742 lines
27 KiB
C++
742 lines
27 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// Intel License Agreement
|
|
//
|
|
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of Intel Corporation may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
|
|
// This file implements the foreground/background pixel
|
|
// discrimination algorithm described in
|
|
//
|
|
// Foreground Object Detection from Videos Containing Complex Background
|
|
// Li, Huan, Gu, Tian 2003 9p
|
|
// http://muq.org/~cynbe/bib/foreground-object-detection-from-videos-containing-complex-background.pdf
|
|
|
|
|
|
#include "precomp.hpp"
|
|
|
|
#include <math.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
//#include <algorithm>
|
|
|
|
static double* _cv_max_element( double* start, double* end )
|
|
{
|
|
double* p = start++;
|
|
|
|
for( ; start != end; ++start) {
|
|
|
|
if (*p < *start) p = start;
|
|
}
|
|
|
|
return p;
|
|
}
|
|
|
|
static void CV_CDECL icvReleaseFGDStatModel( CvFGDStatModel** model );
|
|
static int CV_CDECL icvUpdateFGDStatModel( IplImage* curr_frame,
|
|
CvFGDStatModel* model,
|
|
double );
|
|
|
|
// Function cvCreateFGDStatModel initializes foreground detection process
|
|
// parameters:
|
|
// first_frame - frame from video sequence
|
|
// parameters - (optional) if NULL default parameters of the algorithm will be used
|
|
// p_model - pointer to CvFGDStatModel structure
|
|
CV_IMPL CvBGStatModel*
|
|
cvCreateFGDStatModel( IplImage* first_frame, CvFGDStatModelParams* parameters )
|
|
{
|
|
CvFGDStatModel* p_model = 0;
|
|
|
|
CV_FUNCNAME( "cvCreateFGDStatModel" );
|
|
|
|
__BEGIN__;
|
|
|
|
int i, j, k, pixel_count, buf_size;
|
|
CvFGDStatModelParams params;
|
|
|
|
if( !CV_IS_IMAGE(first_frame) )
|
|
CV_ERROR( CV_StsBadArg, "Invalid or NULL first_frame parameter" );
|
|
|
|
if (first_frame->nChannels != 3)
|
|
CV_ERROR( CV_StsBadArg, "first_frame must have 3 color channels" );
|
|
|
|
// Initialize parameters:
|
|
if( parameters == NULL )
|
|
{
|
|
params.Lc = CV_BGFG_FGD_LC;
|
|
params.N1c = CV_BGFG_FGD_N1C;
|
|
params.N2c = CV_BGFG_FGD_N2C;
|
|
|
|
params.Lcc = CV_BGFG_FGD_LCC;
|
|
params.N1cc = CV_BGFG_FGD_N1CC;
|
|
params.N2cc = CV_BGFG_FGD_N2CC;
|
|
|
|
params.delta = CV_BGFG_FGD_DELTA;
|
|
|
|
params.alpha1 = CV_BGFG_FGD_ALPHA_1;
|
|
params.alpha2 = CV_BGFG_FGD_ALPHA_2;
|
|
params.alpha3 = CV_BGFG_FGD_ALPHA_3;
|
|
|
|
params.T = CV_BGFG_FGD_T;
|
|
params.minArea = CV_BGFG_FGD_MINAREA;
|
|
|
|
params.is_obj_without_holes = 1;
|
|
params.perform_morphing = 1;
|
|
}
|
|
else
|
|
{
|
|
params = *parameters;
|
|
}
|
|
|
|
CV_CALL( p_model = (CvFGDStatModel*)cvAlloc( sizeof(*p_model) ));
|
|
memset( p_model, 0, sizeof(*p_model) );
|
|
p_model->type = CV_BG_MODEL_FGD;
|
|
p_model->release = (CvReleaseBGStatModel)icvReleaseFGDStatModel;
|
|
p_model->update = (CvUpdateBGStatModel)icvUpdateFGDStatModel;;
|
|
p_model->params = params;
|
|
|
|
// Initialize storage pools:
|
|
pixel_count = first_frame->width * first_frame->height;
|
|
|
|
buf_size = pixel_count*sizeof(p_model->pixel_stat[0]);
|
|
