260 lines
		
	
	
		
			8.5 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			260 lines
		
	
	
		
			8.5 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
/*M///////////////////////////////////////////////////////////////////////////////////////
 | 
						|
//
 | 
						|
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
 | 
						|
//
 | 
						|
//  By downloading, copying, installing or using the software you agree to this license.
 | 
						|
//  If you do not agree to this license, do not download, install,
 | 
						|
//  copy or use the software.
 | 
						|
//
 | 
						|
//
 | 
						|
//                           License Agreement
 | 
						|
//                For Open Source Computer Vision Library
 | 
						|
//
 | 
						|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
 | 
						|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
 | 
						|
// Third party copyrights are property of their respective owners.
 | 
						|
//
 | 
						|
// Redistribution and use in source and binary forms, with or without modification,
 | 
						|
// are permitted provided that the following conditions are met:
 | 
						|
//
 | 
						|
//   * Redistribution's of source code must retain the above copyright notice,
 | 
						|
//     this list of conditions and the following disclaimer.
 | 
						|
//
 | 
						|
//   * Redistribution's in binary form must reproduce the above copyright notice,
 | 
						|
//     this list of conditions and the following disclaimer in the documentation
 | 
						|
//     and/or other materials provided with the distribution.
 | 
						|
//
 | 
						|
//   * The name of the copyright holders may not be used to endorse or promote products
 | 
						|
//     derived from this software without specific prior written permission.
 | 
						|
//
 | 
						|
// This software is provided by the copyright holders and contributors "as is" and
 | 
						|
// any express or implied warranties, including, but not limited to, the implied
 | 
						|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
 | 
						|
// In no event shall the Intel Corporation or contributors be liable for any direct,
 | 
						|
// indirect, incidental, special, exemplary, or consequential damages
 | 
						|
// (including, but not limited to, procurement of substitute goods or services;
 | 
						|
// loss of use, data, or profits; or business interruption) however caused
 | 
						|
// and on any theory of liability, whether in contract, strict liability,
 | 
						|
// or tort (including negligence or otherwise) arising in any way out of
 | 
						|
// the use of this software, even if advised of the possibility of such damage.
 | 
						|
//
 | 
						|
//M*/
 | 
						|
 | 
						|
#include "test_precomp.hpp"
 | 
						|
 | 
						|
#ifdef HAVE_CUDA
 | 
						|
 | 
						|
using namespace cvtest;
 | 
						|
 | 
						|
///////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
						|
// HoughLines
 | 
						|
 | 
						|
PARAM_TEST_CASE(HoughLines, cv::cuda::DeviceInfo, cv::Size, UseRoi)
 | 
						|
{
 | 
						|
    static void generateLines(cv::Mat& img)
 | 
						|
    {
 | 
						|
        img.setTo(cv::Scalar::all(0));
 | 
						|
 | 
						|
        cv::line(img, cv::Point(20, 0), cv::Point(20, img.rows), cv::Scalar::all(255));
 | 
						|
        cv::line(img, cv::Point(0, 50), cv::Point(img.cols, 50), cv::Scalar::all(255));
 | 
						|
        cv::line(img, cv::Point(0, 0), cv::Point(img.cols, img.rows), cv::Scalar::all(255));
 | 
						|
        cv::line(img, cv::Point(img.cols, 0), cv::Point(0, img.rows), cv::Scalar::all(255));
 | 
						|
    }
 | 
						|
 | 
						|
    static void drawLines(cv::Mat& dst, const std::vector<cv::Vec2f>& lines)
 | 
						|
    {
 | 
						|
        dst.setTo(cv::Scalar::all(0));
 | 
						|
 | 
						|
        for (size_t i = 0; i < lines.size(); ++i)
