332 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			332 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*M///////////////////////////////////////////////////////////////////////////////////////
 | |
|  //
 | |
|  //  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
 | |
|  //
 | |
|  //  By downloading, copying, installing or using the software you agree to this license.
 | |
|  //  If you do not agree to this license, do not download, install,
 | |
|  //  copy or use the software.
 | |
|  //
 | |
|  //
 | |
|  //                           License Agreement
 | |
|  //                For Open Source Computer Vision Library
 | |
|  //
 | |
|  // Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
 | |
|  // Copyright (C) 2009, Willow Garage Inc., all rights reserved.
 | |
|  // Third party copyrights are property of their respective owners.
 | |
|  //
 | |
|  // Redistribution and use in source and binary forms, with or without modification,
 | |
|  // are permitted provided that the following conditions are met:
 | |
|  //
 | |
|  //   * Redistribution's of source code must retain the above copyright notice,
 | |
|  //     this list of conditions and the following disclaimer.
 | |
|  //
 | |
|  //   * Redistribution's in binary form must reproduce the above copyright notice,
 | |
|  //     this list of conditions and the following disclaimer in the documentation
 | |
|  //     and/or other materials provided with the distribution.
 | |
|  //
 | |
|  //   * The name of the copyright holders may not be used to endorse or promote products
 | |
|  //     derived from this software without specific prior written permission.
 | |
|  //
 | |
|  // This software is provided by the copyright holders and contributors "as is" and
 | |
|  // any express or implied warranties, including, but not limited to, the implied
 | |
|  // warranties of merchantability and fitness for a particular purpose are disclaimed.
 | |
|  // In no event shall the Intel Corporation or contributors be liable for any direct,
 | |
|  // indirect, incidental, special, exemplary, or consequential damages
 | |
|  // (including, but not limited to, procurement of substitute goods or services;
 | |
|  // loss of use, data, or profits; or business interruption) however caused
 | |
|  // and on any theory of liability, whether in contract, strict liability,
 | |
|  // or tort (including negligence or otherwise) arising in any way out of
 | |
|  // the use of this software, even if advised of the possibility of such damage.
 | |
| //
 | |
| //M*/
 | |
| 
 | |
| #include "test_precomp.hpp"
 | |
| #include "test_chessboardgenerator.hpp"
 | |
| 
 | |
| #include <vector>
 | |
| #include <iterator>
 | |
| #include <algorithm>
 | |
| 
 | |
| using namespace cv;
 | |
| using namespace std;
 | |
| 
 | |
| ChessBoardGenerator::ChessBoardGenerator(const Size& _patternSize) : sensorWidth(32), sensorHeight(24),
 | |
|     squareEdgePointsNum(200), min_cos(sqrt(2.f)*0.5f), cov(0.5),
 | |
|     patternSize(_patternSize), rendererResolutionMultiplier(4), tvec(Mat::zeros(1, 3, CV_32F))
 | |
| {
 | |
|     Rodrigues(Mat::eye(3, 3, CV_32F), rvec);
 | |
| }
