256 lines
		
	
	
		
			9.6 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			256 lines
		
	
	
		
			9.6 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*M///////////////////////////////////////////////////////////////////////////////////////
 | |
| //
 | |
| //  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
 | |
| //
 | |
| //  By downloading, copying, installing or using the software you agree to this license.
 | |
| //  If you do not agree to this license, do not download, install,
 | |
| //  copy or use the software.
 | |
| //
 | |
| //
 | |
| //                           License Agreement
 | |
| //                For Open Source Computer Vision Library
 | |
| //
 | |
| // Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
 | |
| // Copyright (C) 2009, Willow Garage Inc., all rights reserved.
 | |
| // Third party copyrights are property of their respective owners.
 | |
| //
 | |
| // Redistribution and use in source and binary forms, with or without modification,
 | |
| // are permitted provided that the following conditions are met:
 | |
| //
 | |
| //   * Redistribution's of source code must retain the above copyright notice,
 | |
| //     this list of conditions and the following disclaimer.
 | |
| //
 | |
| //   * Redistribution's in binary form must reproduce the above copyright notice,
 | |
| //     this list of conditions and the following disclaimer in the documentation
 | |
| //     and/or other materials provided with the distribution.
 | |
| //
 | |
| //   * The name of the copyright holders may not be used to endorse or promote products
 | |
| //     derived from this software without specific prior written permission.
 | |
| //
 | |
| // This software is provided by the copyright holders and contributors "as is" and
 | |
| // any express or implied warranties, including, but not limited to, the implied
 | |
| // warranties of merchantability and fitness for a particular purpose are disclaimed.
 | |
| // In no event shall the Intel Corporation or contributors be liable for any direct,
 | |
| // indirect, incidental, special, exemplary, or consequential damages
 | |
| // (including, but not limited to, procurement of substitute goods or services;
 | |
| // loss of use, data, or profits; or business interruption) however caused
 | |
| // and on any theory of liability, whether in contract, strict liability,
 | |
| // or tort (including negligence or otherwise) arising in any way out of
 | |
| // the use of this software, even if advised of the possibility of such damage.
 | |
| //
 | |
| //M*/
 | |
| 
 | |
| #include "test_precomp.hpp"
 | |
| #include <time.h>
 | |
| #include <limits>
 | |
| using namespace cv;
 | |
| using namespace std;
 | |
| 
 | |
| #define CORE_COUNTNONZERO_ERROR_COUNT 1
 | |
| 
 | |
| #define MESSAGE_ERROR_COUNT "Count non zero elements returned by OpenCV function is incorrect."
 | |
| 
 | |
| #define sign(a) a > 0 ? 1 : a == 0 ? 0 : -1
 | |
| 
 | |
| const int FLOAT_TYPE [2] = {CV_32F, CV_64F};
 | |
| const int INT_TYPE [5] = {CV_8U, CV_8S, CV_16U, CV_16S, CV_32S};
 | |
| 
 | |
| #define MAX_WIDTH 100
 | |
| #define MAX_HEIGHT 100
 | |
| 
 | |
| class CV_CountNonZeroTest: public cvtest::BaseTest
 | |
| {
 | |
| public:
 | |
|     CV_CountNonZeroTest();
 | |
|     ~CV_CountNonZeroTest();
 | |
| 
 | |
| protected:
 | |
|     void run (int);
 | |
| 
 | |
| private:
 | |
|     float eps_32;
 | |
|     double eps_64;
 | |
|     Mat src;
 | |
|     int current_type;
 | |
| 
 | |
|     void generate_src_data(cv::Size size, int type);
 | |
|     void generate_src_data(cv::Size size, int type, int count_non_zero);
 | |
|     void generate_src_stat_data(cv::Size size, int type, int distribution);
 | |
| 
 | |
|     int get_count_non_zero();
 | |
| 
 | |
|     void print_information(int right, int result);
 | |
| };
 | |
| 
 | |