 | 
						|
        {
 | 
						|
            float rho = lines[i][0], theta = lines[i][1];
 | 
						|
            cv::Point pt1, pt2;
 | 
						|
            double a = std::cos(theta), b = std::sin(theta);
 | 
						|
            double x0 = a*rho, y0 = b*rho;
 | 
						|
            pt1.x = cvRound(x0 + 1000*(-b));
 | 
						|
            pt1.y = cvRound(y0 + 1000*(a));
 | 
						|
            pt2.x = cvRound(x0 - 1000*(-b));
 | 
						|
            pt2.y = cvRound(y0 - 1000*(a));
 | 
						|
            cv::line(dst, pt1, pt2, cv::Scalar::all(255));
 | 
						|
        }
 | 
						|
    }
 | 
						|
};
 | 
						|
 | 
						|
CUDA_TEST_P(HoughLines, Accuracy)
 | 
						|
{
 | 
						|
    const cv::cuda::DeviceInfo devInfo = GET_PARAM(0);
 | 
						|
    cv::cuda::setDevice(devInfo.deviceID());
 | 
						|
    const cv::Size size = GET_PARAM(1);
 | 
						|
    const bool useRoi = GET_PARAM(2);
 | 
						|
 | 
						|
    const float rho = 1.0f;
 | 
						|
    const float theta = (float) (1.5 * CV_PI / 180.0);
 | 
						|
    const int threshold = 100;
 | 
						|
 | 
						|
    cv::Mat src(size, CV_8UC1);
 | 
						|
    generateLines(src);
 | 
						|
 | 
						|
    cv::Ptr<cv::cuda::HoughLinesDetector> hough = cv::cuda::createHoughLinesDetector(rho, theta, threshold);
 | 
						|
 | 
						|
    cv::cuda::GpuMat d_lines;
 | 
						|
    hough->detect(loadMat(src, useRoi), d_lines);
 | 
						|
 | 
						|
    std::vector<cv::Vec2f> lines;
 | 
						|
    hough->downloadResults(d_lines, lines);
 | 
						|
 | 
						|
    cv::Mat dst(size, CV_8UC1);
 | 
						|
    drawLines(dst, lines);
 | 
						|
 | 
						|
    ASSERT_MAT_NEAR(src, dst, 0.0);
 | 
						|
}
 | 
						|
 | 
						|
INSTANTIATE_TEST_CASE_P(CUDA_ImgProc, HoughLines, testing::Combine(
 | 
						|
    ALL_DEVICES,
 | 
						|
    DIFFERENT_SIZES,
 | 
						|
    WHOLE_SUBMAT));
 | 
						|
 | 
						|
///////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
						|
// HoughCircles
 | 
						|
 | 
						|
PARAM_TEST_CASE(HoughCircles, cv::cuda::DeviceInfo, cv::Size, UseRoi)
 | 
						|
{
 | 
						|
    static void drawCircles(cv::Mat& dst, const std::vector<cv::Vec3f>& circles, bool fill)
 | 
						|
    {
 | 
						|
        dst.setTo(cv::Scalar::all(0));
 | 
						|
 | 
						|
        for (size_t i = 0; i < circles.size(); ++i)
 | 
						|
            cv::circle(dst, cv::Point2f(circles[i][0], circles[i][1]), (int)circles[i][2], cv::Scalar::all(255), fill ? -1 : 1);
 | 
						|
    }
 | 
						|
};
 | 
						|
 | 
						|
CUDA_TEST_P(HoughCircles, Accuracy)
 | 
						|
{
 | 
						|
    const cv::cuda::DeviceInfo devInfo = GET_PARAM(0);
 | 
						|
    cv::cuda::setDevice(devInfo.deviceID());
 | 
						|
    const cv::Size size = GET_PARAM(1);
 | 
						|
    const bool useRoi = GET_PARAM(2);
 | 
						|
 | 
						|
    const float dp = 2.0f;
 | 
						|
    const float minDist = 0.0f;
 | 
						|
    const int minRadius = 10;
 | 
						|
    const int maxRadius = 20;
 | 
						|
    const int cannyThreshold = 100;
 | 
						|
    const int votesThreshold = 20;
 | 
						|
 | 
						|
    std::vector<cv::Vec3f> circles_gold(4);
 | 
						|
    circles_gold[0] = cv::Vec3i(20, 20, minRadius);
 | 
						|
    circles_gold[1] = cv::Vec3i(90, 87, minRadius + 3);
 | 
						|
    circles_gold[2] = cv::Vec3i(30, 70, minRadius + 8);
 | 
						|
    circles_gold[3] = cv::Vec3i(80, 10, maxRadius);
 | 
						|
 | 
						|
    cv::Mat src(size, CV_8UC1);
 | 
						|
    drawCircles(src, circles_gold, true);
 | 
						|
 | 
						|
    cv::Ptr<cv::cuda::HoughCirclesDetector> houghCircles = cv::cuda::createHoughCirclesDetector(dp, minDist, cannyThreshold, votesThreshold, minRadius, maxRadius);
 | 
						|
 | 
						|
    cv::cuda::GpuMat d_circles;
 | 
						|
    houghCircles->detect(loadMat(src, useRoi), d_circles);
 | 
						|
 | 