 | |
| 
 | |
| void cv::ChessBoardGenerator::generateEdge(const Point3f& p1, const Point3f& p2, vector<Point3f>& out) const
 | |
| {
 | |
|     Point3f step = (p2 - p1) * (1.f/squareEdgePointsNum);
 | |
|     for(size_t n = 0; n < squareEdgePointsNum; ++n)
 | |
|         out.push_back( p1 + step * (float)n);
 | |
| }
 | |
| 
 | |
| Size cv::ChessBoardGenerator::cornersSize() const
 | |
| {
 | |
|     return Size(patternSize.width-1, patternSize.height-1);
 | |
| }
 | |
| 
 | |
| struct Mult
 | |
| {
 | |
|     float m;
 | |
|     Mult(int mult) : m((float)mult) {}
 | |
|     Point2f operator()(const Point2f& p)const { return p * m; }
 | |
| };
 | |
| 
 | |
| void cv::ChessBoardGenerator::generateBasis(Point3f& pb1, Point3f& pb2) const
 | |
| {
 | |
|     RNG& rng = theRNG();
 | |
| 
 | |
|     Vec3f n;
 | |
|     for(;;)
 | |
|     {
 | |
|         n[0] = rng.uniform(-1.f, 1.f);
 | |
|         n[1] = rng.uniform(-1.f, 1.f);
 | |
|         n[2] = rng.uniform(-1.f, 1.f);
 | |
|         float len = (float)norm(n);
 | |
|         n[0]/=len;
 | |
|         n[1]/=len;
 | |
|         n[2]/=len;
 | |
| 
 | |
|         if (n[2] > min_cos)
 | |
|             break;
 | |
|     }
 | |
| 
 | |
|     Vec3f n_temp = n; n_temp[0] += 100;
 | |
|     Vec3f b1 = n.cross(n_temp);
 | |
|     Vec3f b2 = n.cross(b1);
 | |
|     float len_b1 = (float)norm(b1);
 | |
|     float len_b2 = (float)norm(b2);
 | |
| 
 | |
|     pb1 = Point3f(b1[0]/len_b1, b1[1]/len_b1, b1[2]/len_b1);
 | |
|     pb2 = Point3f(b2[0]/len_b1, b2[1]/len_b2, b2[2]/len_b2);
 | |
| }
 | |
| 
 | |
| 
 | |
| Mat cv::ChessBoardGenerator::generateChessBoard(const Mat& bg, const Mat& camMat, const Mat& distCoeffs,
 | |
|                                                 const Point3f& zero, const Point3f& pb1, const Point3f& pb2,
 | |
|                                                 float sqWidth, float sqHeight, const vector<Point3f>& whole,
 | |
|                                                 vector<Point2f>& corners) const
 | |
| {
 | |
|     vector< vector<Point> > squares_black;
 | |
|     for(int i = 0; i < patternSize.width; ++i)
 | |
|         for(int j = 0; j < patternSize.height; ++j)
 | |
|             if ( (i % 2 == 0 && j % 2 == 0) || (i % 2 != 0 && j % 2 != 0) )
 | |
|             {
 | |
|                 vector<Point3f> pts_square3d;
 | |
|                 vector<Point2f> pts_square2d;
 | |
| 
 | |
|                 Point3f p1 = zero + (i + 0) * sqWidth * pb1 + (j + 0) * sqHeight * pb2;
 | |
|                 Point3f p2 = zero + (i + 1) * sqWidth * pb1 + (j + 0) * sqHeight * pb2;
 | |
|                 Point3f p3 = zero + (i + 1) * sqWidth * pb1 + (j + 1) * sqHeight * pb2;
 | |
|                 Point3f p4 = zero + (i + 0) * sqWidth * pb1 + (j + 1) * sqHeight * pb2;
 | |
|                 generateEdge(p1, p2, pts_square3d);
 | |
|                 generateEdge(p2, p3, pts_square3d);
 | |
|                 generateEdge(p3, p4, pts_square3d);
 | |
|                 generateEdge(p4, p1, pts_square3d);
 | |
| 
 | |
|                 projectPoints(Mat(pts_square3d), rvec, tvec, camMat, distCoeffs, pts_square2d);
 | |
|                 squares_black.resize(squares_black.size() + 1);