CV_CALL( p_model->pixel_stat = (CvBGPixelStat*)cvAlloc(buf_size) );
|
|
memset( p_model->pixel_stat, 0, buf_size );
|
|
|
|
buf_size = pixel_count*params.N2c*sizeof(p_model->pixel_stat[0].ctable[0]);
|
|
CV_CALL( p_model->pixel_stat[0].ctable = (CvBGPixelCStatTable*)cvAlloc(buf_size) );
|
|
memset( p_model->pixel_stat[0].ctable, 0, buf_size );
|
|
|
|
buf_size = pixel_count*params.N2cc*sizeof(p_model->pixel_stat[0].cctable[0]);
|
|
CV_CALL( p_model->pixel_stat[0].cctable = (CvBGPixelCCStatTable*)cvAlloc(buf_size) );
|
|
memset( p_model->pixel_stat[0].cctable, 0, buf_size );
|
|
|
|
for( i = 0, k = 0; i < first_frame->height; i++ ) {
|
|
for( j = 0; j < first_frame->width; j++, k++ )
|
|
{
|
|
p_model->pixel_stat[k].ctable = p_model->pixel_stat[0].ctable + k*params.N2c;
|
|
p_model->pixel_stat[k].cctable = p_model->pixel_stat[0].cctable + k*params.N2cc;
|
|
}
|
|
}
|
|
|
|
// Init temporary images:
|
|
CV_CALL( p_model->Ftd = cvCreateImage(cvSize(first_frame->width, first_frame->height), IPL_DEPTH_8U, 1));
|
|
CV_CALL( p_model->Fbd = cvCreateImage(cvSize(first_frame->width, first_frame->height), IPL_DEPTH_8U, 1));
|
|
CV_CALL( p_model->foreground = cvCreateImage(cvSize(first_frame->width, first_frame->height), IPL_DEPTH_8U, 1));
|
|
|
|
CV_CALL( p_model->background = cvCloneImage(first_frame));
|
|
CV_CALL( p_model->prev_frame = cvCloneImage(first_frame));
|
|
CV_CALL( p_model->storage = cvCreateMemStorage());
|
|
|
|
__END__;
|
|
|
|
if( cvGetErrStatus() < 0 )
|
|
{
|
|
CvBGStatModel* base_ptr = (CvBGStatModel*)p_model;
|
|
|
|
if( p_model && p_model->release )
|
|
p_model->release( &base_ptr );
|
|
else
|
|
cvFree( &p_model );
|
|
p_model = 0;
|
|
}
|
|
|
|
return (CvBGStatModel*)p_model;
|
|
}
|
|
|
|
|
|
static void CV_CDECL
|
|
icvReleaseFGDStatModel( CvFGDStatModel** _model )
|
|
{
|
|
CV_FUNCNAME( "icvReleaseFGDStatModel" );
|
|
|
|
__BEGIN__;
|
|
|
|
if( !_model )
|
|
CV_ERROR( CV_StsNullPtr, "" );
|
|
|
|
if( *_model )
|
|
{
|
|
CvFGDStatModel* model = *_model;
|
|
if( model->pixel_stat )
|
|
{
|
|
cvFree( &model->pixel_stat[0].ctable );
|
|
cvFree( &model->pixel_stat[0].cctable );
|
|
cvFree( &model->pixel_stat );
|
|
}
|
|
|
|
cvReleaseImage( &model->Ftd );
|
|
cvReleaseImage( &model->Fbd );
|
|
cvReleaseImage( &model->foreground );
|
|
cvReleaseImage( &model->background );
|
|
cvReleaseImage( &model->prev_frame );
|
|
cvReleaseMemStorage(&model->storage);
|
|
|
|
cvFree( _model );
|
|
}
|
|
|
|
__END__;
|
|
}
|
|
|
|
// Function cvChangeDetection performs change detection for Foreground detection algorithm
|
|
// parameters:
|
|
// prev_frame -
|
|
// curr_frame -
|
|
// change_mask -
|
|
CV_IMPL int
|
|
cvChangeDetection( IplImage* prev_frame,
|
|
IplImage* curr_frame,
|
|
IplImage* change_mask )
|
|
{
|
|
int i, j, b, x, y, thres;
|
|
const int PIXELRANGE=256;
|
|
|
|
if( !prev_frame
|
|
|| !curr_frame
|
|
|| !change_mask
|
|
|| prev_frame->nChannels != 3
|
|
|| curr_frame->nChannels != 3
|
|
|| change_mask->nChannels != 1
|
|
|| prev_frame->depth != IPL_DEPTH_8U
|
|
|| curr_frame->depth != IPL_DEPTH_8U
|
|
|| change_mask->depth != IPL_DEPTH_8U
|
|
