103 lines
		
	
	
		
			2.7 KiB
		
	
	
	
		
			ReStructuredText
		
	
	
	
	
	
			
		
		
	
	
			103 lines
		
	
	
		
			2.7 KiB
		
	
	
	
		
			ReStructuredText
		
	
	
	
	
	
| .. _feature_description:
 | |
| 
 | |
| Feature Description
 | |
| *******************
 | |
| 
 | |
| Goal
 | |
| =====
 | |
| 
 | |
| In this tutorial you will learn how to:
 | |
| 
 | |
| .. container:: enumeratevisibleitemswithsquare
 | |
| 
 | |
|    * Use the :descriptor_extractor:`DescriptorExtractor<>` interface in order to find the feature vector correspondent to the keypoints. Specifically:
 | |
| 
 | |
|      * Use :surf_descriptor_extractor:`SurfDescriptorExtractor<>` and its function :descriptor_extractor:`compute<>` to perform the required calculations.
 | |
|      * Use a :brute_force_matcher:`BFMatcher<>`	to match the features vector
 | |
|      * Use the function :draw_matches:`drawMatches<>` to draw the detected matches.
 | |
| 
 | |
| 
 | |
| Theory
 | |
| ======
 | |
| 
 | |
| Code
 | |
| ====
 | |
| 
 | |
| This tutorial code's is shown lines below. You can also download it from `here <https://github.com/Itseez/opencv/tree/master/samples/cpp/tutorial_code/features2D/SURF_descriptor.cpp>`_
 | |
| 
 | |
| .. code-block:: cpp
 | |
| 
 | |
|    #include <stdio.h>
 | |
|    #include <iostream>
 | |
|    #include "opencv2/core/core.hpp"
 | |
|    #include "opencv2/features2d/features2d.hpp"
 | |
|    #include "opencv2/highgui/highgui.hpp"
 | |
|    #include "opencv2/nonfree/features2d.hpp"
 | |
| 
 | |
|    using namespace cv;
 | |
| 
 | |
|    void readme();
 | |
| 
 | |
|    /** @function main */
 | |
|    int main( int argc, char** argv )
 | |
|    {
 | |
|      if( argc != 3 )
 | |
|       { return -1; }
 | |
| 
 | |
|      Mat img_1 = imread( argv[1], CV_LOAD_IMAGE_GRAYSCALE );
 | |
|      Mat img_2 = imread( argv[2], CV_LOAD_IMAGE_GRAYSCALE );
 | |
| 
 | |
|      if( !img_1.data || !img_2.data )
 | |
|       { return -1; }
 | |
| 
 | |
|      //-- Step 1: Detect the keypoints using SURF Detector
 | |
|      int minHessian = 400;
 | |
| 
 | |
|      SurfFeatureDetector detector( minHessian );
 | |
| 
 | |
|      std::vector<KeyPoint> keypoints_1, keypoints_2;
 | |
| 
 | |
|      detector.detect( img_1, keypoints_1 );
 | |
|      detector.detect( img_2, keypoints_2 );
 | |
| 
 | |
|      //-- Step 2: Calculate descriptors (feature vectors)
 | |
|      SurfDescriptorExtractor extractor;
 | |
| 
 | |
|      Mat descriptors_1, descriptors_2;
 | |
| 
 | |
|      extractor.compute( img_1, keypoints_1, descriptors_1 );
 | |
|      extractor.compute( img_2, keypoints_2, descriptors_2 );
 | |
| 
 | |
|      //-- Step 3: Matching descriptor vectors with a brute force matcher
 | |
|      BFMatcher matcher(NORM_L2);
 | |
|      std::vector< DMatch > matches;
 | |
|      matcher.match( descriptors_1, descriptors_2, matches );
 | |
| 
 | |
|      //-- Draw matches
 | |
|      Mat img_matches;
 | |
|      drawMatches( img_1, keypoints_1, img_2, keypoints_2, matches, img_matches );
 | |
| 
 | |
|      //-- Show detected matches
 | |
|      imshow("Matches", img_matches );
 | |
| 
 | |
|      waitKey(0);
 | |
| 
 | |
|      return 0;
 | |
|      }
 | |
| 
 | |
|     /** @function readme */
 | |
|     void readme()
 | |
|     { std::cout << " Usage: ./SURF_descriptor <img1> <img2>" << std::endl; }
 | |
| 
 | |
| Explanation
 | |
| ============
 | |
| 
 | |
| Result
 | |
| ======
 | |
| 
 | |
| #. Here is the result after applying the BruteForce matcher between the two original images:
 | |
| 
 | |
|    .. image:: images/Feature_Description_BruteForce_Result.jpg
 | |
|       :align: center
 | |
|       :height: 200pt
 | 
