
{
threads[i]->run();
}
for(int i = 0; i<MAX_THREADS; i++)
{
delete(threads[i]);
}
}
int main( int argc, const char** argv )
{
std::cout<<"multi-threading sample was running" <<std::endl;
facedetect_multithreading();
std::cout<<"multi-threading sample was finished" <<std::endl;
std::cout<<"simple-threading sample was running" <<std::endl;
return facedetect_one_thread(argc,argv);
}
void detect( Mat& img, vector<Rect>& faces,
ocl::OclCascadeClassifier& cascade,
double scale, bool calTime)
{
ocl::oclMat image(img);
ocl::oclMat gray, smallImg( cvRound (img.rows/scale), cvRound(img.cols/scale), CV_8UC1 );
if(calTime) workBegin();
ocl::cvtColor( image, gray, CV_BGR2GRAY );
ocl::resize( gray, smallImg, smallImg.size(), 0, 0, INTER_LINEAR );
ocl::equalizeHist( smallImg, smallImg );
cascade.detectMultiScale( smallImg, faces, 1.1,
3, 0
|CV_HAAR_SCALE_IMAGE
, Size(30,30), Size(0, 0) );
if(calTime) workEnd();
}
void detectCPU( Mat& img, vector<Rect>& faces,
CascadeClassifier& cascade,
double scale, bool calTime)
{
if(calTime) workBegin();
Mat cpu_gray, cpu_smallImg( cvRound (img.rows/scale), cvRound(img.cols/scale), CV_8UC1 );
cvtColor(img, cpu_gray, CV_BGR2GRAY);
resize(cpu_gray, cpu_smallImg, cpu_smallImg.size(), 0, 0, INTER_LINEAR);
equalizeHist(cpu_smallImg, cpu_smallImg);
cascade.detectMultiScale(cpu_smallImg, faces, 1.1,
3, 0 | CV_HAAR_SCALE_IMAGE,
Size(30, 30), Size(0, 0));
if(calTime) workEnd();
}
void Draw(Mat& img, vector<Rect>& faces, double scale)
{
int i = 0;
for( vector<Rect>::const_iterator r = faces.begin(); r != faces.end(); r++, i++ )
{
Point center;
Scalar color = colors[i%8];
int radius;
center.x = cvRound((r->x + r->width*0.5)*scale);
center.y = cvRound((r->y + r->height*0.5)*scale);
radius = cvRound((r->width + r->height)*0.25*scale);
circle( img, center, radius, color, 3, 8, 0 );
}
imwrite( outputName, img );
if(abs(scale-1.0)>.001)
{
resize(img, img, Size((int)(img.cols/scale), (int)(img.rows/scale)));
}
imshow( "result", img );
}
double checkRectSimilarity(Size sz, vector<Rect>& ob1, vector<Rect>& ob2)
{
double final_test_result = 0.0;
size_t sz1 = ob1.size();
size_t sz2 = ob2.size();
if(sz1 != sz2)
{
return sz1 > sz2 ? (double)(sz1 - sz2) : (double)(sz2 - sz1);
}
else
{
if(sz1==0 && sz2==0)
return 0;
Mat cpu_result(sz, CV_8UC1);
cpu_result.setTo(0);
for(vector<Rect>::const_iterator r = ob1.begin(); r != ob1.end(); r++)
{
Mat cpu_result_roi(cpu_result, *r);
cpu_result_roi.setTo(1);
cpu_result.copyTo(cpu_result);
}
int cpu_area = countNonZero(cpu_result > 0);
Mat gpu_result(sz, CV_8UC1);
gpu_result.setTo(0);
for(vector<Rect>::const_iterator r2 = ob2.begin(); r2 != ob2.end(); r2++)
{
cv::Mat gpu_result_roi(gpu_result, *r2);
gpu_result_roi.setTo(1);
gpu_result.copyTo(gpu_result);
}
Mat result_;
multiply(cpu_result, gpu_result, result_);
int result = countNonZero(result_ > 0);
if(cpu_area!=0 && result!=0)
final_test_result = 1.0 - (double)result/(double)cpu_area;
else if(cpu_area==0 && result!=0)
final_test_result = -1;
}
return final_test_result;
}