|| prev_frame->width != curr_frame->width
|
|
|| prev_frame->height != curr_frame->height
|
|
|| prev_frame->width != change_mask->width
|
|
|| prev_frame->height != change_mask->height
|
|
){
|
|
return 0;
|
|
}
|
|
|
|
cvZero ( change_mask );
|
|
|
|
// All operations per colour
|
|
for (b=0 ; b<prev_frame->nChannels ; b++) {
|
|
|
|
// Create histogram:
|
|
|
|
long HISTOGRAM[PIXELRANGE];
|
|
for (i=0 ; i<PIXELRANGE; i++) HISTOGRAM[i]=0;
|
|
|
|
for (y=0 ; y<curr_frame->height ; y++)
|
|
{
|
|
uchar* rowStart1 = (uchar*)curr_frame->imageData + y * curr_frame->widthStep + b;
|
|
uchar* rowStart2 = (uchar*)prev_frame->imageData + y * prev_frame->widthStep + b;
|
|
for (x=0 ; x<curr_frame->width ; x++, rowStart1+=curr_frame->nChannels, rowStart2+=prev_frame->nChannels) {
|
|
int diff = abs( int(*rowStart1) - int(*rowStart2) );
|
|
HISTOGRAM[diff]++;
|
|
}
|
|
}
|
|
|
|
double relativeVariance[PIXELRANGE];
|
|
for (i=0 ; i<PIXELRANGE; i++) relativeVariance[i]=0;
|
|
|
|
for (thres=PIXELRANGE-2; thres>=0 ; thres--)
|
|
{
|
|
// fprintf(stderr, "Iter %d\n", thres);
|
|
double sum=0;
|
|
double sqsum=0;
|
|
int count=0;
|
|
// fprintf(stderr, "Iter %d entering loop\n", thres);
|
|
for (j=thres ; j<PIXELRANGE ; j++) {
|
|
sum += double(j)*double(HISTOGRAM[j]);
|
|
sqsum += double(j*j)*double(HISTOGRAM[j]);
|
|
count += HISTOGRAM[j];
|
|
}
|
|
count = count == 0 ? 1 : count;
|
|
// fprintf(stderr, "Iter %d finishing loop\n", thres);
|
|
double my = sum / count;
|
|
double sigma = sqrt( sqsum/count - my*my);
|
|
// fprintf(stderr, "Iter %d sum=%g sqsum=%g count=%d sigma = %g\n", thres, sum, sqsum, count, sigma);
|
|
// fprintf(stderr, "Writing to %x\n", &(relativeVariance[thres]));
|
|
relativeVariance[thres] = sigma;
|
|
// fprintf(stderr, "Iter %d finished\n", thres);
|
|
}
|
|
|
|
// Find maximum:
|
|
uchar bestThres = 0;
|
|
|
|
double* pBestThres = _cv_max_element(relativeVariance, relativeVariance+PIXELRANGE);
|
|
bestThres = (uchar)(*pBestThres); if (bestThres <10) bestThres=10;
|
|
|
|
for (y=0 ; y<prev_frame->height ; y++)
|
|
{
|
|
uchar* rowStart1 = (uchar*)(curr_frame->imageData) + y * curr_frame->widthStep + b;
|
|
uchar* rowStart2 = (uchar*)(prev_frame->imageData) + y * prev_frame->widthStep + b;
|
|
uchar* rowStart3 = (uchar*)(change_mask->imageData) + y * change_mask->widthStep;
|
|
for (x = 0; x < curr_frame->width; x++, rowStart1+=curr_frame->nChannels,
|
|
rowStart2+=prev_frame->nChannels, rowStart3+=change_mask->nChannels) {
|
|
// OR between different color channels
|
|
int diff = abs( int(*rowStart1) - int(*rowStart2) );
|
|
if ( diff > bestThres)
|
|
*rowStart3 |=255;
|
|
}
|
|
}
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
|
|
#define MIN_PV 1E-10
|
|
|
|
|
|
#define V_C(k,l) ctable[k].v[l]
|
|
#define PV_C(k) ctable[k].Pv
|
|
#define PVB_C(k) ctable[k].Pvb
|
|
#define V_CC(k,l) cctable[k].v[l]
|
|
#define PV_CC(k) cctable[k].Pv
|
|
#define PVB_CC(k) cctable[k].Pvb
|
|
|
|
|
|
// Function cvUpdateFGDStatModel updates statistical model and returns number of foreground regions
|
|
// parameters:
|
|