| CV_CountNonZeroTest::CV_CountNonZeroTest(): eps_32(std::numeric_limits<float>::min()), eps_64(std::numeric_limits<double>::min()), src(Mat()), current_type(-1) {}
 | |
| CV_CountNonZeroTest::~CV_CountNonZeroTest() {}
 | |
| 
 | |
| void CV_CountNonZeroTest::generate_src_data(cv::Size size, int type)
 | |
| {
 | |
|     src.create(size, CV_MAKETYPE(type, 1));
 | |
| 
 | |
|     for (int j = 0; j < size.width; ++j)
 | |
|         for (int i = 0; i < size.height; ++i)
 | |
|             switch (type)
 | |
|             {
 | |
|             case CV_8U: { src.at<uchar>(i, j) = cv::randu<uchar>(); break; }
 | |
|             case CV_8S: { src.at<char>(i, j) = cv::randu<uchar>() - 128; break; }
 | |
|             case CV_16U: { src.at<ushort>(i, j) = cv::randu<ushort>(); break; }
 | |
|             case CV_16S: { src.at<short>(i, j) = cv::randu<short>(); break; }
 | |
|             case CV_32S: { src.at<int>(i, j) = cv::randu<int>(); break; }
 | |
|             case CV_32F: { src.at<float>(i, j) = cv::randu<float>(); break; }
 | |
|             case CV_64F: { src.at<double>(i, j) = cv::randu<double>(); break; }
 | |
|             default: break;
 | |
|             }
 | |
| }
 | |
| 
 | |
| void CV_CountNonZeroTest::generate_src_data(cv::Size size, int type, int count_non_zero)
 | |
| {
 | |
|     src = Mat::zeros(size, CV_MAKETYPE(type, 1));
 | |
| 
 | |
|     int n = 0; RNG& rng = ts->get_rng();
 | |
| 
 | |
|     while (n < count_non_zero)
 | |
|     {
 | |
|         int i = rng.next()%size.height, j = rng.next()%size.width;
 | |
| 
 | |
|         switch (type)
 | |
|         {
 | |
|         case CV_8U: { if (!src.at<uchar>(i, j)) {src.at<uchar>(i, j) = cv::randu<uchar>(); n += (src.at<uchar>(i, j) > 0);} break; }
 | |
|         case CV_8S: { if (!src.at<char>(i, j)) {src.at<char>(i, j) = cv::randu<uchar>() - 128; n += abs(sign(src.at<char>(i, j)));} break; }
 | |
|         case CV_16U: { if (!src.at<ushort>(i, j)) {src.at<ushort>(i, j) = cv::randu<ushort>(); n += (src.at<ushort>(i, j) > 0);} break; }
 | |
|         case CV_16S: { if (!src.at<short>(i, j)) {src.at<short>(i, j) = cv::randu<short>(); n += abs(sign(src.at<short>(i, j)));} break; }
 | |
|         case CV_32S: { if (!src.at<int>(i, j)) {src.at<int>(i, j) = cv::randu<int>(); n += abs(sign(src.at<int>(i, j)));} break; }
 | |
|         case CV_32F: { if (fabs(src.at<float>(i, j)) <= eps_32) {src.at<float>(i, j) = cv::randu<float>(); n += (fabs(src.at<float>(i, j)) > eps_32);} break; }
 | |
|         case CV_64F: { if (fabs(src.at<double>(i, j)) <= eps_64) {src.at<double>(i, j) = cv::randu<double>(); n += (fabs(src.at<double>(i, j)) > eps_64);} break; }
 | |
| 
 | |
|         default: break;
 | |
|         }
 | |
|     }
 | |
| 
 | |
| }
 | |
| 
 | |
| void CV_CountNonZeroTest::generate_src_stat_data(cv::Size size, int type, int distribution)
 | |
| {
 | |
|     src.create(size, CV_MAKETYPE(type, 1));
 | |
| 
 | |
|     double mean = 0.0, sigma = 1.0;
 | |
|     double left = -1.0, right = 1.0;
 | |
| 
 | |
|     RNG& rng = ts->get_rng();
 | |
| 
 | |
|     if (distribution == RNG::NORMAL)
 | |
|         rng.fill(src, RNG::NORMAL, Scalar::all(mean), Scalar::all(sigma));
 | |
|     else if (distribution == RNG::UNIFORM)
 | |
|         rng.fill(src, RNG::UNIFORM, Scalar::all(left), Scalar::all(right));
 | |
| }
 | |
| 
 | |
| int CV_CountNonZeroTest::get_count_non_zero()
 | |
| {
 | |
|     int result = 0;
 | |
| 
 | |
|     for (int i = 0; i < src.rows; ++i)
 | |
|         for (int j = 0; j < src.cols; ++j)
 | |
|         {
 | |
|             if (current_type == CV_8U) result += (src.at<uchar>(i, j) > 0);
 | |
|             else if (current_type == CV_8S) result += abs(sign(src.at<char>(i, j)));
 | |
|             else if (current_type == CV_16U) result += (src.at<ushort>(i, j) > 0);
 | |
|             else if (current_type == CV_16S) result += abs(sign(src.at<short>(i, j)));
 | |
|             else if (current_type == CV_32S) result += abs(sign(src.at<int>(i, j)));