 | |
|                 vector<Point2f> temp;
 | |
|                 approxPolyDP(Mat(pts_square2d), temp, 1.0, true);
 | |
|                 transform(temp.begin(), temp.end(), back_inserter(squares_black.back()), Mult(rendererResolutionMultiplier));
 | |
|             }
 | |
| 
 | |
|     /* calculate corners */
 | |
|     corners3d.clear();
 | |
|     for(int j = 0; j < patternSize.height - 1; ++j)
 | |
|         for(int i = 0; i < patternSize.width - 1; ++i)
 | |
|             corners3d.push_back(zero + (i + 1) * sqWidth * pb1 + (j + 1) * sqHeight * pb2);
 | |
|     corners.clear();
 | |
|     projectPoints(Mat(corners3d), rvec, tvec, camMat, distCoeffs, corners);
 | |
| 
 | |
|     vector<Point3f> whole3d;
 | |
|     vector<Point2f> whole2d;
 | |
|     generateEdge(whole[0], whole[1], whole3d);
 | |
|     generateEdge(whole[1], whole[2], whole3d);
 | |
|     generateEdge(whole[2], whole[3], whole3d);
 | |
|     generateEdge(whole[3], whole[0], whole3d);
 | |
|     projectPoints(Mat(whole3d), rvec, tvec, camMat, distCoeffs, whole2d);
 | |
|     vector<Point2f> temp_whole2d;
 | |
|     approxPolyDP(Mat(whole2d), temp_whole2d, 1.0, true);
 | |
| 
 | |
|     vector< vector<Point > > whole_contour(1);
 | |
|     transform(temp_whole2d.begin(), temp_whole2d.end(),
 | |
|         back_inserter(whole_contour.front()), Mult(rendererResolutionMultiplier));
 | |
| 
 | |
|     Mat result;
 | |
|     if (rendererResolutionMultiplier == 1)
 | |
|     {
 | |
|         result = bg.clone();
 | |
|         drawContours(result, whole_contour, -1, Scalar::all(255), CV_FILLED, CV_AA);
 | |
|         drawContours(result, squares_black, -1, Scalar::all(0), CV_FILLED, CV_AA);
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         Mat tmp;
 | |
|         resize(bg, tmp, bg.size() * rendererResolutionMultiplier);
 | |
|         drawContours(tmp, whole_contour, -1, Scalar::all(255), CV_FILLED, CV_AA);
 | |
|         drawContours(tmp, squares_black, -1, Scalar::all(0), CV_FILLED, CV_AA);
 | |
|         resize(tmp, result, bg.size(), 0, 0, INTER_AREA);
 | |
|     }
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| Mat cv::ChessBoardGenerator::operator ()(const Mat& bg, const Mat& camMat, const Mat& distCoeffs, vector<Point2f>& corners) const
 | |
| {
 | |
|     cov = min(cov, 0.8);
 | |
|     double fovx, fovy, focalLen;
 | |
|     Point2d principalPoint;
 | |
|     double aspect;
 | |
|     calibrationMatrixValues( camMat, bg.size(), sensorWidth, sensorHeight,
 | |
|         fovx, fovy, focalLen, principalPoint, aspect);
 | |
| 
 | |
|     RNG& rng = theRNG();
 | |
| 
 | |
|     float d1 = static_cast<float>(rng.uniform(0.1, 10.0));
 | |
|     float ah = static_cast<float>(rng.uniform(-fovx/2 * cov, fovx/2 * cov) * CV_PI / 180);
 | |
|     float av = static_cast<float>(rng.uniform(-fovy/2 * cov, fovy/2 * cov) * CV_PI / 180);
 | |
| 
 | |
|     Point3f p;
 | |
|     p.z = cos(ah) * d1;
 | |
|     p.x = sin(ah) * d1;
 | |
|     p.y = p.z * tan(av);
 | |
| 
 | |
|     Point3f pb1, pb2;
 | |
|     generateBasis(pb1, pb2);
 | |
| 
 | |
|     float cbHalfWidth = static_cast<float>(norm(p) * sin( min(fovx, fovy) * 0.5 * CV_PI / 180));