// curr_frame - current frame from video sequence
|
|
// p_model - pointer to CvFGDStatModel structure
|
|
static int CV_CDECL
|
|
icvUpdateFGDStatModel( IplImage* curr_frame, CvFGDStatModel* model, double )
|
|
{
|
|
int mask_step = model->Ftd->widthStep;
|
|
CvSeq *first_seq = NULL, *prev_seq = NULL, *seq = NULL;
|
|
IplImage* prev_frame = model->prev_frame;
|
|
int region_count = 0;
|
|
int FG_pixels_count = 0;
|
|
int deltaC = cvRound(model->params.delta * 256 / model->params.Lc);
|
|
int deltaCC = cvRound(model->params.delta * 256 / model->params.Lcc);
|
|
int i, j, k, l;
|
|
|
|
//clear storages
|
|
cvClearMemStorage(model->storage);
|
|
cvZero(model->foreground);
|
|
|
|
// From foreground pixel candidates using image differencing
|
|
// with adaptive thresholding. The algorithm is from:
|
|
//
|
|
// Thresholding for Change Detection
|
|
// Paul L. Rosin 1998 6p
|
|
// http://www.cis.temple.edu/~latecki/Courses/CIS750-03/Papers/thresh-iccv.pdf
|
|
//
|
|
cvChangeDetection( prev_frame, curr_frame, model->Ftd );
|
|
cvChangeDetection( model->background, curr_frame, model->Fbd );
|
|
|
|
for( i = 0; i < model->Ftd->height; i++ )
|
|
{
|
|
for( j = 0; j < model->Ftd->width; j++ )
|
|
{
|
|
if( ((uchar*)model->Fbd->imageData)[i*mask_step+j] || ((uchar*)model->Ftd->imageData)[i*mask_step+j] )
|
|
{
|
|
float Pb = 0;
|
|
float Pv = 0;
|
|
float Pvb = 0;
|
|
|
|
CvBGPixelStat* stat = model->pixel_stat + i * model->Ftd->width + j;
|
|
|
|
CvBGPixelCStatTable* ctable = stat->ctable;
|
|
CvBGPixelCCStatTable* cctable = stat->cctable;
|
|
|
|
uchar* curr_data = (uchar*)(curr_frame->imageData) + i*curr_frame->widthStep + j*3;
|
|
uchar* prev_data = (uchar*)(prev_frame->imageData) + i*prev_frame->widthStep + j*3;
|
|
|
|
int val = 0;
|
|
|
|
// Is it a motion pixel?
|
|
if( ((uchar*)model->Ftd->imageData)[i*mask_step+j] )
|
|
{
|
|
if( !stat->is_trained_dyn_model ) {
|
|
|
|
val = 1;
|
|
|
|
} else {
|
|
|
|
// Compare with stored CCt vectors:
|
|
for( k = 0; PV_CC(k) > model->params.alpha2 && k < model->params.N1cc; k++ )
|
|
{
|
|
if ( abs( V_CC(k,0) - prev_data[0]) <= deltaCC &&
|
|
abs( V_CC(k,1) - prev_data[1]) <= deltaCC &&
|
|
abs( V_CC(k,2) - prev_data[2]) <= deltaCC &&
|
|
abs( V_CC(k,3) - curr_data[0]) <= deltaCC &&
|
|
abs( V_CC(k,4) - curr_data[1]) <= deltaCC &&
|
|
abs( V_CC(k,5) - curr_data[2]) <= deltaCC)
|
|
{
|
|
Pv += PV_CC(k);
|
|
Pvb += PVB_CC(k);
|
|
}
|
|
}
|
|
Pb = stat->Pbcc;
|
|
if( 2 * Pvb * Pb <= Pv ) val = 1;
|
|
}
|
|
}
|
|
else if( stat->is_trained_st_model )
|
|
{
|
|
// Compare with stored Ct vectors:
|
|
for( k = 0; PV_C(k) > model->params.alpha2 && k < model->params.N1c; k++ )
|
|
{
|
|
if ( abs( V_C(k,0) - curr_data[0]) <= deltaC &&
|
|
abs( V_C(k,1) - curr_data[1]) <= deltaC &&
|
|
abs( V_C(k,2) - curr_data[2]) <= deltaC )
|
|
{
|
|
Pv += PV_C(k);
|
|
Pvb += PVB_C(k);
|
|
}
|
|
}
|
|
Pb = stat->Pbc;
|
|
if( 2 * Pvb * Pb <= Pv ) val = 1;
|
|
}
|
|
|
|
// Update foreground:
|
|
((uchar*)model->foreground->imageData)[i*mask_step+j] = (uchar)(val*255);
|
|
FG_pixels_count += val;
|
|
|
|
} // end if( change detection...
