310 lines
11 KiB
C++
310 lines
11 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
|
// Copyright (C) 2008-2012, Willow Garage Inc., all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
#include <test_precomp.hpp>
|
|
#include <time.h>
|
|
|
|
#ifdef HAVE_CUDA
|
|
using cv::gpu::GpuMat;
|
|
|
|
// show detection results on input image with cv::imshow
|
|
#define SHOW_DETECTIONS
|
|
|
|
#if defined SHOW_DETECTIONS
|
|
# define SHOW(res) \
|
|
cv::imshow(#res, result);\
|
|
cv::waitKey(0);
|
|
#else
|
|
# define SHOW(res)
|
|
#endif
|
|
|
|
#define GPU_TEST_P(fixture, name, params) \
|
|
class fixture##_##name : public fixture { \
|
|
public: \
|
|
fixture##_##name() {} \
|
|
protected: \
|
|
virtual void body(); \
|
|
}; \
|
|
TEST_P(fixture##_##name, name /*none*/){ body();} \
|
|
INSTANTIATE_TEST_CASE_P(/*none*/, fixture##_##name, params); \
|
|
void fixture##_##name::body()
|
|
|
|
namespace {
|
|
|
|
typedef cv::gpu::SoftCascade::Detection Detection;
|
|
|
|
static cv::Rect getFromTable(int idx)
|
|
{
|
|
static const cv::Rect rois[] =
|
|
{
|
|
cv::Rect( 65, 20, 35, 80),
|
|
cv::Rect( 95, 35, 45, 40),
|
|
cv::Rect( 45, 35, 45, 40),
|
|
cv::Rect( 25, 27, 50, 45),
|
|
cv::Rect(100, 50, 45, 40),
|
|
|
|
cv::Rect( 60, 30, 45, 40),
|
|
cv::Rect( 40, 55, 50, 40),
|
|
cv::Rect( 48, 37, 72, 80),
|
|
cv::Rect( 48, 32, 85, 58),
|
|
cv::Rect( 48, 0, 32, 27)
|
|
};
|
|
|
|
return rois[idx];
|
|
}
|
|
|
|
static std::string itoa(long i)
|
|
{
|
|
static char s[65];
|
|
sprintf(s, "%ld", i);
|
|
return std::string(s);
|
|
}
|
|
|
|
static std::string getImageName(int level)
|
|
{
|
|
time_t rawtime;
|
|
struct tm * timeinfo;
|
|
char buffer [80];
|
|
|
|
time ( &rawtime );
|
|
timeinfo = localtime ( &rawtime );
|
|
|
|
strftime (buffer,80,"%Y-%m-%d--%H-%M-%S",timeinfo);
|
|
return "gpu_rec_level_" + itoa(level)+ "_" + std::string(buffer) + ".png";
|
|
}
|
|
|
|
static void print(std::ostream &out, const Detection& d)
|
|
{
|
|
out << "\x1b[32m[ detection]\x1b[0m ("
|
|
<< std::setw(4) << d.x
|
|
<< " "
|
|
<< std::setw(4) << d.y
|
|
<< ") ("
|
|
<< std::setw(4) << d.w
|
|
<< " "
|
|
<< std::setw(4) << d.h
|
|
<< ") "
|
|
<< std::setw(12) << d.confidence
|
|
<< std::endl;
|
|
}
|
|
|
|
static void printTotal(std::ostream &out, int detbytes)
|
|
{
|
|
out << "\x1b[32m[ ]\x1b[0m Total detections " << (detbytes / sizeof(Detection)) << std::endl;
|
|
}
|
|
|
|
static void writeResult(const cv::Mat& result, const int level)
|
|
{
|
|
std::string path = cv::tempfile(getImageName(level).c_str());
|
|
cv::imwrite(path, result);
|
|
std::cout << "\x1b[32m" << "[ ]" << std::endl << "[ stored in]"<< "\x1b[0m" << path << std::endl;
|
|
}
|
|
}
|
|
|
|
typedef ::testing::TestWithParam<std::tr1::tuple<cv::gpu::DeviceInfo, std::string, std::string, int> > SoftCascadeTestRoi;
