306 lines
		
	
	
		
			9.5 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			306 lines
		
	
	
		
			9.5 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*M///////////////////////////////////////////////////////////////////////////////////////
 | |
| //
 | |
| //  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
 | |
| //
 | |
| //  By downloading, copying, installing or using the software you agree to this license.
 | |
| //  If you do not agree to this license, do not download, install,
 | |
| //  copy or use the software.
 | |
| //
 | |
| //
 | |
| //                           License Agreement
 | |
| //                For Open Source Computer Vision Library
 | |
| //
 | |
| // Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
 | |
| // Copyright (C) 2009, Willow Garage Inc., all rights reserved.
 | |
| // Third party copyrights are property of their respective owners.
 | |
| //
 | |
| // Redistribution and use in source and binary forms, with or without modification,
 | |
| // are permitted provided that the following conditions are met:
 | |
| //
 | |
| //   * Redistribution's of source code must retain the above copyright notice,
 | |
| //     this list of conditions and the following disclaimer.
 | |
| //
 | |
| //   * Redistribution's in binary form must reproduce the above copyright notice,
 | |
| //     this list of conditions and the following disclaimer in the documentation
 | |
| //     and/or other materials provided with the distribution.
 | |
| //
 | |
| //   * The name of the copyright holders may not be used to endorse or promote products
 | |
| //     derived from this software without specific prior written permission.
 | |
| //
 | |
| // This software is provided by the copyright holders and contributors "as is" and
 | |
| // any express or implied warranties, including, but not limited to, the implied
 | |
| // warranties of merchantability and fitness for a particular purpose are disclaimed.
 | |
| // In no event shall the Intel Corporation or contributors be liable for any direct,
 | |
| // indirect, incidental, special, exemplary, or consequential damages
 | |
| // (including, but not limited to, procurement of substitute goods or services;
 | |
| // loss of use, data, or profits; or business interruption) however caused
 | |
| // and on any theory of liability, whether in contract, strict liability,
 | |
| // or tort (including negligence or otherwise) arising in any way out of
 | |
| // the use of this software, even if advised of the possibility of such damage.
 | |
| //
 | |
| //M*/
 | |
| 
 | |
| #include "test_precomp.hpp"
 | |
| 
 | |
| #ifdef HAVE_CUDA
 | |
| 
 | |
| using namespace cvtest;
 | |
| 
 | |
| ////////////////////////////////////////////////////////////////////////////////
 | |
| // MatchTemplate8U
 | |
| 
 | |
| CV_ENUM(TemplateMethod, cv::TM_SQDIFF, cv::TM_SQDIFF_NORMED, cv::TM_CCORR, cv::TM_CCORR_NORMED, cv::TM_CCOEFF, cv::TM_CCOEFF_NORMED)
 | |