 | |
|             else if (current_type == CV_32F) result += (fabs(src.at<float>(i, j)) > eps_32);
 | |
|             else result += (fabs(src.at<double>(i, j)) > eps_64);
 | |
|         }
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| void CV_CountNonZeroTest::print_information(int right, int result)
 | |
| {
 | |
|     cout << endl; cout << "Checking for the work of countNonZero function..." << endl; cout << endl;
 | |
|     cout << "Type of Mat: ";
 | |
|     switch (current_type)
 | |
|     {
 | |
|     case 0: {cout << "CV_8U"; break;}
 | |
|     case 1: {cout << "CV_8S"; break;}
 | |
|     case 2: {cout << "CV_16U"; break;}
 | |
|     case 3: {cout << "CV_16S"; break;}
 | |
|     case 4: {cout << "CV_32S"; break;}
 | |
|     case 5: {cout << "CV_32F"; break;}
 | |
|     case 6: {cout << "CV_64F"; break;}
 | |
|     default: break;
 | |
|     }
 | |
|     cout << endl;
 | |
|     cout << "Number of rows: " << src.rows << "   Number of cols: " << src.cols << endl;
 | |
|     cout << "True count non zero elements: " << right << "   Result: " << result << endl;
 | |
|     cout << endl;
 | |
| }
 | |
| 
 | |
| void CV_CountNonZeroTest::run(int)
 | |
| {
 | |
|     const size_t N = 1500;
 | |
| 
 | |
|     for (int k = 1; k <= 3; ++k)
 | |
|         for (size_t i = 0; i < N; ++i)
 | |
|         {
 | |
|         RNG& rng = ts->get_rng();
 | |
| 
 | |
|         int w = rng.next()%MAX_WIDTH + 1, h = rng.next()%MAX_HEIGHT + 1;
 | |
| 
 | |
|         current_type = rng.next()%7;
 | |
| 
 | |
|         switch (k)
 | |
|         {
 | |
|         case 1: {
 | |
|                 generate_src_data(Size(w, h), current_type);
 | |
|                 int right = get_count_non_zero(), result = countNonZero(src);
 | |
|                 if (result != right)
 | |
|                 {
 | |
|                     cout << "Number of experiment: " << i << endl;
 | |
|                     cout << "Method of data generation: RANDOM" << endl;
 | |
|                     print_information(right, result);
 | |
|                     CV_Error(CORE_COUNTNONZERO_ERROR_COUNT, MESSAGE_ERROR_COUNT);
 | |
|                     return;
 | |
|                 }
 | |
| 
 | |
|                 break;
 | |
|             }
 | |
| 
 | |
|         case 2: {
 | |
|                 int count_non_zero = rng.next()%(w*h);
 | |
|                 generate_src_data(Size(w, h), current_type, count_non_zero);
 | |
|                 int result = countNonZero(src);
 | |
|                 if (result != count_non_zero)
 | |
|                 {
 | |
|                     cout << "Number of experiment: " << i << endl;
 | |
|                     cout << "Method of data generation: HALF-RANDOM" << endl;
 | |
|                     print_information(count_non_zero, result);
 | |
|                     CV_Error(CORE_COUNTNONZERO_ERROR_COUNT, MESSAGE_ERROR_COUNT);
 | |
|                     return;
 | |
|                 }
 | |
| 
 | |
|                 break;
 | |
|             }
 | |
| 
 | |
|         case 3: {
 | |
|                 int distribution = cv::randu<uchar>()%2;
 | |
|                 generate_src_stat_data(Size(w, h), current_type, distribution);
 | |
|                 int right = get_count_non_zero(), result = countNonZero(src);
 | |
|                 if (right != result)
 | |
|                 {
 | |
|                     cout << "Number of experiment: " << i << endl;
 | |
|                     cout << "Method of data generation: STATISTIC" << endl;
 | |
|                     print_information(right, result);
 | |
|                     CV_Error(CORE_COUNTNONZERO_ERROR_COUNT, MESSAGE_ERROR_COUNT);
 | |
|                     return;
 | |
|                 }
 | |
| 
 | |
|                 break;
 | |
|             }
 | |
| 
 | |
|         default: break;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| TEST (Core_CountNonZero, accuracy) { CV_CountNonZeroTest test; test.safe_run(); }
 | 