|
|
GPU_TEST_P(SoftCascadeTestRoi, detect,
|
|
testing::Combine(
|
|
ALL_DEVICES,
|
|
testing::Values(std::string("../cv/cascadeandhog/sc_cvpr_2012_to_opencv.xml")),
|
|
testing::Values(std::string("../cv/cascadeandhog/bahnhof/image_00000000_0.png")),
|
|
testing::Range(0, 5)))
|
|
{
|
|
cv::gpu::setDevice(GET_PARAM(0).deviceID());
|
|
cv::Mat coloredCpu = cv::imread(cvtest::TS::ptr()->get_data_path() + GET_PARAM(2));
|
|
ASSERT_FALSE(coloredCpu.empty());
|
|
|
|
cv::gpu::SoftCascade cascade;
|
|
ASSERT_TRUE(cascade.load(cvtest::TS::ptr()->get_data_path() + GET_PARAM(1)));
|
|
|
|
GpuMat colored(coloredCpu), objectBoxes(1, 16384, CV_8UC1), rois(cascade.getRoiSize(), CV_8UC1), trois;
|
|
rois.setTo(0);
|
|
|
|
int nroi = GET_PARAM(3);
|
|
cv::Mat result(coloredCpu);
|
|
cv::RNG rng;
|
|
for (int i = 0; i < nroi; ++i)
|
|
{
|
|
cv::Rect r = getFromTable(rng(10));
|
|
GpuMat sub(rois, r);
|
|
sub.setTo(1);
|
|
r.x *= 4; r.y *= 4; r.width *= 4; r.height *= 4;
|
|
cv::rectangle(result, r, cv::Scalar(0, 0, 255, 255), 1);
|
|
}
|
|
|
|
cv::gpu::transpose(rois, trois);
|
|
|
|
cascade.detectMultiScale(colored, trois, objectBoxes);
|
|
|
|
cv::Mat dt(objectBoxes);
|
|
typedef cv::gpu::SoftCascade::Detection Detection;
|
|
|
|
Detection* dts = (Detection*)dt.data;
|
|
|
|
printTotal(std::cout, dt.cols);
|
|
for (int i = 0; i < (int)(dt.cols / sizeof(Detection)); ++i)
|
|
{
|
|
Detection d = dts[i];
|
|
print(std::cout, d);
|
|
cv::rectangle(result, cv::Rect(d.x, d.y, d.w, d.h), cv::Scalar(255, 0, 0, 255), 1);
|
|
}
|
|
|
|
SHOW(result);
|
|
}
|
|
|
|
typedef ::testing::TestWithParam<std::tr1::tuple<cv::gpu::DeviceInfo, std::string, std::string, int> > SoftCascadeTestLevel;
|
|
GPU_TEST_P(SoftCascadeTestLevel, detect,
|
|
testing::Combine(
|
|
ALL_DEVICES,
|
|
testing::Values(std::string("../cv/cascadeandhog/sc_cvpr_2012_to_opencv.xml")),
|
|
testing::Values(std::string("../cv/cascadeandhog/bahnhof/image_00000000_0.png")),
|
|
testing::Range(0, 47)
|
|
))
|
|
{
|
|
cv::gpu::setDevice(GET_PARAM(0).deviceID());
|
|
|
|
std::string xml = cvtest::TS::ptr()->get_data_path() + GET_PARAM(1);
|
|
cv::gpu::SoftCascade cascade;
|
|
ASSERT_TRUE(cascade.load(xml));
|
|
|
|
cv::Mat coloredCpu = cv::imread(cvtest::TS::ptr()->get_data_path() + GET_PARAM(2));
|
|
ASSERT_FALSE(coloredCpu.empty());
|
|
|
|
typedef cv::gpu::SoftCascade::Detection Detection;
|
|
GpuMat colored(coloredCpu), objectBoxes(1, 100 * sizeof(Detection), CV_8UC1), rois(cascade.getRoiSize(), CV_8UC1);
|
|
rois.setTo(1);
|
|
|
|
cv::gpu::GpuMat trois;
|
|
cv::gpu::transpose(rois, trois);
|
|
|
|
int level = GET_PARAM(3);
|
|
cascade.detectMultiScale(colored, trois, objectBoxes, 1, level);
|
|
|
|
cv::Mat dt(objectBoxes);
|
|
|
|
Detection* dts = (Detection*)dt.data;
|
|
cv::Mat result(coloredCpu);
|
|
|
|