| #define ALL_TEMPLATE_METHODS testing::Values(TemplateMethod(cv::TM_SQDIFF), TemplateMethod(cv::TM_SQDIFF_NORMED), TemplateMethod(cv::TM_CCORR), TemplateMethod(cv::TM_CCORR_NORMED), TemplateMethod(cv::TM_CCOEFF), TemplateMethod(cv::TM_CCOEFF_NORMED))
 | |
| 
 | |
| namespace
 | |
| {
 | |
|     IMPLEMENT_PARAM_CLASS(TemplateSize, cv::Size);
 | |
| }
 | |
| 
 | |
| PARAM_TEST_CASE(MatchTemplate8U, cv::gpu::DeviceInfo, cv::Size, TemplateSize, Channels, TemplateMethod)
 | |
| {
 | |
|     cv::gpu::DeviceInfo devInfo;
 | |
|     cv::Size size;
 | |
|     cv::Size templ_size;
 | |
|     int cn;
 | |
|     int method;
 | |
| 
 | |
|     virtual void SetUp()
 | |
|     {
 | |
|         devInfo = GET_PARAM(0);
 | |
|         size = GET_PARAM(1);
 | |
|         templ_size = GET_PARAM(2);
 | |
|         cn = GET_PARAM(3);
 | |
|         method = GET_PARAM(4);
 | |
| 
 | |
|         cv::gpu::setDevice(devInfo.deviceID());
 | |
|     }
 | |
| };
 | |
| 
 | |
| GPU_TEST_P(MatchTemplate8U, Accuracy)
 | |
| {
 | |
|     cv::Mat image = randomMat(size, CV_MAKETYPE(CV_8U, cn));
 | |
|     cv::Mat templ = randomMat(templ_size, CV_MAKETYPE(CV_8U, cn));
 | |
| 
 | |
|     cv::gpu::GpuMat dst;
 | |
|     cv::gpu::matchTemplate(loadMat(image), loadMat(templ), dst, method);
 | |
| 
 | |
|     cv::Mat dst_gold;
 | |
|     cv::matchTemplate(image, templ, dst_gold, method);
 | |
| 
 | |
|     EXPECT_MAT_NEAR(dst_gold, dst, templ_size.area() * 1e-1);
 | |
| }
 | |
| 
 | |
| INSTANTIATE_TEST_CASE_P(GPU_ImgProc, MatchTemplate8U, testing::Combine(
 | |
|     ALL_DEVICES,
 | |
|     DIFFERENT_SIZES,
 | |
|     testing::Values(TemplateSize(cv::Size(5, 5)), TemplateSize(cv::Size(16, 16)), TemplateSize(cv::Size(30, 30))),
 | |
|     testing::Values(Channels(1), Channels(3), Channels(4)),
 | |
|     ALL_TEMPLATE_METHODS));
 | |
| 
 | |
| ////////////////////////////////////////////////////////////////////////////////
 | |
| // MatchTemplate32F
 | |
| 
 | |
| PARAM_TEST_CASE(MatchTemplate32F, cv::gpu::DeviceInfo, cv::Size, TemplateSize, Channels, TemplateMethod)
 | |
| {
 | |
|     cv::gpu::DeviceInfo devInfo;
 | |
|     cv::Size size;
 | |
|     cv::Size templ_size;
 | |
|     int cn;
 | |
|     int method;
 | |
| 
 | |
|     int n, m, h, w;
 | |
| 
 | |
|     virtual void SetUp()
 | |
|     {
 | |
|         devInfo = GET_PARAM(0);
 | |
|         size = GET_PARAM(1);
 | |
|         templ_size = GET_PARAM(2);
 | |
|         cn = GET_PARAM(3);
 | |
|         method = GET_PARAM(4);
 | |
| 
 | |
|         cv::gpu::setDevice(devInfo.deviceID());
 | |
|     }
 | |
| };
 | |
| 
 | |
| GPU_TEST_P(MatchTemplate32F, Regression)
 | |
| {
 | |
|     cv::Mat image = randomMat(size, CV_MAKETYPE(CV_32F, cn));
 | |
|     cv::Mat templ = randomMat(templ_size, CV_MAKETYPE(CV_32F, cn));
 | |
| 
 | |
|     cv::gpu::GpuMat dst;
 | |
|     cv::gpu::matchTemplate(loadMat(image), loadMat(templ), dst, method);
 | |
| 
 | |
|     cv::Mat dst_gold;
 | |
|     cv::matchTemplate(image, templ, dst_gold, method);
 | |
| 
 | |