|
|
} // for j...
|
|
} // for i...
|
|
//end BG/FG classification
|
|
|
|
// Foreground segmentation.
|
|
// Smooth foreground map:
|
|
if( model->params.perform_morphing ){
|
|
cvMorphologyEx( model->foreground, model->foreground, 0, 0, CV_MOP_OPEN, model->params.perform_morphing );
|
|
cvMorphologyEx( model->foreground, model->foreground, 0, 0, CV_MOP_CLOSE, model->params.perform_morphing );
|
|
}
|
|
|
|
|
|
if( model->params.minArea > 0 || model->params.is_obj_without_holes ){
|
|
|
|
// Discard under-size foreground regions:
|
|
//
|
|
cvFindContours( model->foreground, model->storage, &first_seq, sizeof(CvContour), CV_RETR_LIST );
|
|
for( seq = first_seq; seq; seq = seq->h_next )
|
|
{
|
|
CvContour* cnt = (CvContour*)seq;
|
|
if( cnt->rect.width * cnt->rect.height < model->params.minArea ||
|
|
(model->params.is_obj_without_holes && CV_IS_SEQ_HOLE(seq)) )
|
|
{
|
|
// Delete under-size contour:
|
|
prev_seq = seq->h_prev;
|
|
if( prev_seq )
|
|
{
|
|
prev_seq->h_next = seq->h_next;
|
|
if( seq->h_next ) seq->h_next->h_prev = prev_seq;
|
|
}
|
|
else
|
|
{
|
|
first_seq = seq->h_next;
|
|
if( seq->h_next ) seq->h_next->h_prev = NULL;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
region_count++;
|
|
}
|
|
}
|
|
model->foreground_regions = first_seq;
|
|
cvZero(model->foreground);
|
|
cvDrawContours(model->foreground, first_seq, CV_RGB(0, 0, 255), CV_RGB(0, 0, 255), 10, -1);
|
|
|
|
} else {
|
|
|
|
model->foreground_regions = NULL;
|
|
}
|
|
|
|
// Check ALL BG update condition:
|
|
if( ((float)FG_pixels_count/(model->Ftd->width*model->Ftd->height)) > CV_BGFG_FGD_BG_UPDATE_TRESH )
|
|
{
|
|
for( i = 0; i < model->Ftd->height; i++ )
|
|
for( j = 0; j < model->Ftd->width; j++ )
|
|
{
|
|
CvBGPixelStat* stat = model->pixel_stat + i * model->Ftd->width + j;
|
|
stat->is_trained_st_model = stat->is_trained_dyn_model = 1;
|
|
}
|
|
}
|
|
|
|
|
|
// Update background model:
|
|
for( i = 0; i < model->Ftd->height; i++ )
|
|
{
|
|
for( j = 0; j < model->Ftd->width; j++ )
|
|
{
|
|
CvBGPixelStat* stat = model->pixel_stat + i * model->Ftd->width + j;
|
|
CvBGPixelCStatTable* ctable = stat->ctable;
|
|
CvBGPixelCCStatTable* cctable = stat->cctable;
|
|
|
|
uchar *curr_data = (uchar*)(curr_frame->imageData)+i*curr_frame->widthStep+j*3;
|
|
uchar *prev_data = (uchar*)(prev_frame->imageData)+i*prev_frame->widthStep+j*3;
|
|
|
|
if( ((uchar*)model->Ftd->imageData)[i*mask_step+j] || !stat->is_trained_dyn_model )
|
|
{
|
|
float alpha = stat->is_trained_dyn_model ? model->params.alpha2 : model->params.alpha3;
|
|
float diff = 0;
|
|
int dist, min_dist = 2147483647, indx = -1;
|
|
|
|
//update Pb
|
|
stat->Pbcc *= (1.f-alpha);
|
|
if( !((uchar*)model->foreground->imageData)[i*mask_step+j] )
|
|
{
|
|