 | |
|     float cbHalfHeight = cbHalfWidth * patternSize.height / patternSize.width;
 | |
| 
 | |
|     float cbHalfWidthEx  =  cbHalfWidth * ( patternSize.width + 1) / patternSize.width;
 | |
|     float cbHalfHeightEx = cbHalfHeight * (patternSize.height + 1) / patternSize.height;
 | |
| 
 | |
|     vector<Point3f> pts3d(4);
 | |
|     vector<Point2f> pts2d(4);
 | |
|     for(;;)
 | |
|     {
 | |
|         pts3d[0] = p + pb1 * cbHalfWidthEx + cbHalfHeightEx * pb2;
 | |
|         pts3d[1] = p + pb1 * cbHalfWidthEx - cbHalfHeightEx * pb2;
 | |
|         pts3d[2] = p - pb1 * cbHalfWidthEx - cbHalfHeightEx * pb2;
 | |
|         pts3d[3] = p - pb1 * cbHalfWidthEx + cbHalfHeightEx * pb2;
 | |
| 
 | |
|         /* can remake with better perf */
 | |
|         projectPoints(Mat(pts3d), rvec, tvec, camMat, distCoeffs, pts2d);
 | |
| 
 | |
|         bool inrect1 = pts2d[0].x < bg.cols && pts2d[0].y < bg.rows && pts2d[0].x > 0 && pts2d[0].y > 0;
 | |
|         bool inrect2 = pts2d[1].x < bg.cols && pts2d[1].y < bg.rows && pts2d[1].x > 0 && pts2d[1].y > 0;
 | |
|         bool inrect3 = pts2d[2].x < bg.cols && pts2d[2].y < bg.rows && pts2d[2].x > 0 && pts2d[2].y > 0;
 | |
|         bool inrect4 = pts2d[3].x < bg.cols && pts2d[3].y < bg.rows && pts2d[3].x > 0 && pts2d[3].y > 0;
 | |
| 
 | |
|         if (inrect1 && inrect2 && inrect3 && inrect4)
 | |
|             break;
 | |
| 
 | |
|         cbHalfWidth*=0.8f;
 | |
|         cbHalfHeight = cbHalfWidth * patternSize.height / patternSize.width;
 | |
| 
 | |
|         cbHalfWidthEx  = cbHalfWidth * ( patternSize.width + 1) / patternSize.width;
 | |
|         cbHalfHeightEx = cbHalfHeight * (patternSize.height + 1) / patternSize.height;
 | |
|     }
 | |
| 
 | |
|     Point3f zero = p - pb1 * cbHalfWidth - cbHalfHeight * pb2;
 | |
|     float sqWidth  = 2 * cbHalfWidth/patternSize.width;
 | |
|     float sqHeight = 2 * cbHalfHeight/patternSize.height;
 | |
| 
 | |
|     return generateChessBoard(bg, camMat, distCoeffs, zero, pb1, pb2, sqWidth, sqHeight,  pts3d, corners);
 | |
| }
 | |
| 
 | |
| 
 | |
| Mat cv::ChessBoardGenerator::operator ()(const Mat& bg, const Mat& camMat, const Mat& distCoeffs,
 | |
|                                          const Size2f& squareSize, vector<Point2f>& corners) const
 | |
| {
 | |
|     cov = min(cov, 0.8);
 | |
|     double fovx, fovy, focalLen;
 | |
|     Point2d principalPoint;
 | |
|     double aspect;
 | |
|     calibrationMatrixValues( camMat, bg.size(), sensorWidth, sensorHeight,
 | |
|         fovx, fovy, focalLen, principalPoint, aspect);
 | |
| 
 | |
|     RNG& rng = theRNG();
 | |
| 
 | |
|     float d1 = static_cast<float>(rng.uniform(0.1, 10.0));
 | |
|     float ah = static_cast<float>(rng.uniform(-fovx/2 * cov, fovx/2 * cov) * CV_PI / 180);
 | |
|     float av = static_cast<float>(rng.uniform(-fovy/2 * cov, fovy/2 * cov) * CV_PI / 180);
 | |
| 
 | |
|     Point3f p;
 | |
|     p.z = cos(ah) * d1;
 | |
|     p.x = sin(ah) * d1;
 | |
|     p.y = p.z * tan(av);
 | |
| 
 | |
|     Point3f pb1, pb2;
 | |
|     generateBasis(pb1, pb2);
 | |
| 
 | |
|     float cbHalfWidth  =  squareSize.width *  patternSize.width * 0.5f;