|     EXPECT_MAT_NEAR(dst_gold, dst, templ_size.area() * 1e-1);
 | |
| }
 | |
| 
 | |
| INSTANTIATE_TEST_CASE_P(GPU_ImgProc, MatchTemplate32F, testing::Combine(
 | |
|     ALL_DEVICES,
 | |
|     DIFFERENT_SIZES,
 | |
|     testing::Values(TemplateSize(cv::Size(5, 5)), TemplateSize(cv::Size(16, 16)), TemplateSize(cv::Size(30, 30))),
 | |
|     testing::Values(Channels(1), Channels(3), Channels(4)),
 | |
|     testing::Values(TemplateMethod(cv::TM_SQDIFF), TemplateMethod(cv::TM_CCORR))));
 | |
| 
 | |
| ////////////////////////////////////////////////////////////////////////////////
 | |
| // MatchTemplateBlackSource
 | |
| 
 | |
| PARAM_TEST_CASE(MatchTemplateBlackSource, cv::gpu::DeviceInfo, TemplateMethod)
 | |
| {
 | |
|     cv::gpu::DeviceInfo devInfo;
 | |
|     int method;
 | |
| 
 | |
|     virtual void SetUp()
 | |
|     {
 | |
|         devInfo = GET_PARAM(0);
 | |
|         method = GET_PARAM(1);
 | |
| 
 | |
|         cv::gpu::setDevice(devInfo.deviceID());
 | |
|     }
 | |
| };
 | |
| 
 | |
| GPU_TEST_P(MatchTemplateBlackSource, Accuracy)
 | |
| {
 | |
|     cv::Mat image = readImage("matchtemplate/black.png");
 | |
|     ASSERT_FALSE(image.empty());
 | |
| 
 | |
|     cv::Mat pattern = readImage("matchtemplate/cat.png");
 | |
|     ASSERT_FALSE(pattern.empty());
 | |
| 
 | |
|     cv::gpu::GpuMat d_dst;
 | |
|     cv::gpu::matchTemplate(loadMat(image), loadMat(pattern), d_dst, method);
 | |
| 
 | |
|     cv::Mat dst(d_dst);
 | |
| 
 | |
|     double maxValue;
 | |
|     cv::Point maxLoc;
 | |
|     cv::minMaxLoc(dst, NULL, &maxValue, NULL, &maxLoc);
 | |
| 
 | |
|     cv::Point maxLocGold = cv::Point(284, 12);
 | |
| 
 | |
|     ASSERT_EQ(maxLocGold, maxLoc);
 | |
| }
 | |
| 
 | |
| INSTANTIATE_TEST_CASE_P(GPU_ImgProc, MatchTemplateBlackSource, testing::Combine(
 | |
|     ALL_DEVICES,
 | |
|     testing::Values(TemplateMethod(cv::TM_CCOEFF_NORMED), TemplateMethod(cv::TM_CCORR_NORMED))));
 | |
| 
 | |
| ////////////////////////////////////////////////////////////////////////////////
 | |
| // MatchTemplate_CCOEF_NORMED
 | |
| 
 | |
| PARAM_TEST_CASE(MatchTemplate_CCOEF_NORMED, cv::gpu::DeviceInfo, std::pair<std::string, std::string>)
 | |
| {
 | |
|     cv::gpu::DeviceInfo devInfo;
 | |
|     std::string imageName;
 | |
|     std::string patternName;
 | |
| 
 | |
|     virtual void SetUp()
 | |
|     {
 | |
|         devInfo = GET_PARAM(0);
 | |
|         imageName = GET_PARAM(1).first;
 | |
|         patternName = GET_PARAM(1).second;
 | |
| 
 | |
|         cv::gpu::setDevice(devInfo.deviceID());
 | |
|     }
 | |
| };
 | |
| 
 | |
| GPU_TEST_P(MatchTemplate_CCOEF_NORMED, Accuracy)
 | |
| {
 | |
|     cv::Mat image = readImage(imageName);
 | |
|     ASSERT_FALSE(image.empty());
 | |
| 
 | |
|     cv::Mat pattern = readImage(patternName);
 | |
|     ASSERT_FALSE(pattern.empty());
 | |
| 
 | |
|     cv::gpu::GpuMat d_dst;
 | |
|     cv::gpu::matchTemplate(loadMat(image), loadMat(pattern), d_dst, cv::TM_CCOEFF_NORMED);
 | |
| 
 | |