stat->Pbcc += alpha;
|
|
}
|
|
|
|
// Find best Vi match:
|
|
for(k = 0; PV_CC(k) && k < model->params.N2cc; k++ )
|
|
{
|
|
// Exponential decay of memory
|
|
PV_CC(k) *= (1-alpha);
|
|
PVB_CC(k) *= (1-alpha);
|
|
if( PV_CC(k) < MIN_PV )
|
|
{
|
|
PV_CC(k) = 0;
|
|
PVB_CC(k) = 0;
|
|
continue;
|
|
}
|
|
|
|
dist = 0;
|
|
for( l = 0; l < 3; l++ )
|
|
{
|
|
int val = abs( V_CC(k,l) - prev_data[l] );
|
|
if( val > deltaCC ) break;
|
|
dist += val;
|
|
val = abs( V_CC(k,l+3) - curr_data[l] );
|
|
if( val > deltaCC) break;
|
|
dist += val;
|
|
}
|
|
if( l == 3 && dist < min_dist )
|
|
{
|
|
min_dist = dist;
|
|
indx = k;
|
|
}
|
|
}
|
|
|
|
|
|
if( indx < 0 )
|
|
{ // Replace N2th elem in the table by new feature:
|
|
indx = model->params.N2cc - 1;
|
|
PV_CC(indx) = alpha;
|
|
PVB_CC(indx) = alpha;
|
|
//udate Vt
|
|
for( l = 0; l < 3; l++ )
|
|
{
|
|
V_CC(indx,l) = prev_data[l];
|
|
V_CC(indx,l+3) = curr_data[l];
|
|
}
|
|
}
|
|
else
|
|
{ // Update:
|
|
PV_CC(indx) += alpha;
|
|
if( !((uchar*)model->foreground->imageData)[i*mask_step+j] )
|
|
{
|
|
PVB_CC(indx) += alpha;
|
|
}
|
|
}
|
|
|
|
//re-sort CCt table by Pv
|
|
for( k = 0; k < indx; k++ )
|
|
{
|
|
if( PV_CC(k) <= PV_CC(indx) )
|
|
{
|
|
//shift elements
|
|
CvBGPixelCCStatTable tmp1, tmp2 = cctable[indx];
|
|
for( l = k; l <= indx; l++ )
|
|
{
|
|
tmp1 = cctable[l];
|
|
cctable[l] = tmp2;
|
|
tmp2 = tmp1;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
|
|
float sum1=0, sum2=0;
|
|
//check "once-off" changes
|
|
for(k = 0; PV_CC(k) && k < model->params.N1cc; k++ )
|
|
{
|
|
sum1 += PV_CC(k);
|
|
sum2 += PVB_CC(k);
|
|
}
|
|
if( sum1 > model->params.T ) stat->is_trained_dyn_model = 1;
|
|
|
|
diff = sum1 - stat->Pbcc * sum2;
|
|
// Update stat table:
|
|
if( diff > model->params.T )
|
|
{
|
|
//printf("once off change at motion mode\n");
|
|
//new BG features are discovered
|
|
for( k = 0; PV_CC(k) && k < model->params.N1cc; k++ )
|
|
{
|
|
PVB_CC(k) =
|
|
(PV_CC(k)-stat->Pbcc*PVB_CC(k))/(1-stat->Pbcc);
|
|
}
|
|
assert(stat->Pbcc<=1 && stat->Pbcc>=0);
|
|
}
|
|
}
|
|
|
|
// Handle "stationary" pixel:
|
|
if( !((uchar*)model->Ftd->imageData)[i*mask_step+j] )
|
|
{
|
|
float alpha = stat->is_trained_st_model ? model->params.alpha2 : model->params.alpha3;
|
|
float diff = 0;
|
|
int dist, min_dist = 2147483647, indx = -1;
|
|
|
|
//update Pb
|
|
stat->Pbc *= (1.f-alpha);
|
|
if( !((uchar*)model->foreground->imageData)[i*mask_step+j] )
|
|
{
|
|
stat->Pbc += alpha;
|
|
}
|
|
|
|
//find best Vi match
|
|
for( k = 0; k < model->params.N2c; k++ )
|
|
{
|
|
// Exponential decay of memory
|
|
PV_C(k) *= (1-alpha);
|
|
PVB_C(k) *= (1-alpha);
|
|
if( PV_C(k) < MIN_PV )
|
|
{
|
|
PV_C(k) = 0;
|
|
PVB_C(k) = 0;
|
|
continue;
|
|
}
|
|
|
|
dist = 0;
|
|