 | |
|     float cbHalfHeight = squareSize.height * patternSize.height * 0.5f;
 | |
| 
 | |
|     float cbHalfWidthEx  =  cbHalfWidth * ( patternSize.width + 1) / patternSize.width;
 | |
|     float cbHalfHeightEx = cbHalfHeight * (patternSize.height + 1) / patternSize.height;
 | |
| 
 | |
|     vector<Point3f> pts3d(4);
 | |
|     vector<Point2f> pts2d(4);
 | |
|     for(;;)
 | |
|     {
 | |
|         pts3d[0] = p + pb1 * cbHalfWidthEx + cbHalfHeightEx * pb2;
 | |
|         pts3d[1] = p + pb1 * cbHalfWidthEx - cbHalfHeightEx * pb2;
 | |
|         pts3d[2] = p - pb1 * cbHalfWidthEx - cbHalfHeightEx * pb2;
 | |
|         pts3d[3] = p - pb1 * cbHalfWidthEx + cbHalfHeightEx * pb2;
 | |
| 
 | |
|         /* can remake with better perf */
 | |
|         projectPoints(Mat(pts3d), rvec, tvec, camMat, distCoeffs, pts2d);
 | |
| 
 | |
|         bool inrect1 = pts2d[0].x < bg.cols && pts2d[0].y < bg.rows && pts2d[0].x > 0 && pts2d[0].y > 0;
 | |
|         bool inrect2 = pts2d[1].x < bg.cols && pts2d[1].y < bg.rows && pts2d[1].x > 0 && pts2d[1].y > 0;
 | |
|         bool inrect3 = pts2d[2].x < bg.cols && pts2d[2].y < bg.rows && pts2d[2].x > 0 && pts2d[2].y > 0;
 | |
|         bool inrect4 = pts2d[3].x < bg.cols && pts2d[3].y < bg.rows && pts2d[3].x > 0 && pts2d[3].y > 0;
 | |
| 
 | |
|         if ( inrect1 && inrect2 && inrect3 && inrect4)
 | |
|             break;
 | |
| 
 | |
|         p.z *= 1.1f;
 | |
|     }
 | |
| 
 | |
|     Point3f zero = p - pb1 * cbHalfWidth - cbHalfHeight * pb2;
 | |
| 
 | |
|     return generateChessBoard(bg, camMat, distCoeffs, zero, pb1, pb2,
 | |
|         squareSize.width, squareSize.height, pts3d, corners);
 | |
| }
 | |
| 
 | |
| Mat cv::ChessBoardGenerator::operator ()(const Mat& bg, const Mat& camMat, const Mat& distCoeffs,
 | |
|                                          const Size2f& squareSize, const Point3f& pos, vector<Point2f>& corners) const
 | |
| {
 | |
|     cov = min(cov, 0.8);
 | |
|     Point3f p = pos;
 | |
|     Point3f pb1, pb2;
 | |
|     generateBasis(pb1, pb2);
 | |
| 
 | |
|     float cbHalfWidth  =  squareSize.width *  patternSize.width * 0.5f;
 | |
|     float cbHalfHeight = squareSize.height * patternSize.height * 0.5f;
 | |
| 
 | |
|     float cbHalfWidthEx  =  cbHalfWidth * ( patternSize.width + 1) / patternSize.width;
 | |
|     float cbHalfHeightEx = cbHalfHeight * (patternSize.height + 1) / patternSize.height;
 | |
| 
 | |
|     vector<Point3f> pts3d(4);
 | |
|     vector<Point2f> pts2d(4);
 | |
| 
 | |
|     pts3d[0] = p + pb1 * cbHalfWidthEx + cbHalfHeightEx * pb2;
 | |
|     pts3d[1] = p + pb1 * cbHalfWidthEx - cbHalfHeightEx * pb2;
 | |
|     pts3d[2] = p - pb1 * cbHalfWidthEx - cbHalfHeightEx * pb2;
 | |
|     pts3d[3] = p - pb1 * cbHalfWidthEx + cbHalfHeightEx * pb2;
 | |
| 
 | |
|     /* can remake with better perf */
 | |
|     projectPoints(Mat(pts3d), rvec, tvec, camMat, distCoeffs, pts2d);
 | |
| 
 | |
|     Point3f zero = p - pb1 * cbHalfWidth - cbHalfHeight * pb2;
 | |
| 
 | |
|     return generateChessBoard(bg, camMat, distCoeffs, zero, pb1, pb2,
 | |
|         squareSize.width, squareSize.height,  pts3d, corners);
 | |
| }
 | 