|     cv::Mat dst(d_dst);
 | |
| 
 | |
|     cv::Point minLoc, maxLoc;
 | |
|     double minVal, maxVal;
 | |
|     cv::minMaxLoc(dst, &minVal, &maxVal, &minLoc, &maxLoc);
 | |
| 
 | |
|     cv::Mat dstGold;
 | |
|     cv::matchTemplate(image, pattern, dstGold, cv::TM_CCOEFF_NORMED);
 | |
| 
 | |
|     double minValGold, maxValGold;
 | |
|     cv::Point minLocGold, maxLocGold;
 | |
|     cv::minMaxLoc(dstGold, &minValGold, &maxValGold, &minLocGold, &maxLocGold);
 | |
| 
 | |
|     ASSERT_EQ(minLocGold, minLoc);
 | |
|     ASSERT_EQ(maxLocGold, maxLoc);
 | |
|     ASSERT_LE(maxVal, 1.0);
 | |
|     ASSERT_GE(minVal, -1.0);
 | |
| }
 | |
| 
 | |
| INSTANTIATE_TEST_CASE_P(GPU_ImgProc, MatchTemplate_CCOEF_NORMED, testing::Combine(
 | |
|     ALL_DEVICES,
 | |
|     testing::Values(std::make_pair(std::string("matchtemplate/source-0.png"), std::string("matchtemplate/target-0.png")))));
 | |
| 
 | |
| ////////////////////////////////////////////////////////////////////////////////
 | |
| // MatchTemplate_CanFindBigTemplate
 | |
| 
 | |
| struct MatchTemplate_CanFindBigTemplate : testing::TestWithParam<cv::gpu::DeviceInfo>
 | |
| {
 | |
|     cv::gpu::DeviceInfo devInfo;
 | |
| 
 | |
|     virtual void SetUp()
 | |
|     {
 | |
|         devInfo = GetParam();
 | |
| 
 | |
|         cv::gpu::setDevice(devInfo.deviceID());
 | |
|     }
 | |
| };
 | |
| 
 | |
| GPU_TEST_P(MatchTemplate_CanFindBigTemplate, SQDIFF_NORMED)
 | |
| {
 | |
|     cv::Mat scene = readImage("matchtemplate/scene.png");
 | |
|     ASSERT_FALSE(scene.empty());
 | |
| 
 | |
|     cv::Mat templ = readImage("matchtemplate/template.png");
 | |
|     ASSERT_FALSE(templ.empty());
 | |
| 
 | |
|     cv::gpu::GpuMat d_result;
 | |
|     cv::gpu::matchTemplate(loadMat(scene), loadMat(templ), d_result, cv::TM_SQDIFF_NORMED);
 | |
| 
 | |
|     cv::Mat result(d_result);
 | |
| 
 | |
|     double minVal;
 | |
|     cv::Point minLoc;
 | |
|     cv::minMaxLoc(result, &minVal, 0, &minLoc, 0);
 | |
| 
 | |
|     ASSERT_GE(minVal, 0);
 | |
|     ASSERT_LT(minVal, 1e-3);
 | |
|     ASSERT_EQ(344, minLoc.x);
 | |
|     ASSERT_EQ(0, minLoc.y);
 | |
| }
 | |
| 
 | |
| GPU_TEST_P(MatchTemplate_CanFindBigTemplate, SQDIFF)
 | |
| {
 | |
|     cv::Mat scene = readImage("matchtemplate/scene.png");
 | |
|     ASSERT_FALSE(scene.empty());
 | |
| 
 | |
|     cv::Mat templ = readImage("matchtemplate/template.png");
 | |
|     ASSERT_FALSE(templ.empty());
 | |
| 
 | |
|     cv::gpu::GpuMat d_result;
 | |
|     cv::gpu::matchTemplate(loadMat(scene), loadMat(templ), d_result, cv::TM_SQDIFF);
 | |
| 
 | |
|     cv::Mat result(d_result);
 | |
| 
 | |
|     double minVal;
 | |
|     cv::Point minLoc;
 | |
|     cv::minMaxLoc(result, &minVal, 0, &minLoc, 0);
 | |
| 
 | |
|     ASSERT_GE(minVal, 0);
 | |
|     ASSERT_EQ(344, minLoc.x);
 | |
|     ASSERT_EQ(0, minLoc.y);
 | |
| }
 | |
| 
 | |
| INSTANTIATE_TEST_CASE_P(GPU_ImgProc, MatchTemplate_CanFindBigTemplate, ALL_DEVICES);
 | |
| 
 | |
| #endif // HAVE_CUDA
 | 