for( l = 0; l < 3; l++ )
|
|
{
|
|
int val = abs( V_C(k,l) - curr_data[l] );
|
|
if( val > deltaC ) break;
|
|
dist += val;
|
|
}
|
|
if( l == 3 && dist < min_dist )
|
|
{
|
|
min_dist = dist;
|
|
indx = k;
|
|
}
|
|
}
|
|
|
|
if( indx < 0 )
|
|
{//N2th elem in the table is replaced by a new features
|
|
indx = model->params.N2c - 1;
|
|
PV_C(indx) = alpha;
|
|
PVB_C(indx) = alpha;
|
|
//udate Vt
|
|
for( l = 0; l < 3; l++ )
|
|
{
|
|
V_C(indx,l) = curr_data[l];
|
|
}
|
|
} else
|
|
{//update
|
|
PV_C(indx) += alpha;
|
|
if( !((uchar*)model->foreground->imageData)[i*mask_step+j] )
|
|
{
|
|
PVB_C(indx) += alpha;
|
|
}
|
|
}
|
|
|
|
//re-sort Ct table by Pv
|
|
for( k = 0; k < indx; k++ )
|
|
{
|
|
if( PV_C(k) <= PV_C(indx) )
|
|
{
|
|
//shift elements
|
|
CvBGPixelCStatTable tmp1, tmp2 = ctable[indx];
|
|
for( l = k; l <= indx; l++ )
|
|
{
|
|
tmp1 = ctable[l];
|
|
ctable[l] = tmp2;
|
|
tmp2 = tmp1;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Check "once-off" changes:
|
|
float sum1=0, sum2=0;
|
|
for( k = 0; PV_C(k) && k < model->params.N1c; k++ )
|
|
{
|
|
sum1 += PV_C(k);
|
|
sum2 += PVB_C(k);
|
|
}
|
|
diff = sum1 - stat->Pbc * sum2;
|
|
if( sum1 > model->params.T ) stat->is_trained_st_model = 1;
|
|
|
|
// Update stat table:
|
|
if( diff > model->params.T )
|
|
{
|
|
//printf("once off change at stat mode\n");
|
|
//new BG features are discovered
|
|
for( k = 0; PV_C(k) && k < model->params.N1c; k++ )
|
|
{
|
|
PVB_C(k) = (PV_C(k)-stat->Pbc*PVB_C(k))/(1-stat->Pbc);
|
|
}
|
|
stat->Pbc = 1 - stat->Pbc;
|
|
}
|
|
} // if !(change detection) at pixel (i,j)
|
|
|
|
// Update the reference BG image:
|
|
if( !((uchar*)model->foreground->imageData)[i*mask_step+j])
|
|
{
|
|
uchar* ptr = ((uchar*)model->background->imageData) + i*model->background->widthStep+j*3;
|
|
|
|
if( !((uchar*)model->Ftd->imageData)[i*mask_step+j] &&
|
|
!((uchar*)model->Fbd->imageData)[i*mask_step+j] )
|
|
{
|
|
// Apply IIR filter:
|
|
for( l = 0; l < 3; l++ )
|
|
{
|
|
int a = cvRound(ptr[l]*(1 - model->params.alpha1) + model->params.alpha1*curr_data[l]);
|
|
ptr[l] = (uchar)a;
|
|
//((uchar*)model->background->imageData)[i*model->background->widthStep+j*3+l]*=(1 - model->params.alpha1);
|
|
//((uchar*)model->background->imageData)[i*model->background->widthStep+j*3+l] += model->params.alpha1*curr_data[l];
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// Background change detected:
|
|
for( l = 0; l < 3; l++ )
|
|
{
|
|
//((uchar*)model->background->imageData)[i*model->background->widthStep+j*3+l] = curr_data[l];
|
|
ptr[l] = curr_data[l];
|
|
}
|
|
}
|
|
}
|
|
} // j
|
|
} // i
|
|
|
|
// Keep previous frame:
|
|
cvCopy( curr_frame, model->prev_frame );
|
|
|
|
return region_count;
|
|
}
|
|
|
|
/* End of file. */
|