printTotal(std::cout, dt.cols);
|
|
for (int i = 0; i < (int)(dt.cols / sizeof(Detection)); ++i)
|
|
{
|
|
Detection d = dts[i];
|
|
print(std::cout, d);
|
|
cv::rectangle(result, cv::Rect(d.x, d.y, d.w, d.h), cv::Scalar(255, 0, 0, 255), 1);
|
|
}
|
|
|
|
writeResult(result, level);
|
|
SHOW(result);
|
|
}
|
|
|
|
TEST(SoftCascadeTest, readCascade)
|
|
{
|
|
std::string xml = cvtest::TS::ptr()->get_data_path() + "../cv/cascadeandhog/icf-template.xml";
|
|
cv::gpu::SoftCascade cascade;
|
|
ASSERT_TRUE(cascade.load(xml));
|
|
}
|
|
|
|
typedef ::testing::TestWithParam<cv::gpu::DeviceInfo > SoftCascadeTestAll;
|
|
GPU_TEST_P(SoftCascadeTestAll, detect,
|
|
ALL_DEVICES
|
|
)
|
|
{
|
|
cv::gpu::setDevice(GetParam().deviceID());
|
|
std::string xml = cvtest::TS::ptr()->get_data_path() + "../cv/cascadeandhog/sc_cvpr_2012_to_opencv.xml";
|
|
cv::gpu::SoftCascade cascade;
|
|
ASSERT_TRUE(cascade.load(xml));
|
|
|
|
cv::Mat coloredCpu = cv::imread(cvtest::TS::ptr()->get_data_path()
|
|
+ "../cv/cascadeandhog/bahnhof/image_00000000_0.png");
|
|
ASSERT_FALSE(coloredCpu.empty());
|
|
|
|
GpuMat colored(coloredCpu), objectBoxes(1, 100000, CV_8UC1), rois(cascade.getRoiSize(), CV_8UC1);
|
|
rois.setTo(0);
|
|
GpuMat sub(rois, cv::Rect(rois.cols / 4, rois.rows / 4,rois.cols / 2, rois.rows / 2));
|
|
sub.setTo(cv::Scalar::all(1));
|
|
|
|
cv::gpu::GpuMat trois;
|
|
cv::gpu::transpose(rois, trois);
|
|
|
|
cascade.detectMultiScale(colored, trois, objectBoxes);
|
|
|
|
typedef cv::gpu::SoftCascade::Detection Detection;
|
|
cv::Mat detections(objectBoxes);
|
|
ASSERT_EQ(detections.cols / sizeof(Detection) ,3670U);
|
|
}
|
|
|
|
//ToDo: fix me
|
|
GPU_TEST_P(SoftCascadeTestAll, detectOnIntegral,
|
|
ALL_DEVICES
|
|
)
|
|
{
|
|
cv::gpu::setDevice(GetParam().deviceID());
|
|
std::string xml = cvtest::TS::ptr()->get_data_path() + "../cv/cascadeandhog/sc_cvpr_2012_to_opencv.xml";
|
|
cv::gpu::SoftCascade cascade;
|
|
ASSERT_TRUE(cascade.load(xml));
|
|
|
|
std::string intPath = cvtest::TS::ptr()->get_data_path() + "../cv/cascadeandhog/integrals.xml";
|
|
cv::FileStorage fs(intPath, cv::FileStorage::READ);
|
|
ASSERT_TRUE(fs.isOpened());
|
|
|
|
GpuMat hogluv(121 * 10, 161, CV_32SC1);
|
|
for (int i = 0; i < 10; ++i)
|
|
{
|
|
cv::Mat channel;
|
|
fs[std::string("channel") + itoa(i)] >> channel;
|
|
GpuMat gchannel(hogluv, cv::Rect(0, 121 * i, 161, 121));
|
|
gchannel.upload(channel);
|
|
}
|
|
|
|
GpuMat objectBoxes(1, 100000, CV_8UC1), rois(cascade.getRoiSize(), CV_8UC1);
|
|
rois.setTo(1);
|
|
|
|
cv::gpu::GpuMat trois;
|
|
cv::gpu::transpose(rois, trois);
|
|
|
|
cascade.detectMultiScale(hogluv, trois, objectBoxes);
|
|
|
|
typedef cv::gpu::SoftCascade::Detection Detection;
|
|
cv::Mat detections(objectBoxes);
|
|
|
|
ASSERT_EQ(detections.cols / sizeof(Detection) ,2042U);
|
|
}
|
|
#endif |