						|
    std::vector<cv::Vec3f> circles;
 | 
						|
    d_circles.download(circles);
 | 
						|
 | 
						|
    ASSERT_FALSE(circles.empty());
 | 
						|
 | 
						|
    for (size_t i = 0; i < circles.size(); ++i)
 | 
						|
    {
 | 
						|
        cv::Vec3f cur = circles[i];
 | 
						|
 | 
						|
        bool found = false;
 | 
						|
 | 
						|
        for (size_t j = 0; j < circles_gold.size(); ++j)
 | 
						|
        {
 | 
						|
            cv::Vec3f gold = circles_gold[j];
 | 
						|
 | 
						|
            if (std::fabs(cur[0] - gold[0]) < 5 && std::fabs(cur[1] - gold[1]) < 5 && std::fabs(cur[2] - gold[2]) < 5)
 | 
						|
            {
 | 
						|
                found = true;
 | 
						|
                break;
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        ASSERT_TRUE(found);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
INSTANTIATE_TEST_CASE_P(CUDA_ImgProc, HoughCircles, testing::Combine(
 | 
						|
    ALL_DEVICES,
 | 
						|
    DIFFERENT_SIZES,
 | 
						|
    WHOLE_SUBMAT));
 | 
						|
 | 
						|
///////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
						|
// GeneralizedHough
 | 
						|
 | 
						|
PARAM_TEST_CASE(GeneralizedHough, cv::cuda::DeviceInfo, UseRoi)
 | 
						|
{
 | 
						|
};
 | 
						|
 | 
						|
CUDA_TEST_P(GeneralizedHough, Ballard)
 | 
						|
{
 | 
						|
    const cv::cuda::DeviceInfo devInfo = GET_PARAM(0);
 | 
						|
    cv::cuda::setDevice(devInfo.deviceID());
 | 
						|
    const bool useRoi = GET_PARAM(1);
 | 
						|
 | 
						|
    cv::Mat templ = readImage("../cv/shared/templ.png", cv::IMREAD_GRAYSCALE);
 | 
						|
    ASSERT_FALSE(templ.empty());
 | 
						|
 | 
						|
    cv::Point templCenter(templ.cols / 2, templ.rows / 2);
 | 
						|
 | 
						|
    const size_t gold_count = 3;
 | 
						|
    cv::Point pos_gold[gold_count];
 | 
						|
    pos_gold[0] = cv::Point(templCenter.x + 10, templCenter.y + 10);
 | 
						|
    pos_gold[1] = cv::Point(2 * templCenter.x + 40, templCenter.y + 10);
 | 
						|
    pos_gold[2] = cv::Point(2 * templCenter.x + 40, 2 * templCenter.y + 40);
 | 
						|
 | 
						|
    cv::Mat image(templ.rows * 3, templ.cols * 3, CV_8UC1, cv::Scalar::all(0));
 | 
						|
    for (size_t i = 0; i < gold_count; ++i)
 | 
						|
    {
 | 
						|
        cv::Rect rec(pos_gold[i].x - templCenter.x, pos_gold[i].y - templCenter.y, templ.cols, templ.rows);
 | 
						|
        cv::Mat imageROI = image(rec);
 | 
						|
        templ.copyTo(imageROI);
 | 
						|
    }
 | 
						|
 | 
						|
    cv::Ptr<cv::GeneralizedHoughBallard> alg = cv::cuda::createGeneralizedHoughBallard();
 | 
						|
    alg->setVotesThreshold(200);
 | 
						|
 | 
						|
    alg->setTemplate(loadMat(templ, useRoi));
 | 
						|
 | 
						|
    cv::cuda::GpuMat d_pos;
 | 
						|
    alg->detect(loadMat(image, useRoi), d_pos);
 | 
						|
 | 
						|
    std::vector<cv::Vec4f> pos;
 | 
						|
    d_pos.download(pos);
 | 
						|
 | 
						|
    ASSERT_EQ(gold_count, pos.size());
 | 
						|
 | 
						|
    for (size_t i = 0; i < gold_count; ++i)
 | 
						|
    {
 | 
						|
        cv::Point gold = pos_gold[i];
 | 
						|
 | 
						|
        bool found = false;
 | 
						|
 | 
						|
        for (size_t j = 0; j < pos.size(); ++j)
 | 
						|
        {
 | 
						|
            cv::Point2f p(pos[j][0], pos[j][1]);
 | 
						|
 | 
						|
            if (::fabs(p.x - gold.x) < 2 && ::fabs(p.y - gold.y) < 2)
 | 
						|
            {
 | 
						|
                found = true;
 | 
						|
                break;
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        ASSERT_TRUE(found);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
INSTANTIATE_TEST_CASE_P(CUDA_ImgProc, GeneralizedHough, testing::Combine(
 | 
						|
    ALL_DEVICES,
 | 
						|
    WHOLE_SUBMAT));
 | 
						|
 | 
						|
#endif // HAVE_CUDA
 |