222 lines
		
	
	
		
			8.2 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			222 lines
		
	
	
		
			8.2 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
/*M///////////////////////////////////////////////////////////////////////////////////////
 | 
						|
//
 | 
						|
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
 | 
						|
//
 | 
						|
//  By downloading, copying, installing or using the software you agree to this license.
 | 
						|
//  If you do not agree to this license, do not download, install,
 | 
						|
//  copy or use the software.
 | 
						|
//
 | 
						|
//
 | 
						|
//                           License Agreement
 | 
						|
//                For Open Source Computer Vision Library
 | 
						|
//
 | 
						|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
 | 
						|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
 | 
						|
// Copyright (C) 2014, Itseez, Inc, all rights reserved.
 | 
						|
// Third party copyrights are property of their respective owners.
 | 
						|
//
 | 
						|
// Redistribution and use in source and binary forms, with or without modification,
 | 
						|
// are permitted provided that the following conditions are met:
 | 
						|
//
 | 
						|
//   * Redistribution's of source code must retain the above copyright notice,
 | 
						|
//     this list of conditions and the following disclaimer.
 | 
						|
//
 | 
						|
//   * Redistribution's in binary form must reproduce the above copyright notice,
 | 
						|
//     this list of conditions and the following disclaimer in the documentation
 | 
						|
//     and/or other materials provided with the distribution.
 | 
						|
//
 | 
						|
//   * The name of the copyright holders may not be used to endorse or promote products
 | 
						|
//     derived from this software without specific prior written permission.
 | 
						|
//
 | 
						|
// This software is provided by the copyright holders and contributors "as is" and
 | 
						|
// any express or implied warranties, including, but not limited to, the implied
 | 
						|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
 | 
						|
// In no event shall the Intel Corporation or contributors be liable for any direct,
 | 
						|
// indirect, incidental, special, exemplary, or consequential damages
 | 
						|
// (including, but not limited to, procurement of substitute goods or services;
 | 
						|
// loss of use, data, or profits; or business interruption) however caused
 | 
						|
// and on any theory of liability, whether in contract, strict liability,
 | 
						|
// or tort (including negligence or otherwise) arising in any way out of
 | 
						|
// the use of this software, even if advised of the possibility of such damage.
 | 
						|
//
 | 
						|
//M*/
 | 
						|
 | 
						|
#include "test_precomp.hpp"
 | 
						|
 | 
						|
using namespace cv;
 | 
						|
using namespace std;
 | 
						|
 | 
						|
template<typename T>
 | 
						|
struct SimilarWith
 | 
						|
{
 | 
						|
    T value;
 | 
						|
    float theta_eps;
 | 
						|
    float rho_eps;
 | 
						|
    SimilarWith<T>(T val, float e, float r_e): value(val), theta_eps(e), rho_eps(r_e) { };
 | 
						|
    bool operator()(T other);
 | 
						|
};
 | 
						|
 | 
						|
template<>
 | 
						|
bool SimilarWith<Vec2f>::operator()(Vec2f other)
 | 
						|
{
 | 
						|
    return abs(other[0] - value[0]) < rho_eps && abs(other[1] - value[1]) < theta_eps;
 | 
						|
}
 | 
						|
 | 
						|
template<>
 | 
						|
bool SimilarWith<Vec4i>::operator()(Vec4i other)
 | 
						|
{
 | 
						|
    return norm(value, other) < theta_eps;
 | 
						|
}
 | 
						|
 | 
						|
template <typename T>
 | 
						|
int countMatIntersection(Mat expect, Mat actual, float eps, float rho_eps)
 | 
						|
{
 | 
						|
    int count = 0;
 | 
						|
    if (!expect.empty() && !actual.empty())
 | 
						|
    {
 | 
						|
        for (MatIterator_<T> it=expect.begin<T>(); it!=expect.end<T>(); it++)
 | 
						|
        {
 | 
						|
            MatIterator_<T> f = std::find_if(actual.begin<T>(), actual.end<T>(), SimilarWith<T>(*it, eps, rho_eps));
 | 
						|
            if (f != actual.end<T>())
 | 
						|
                count++;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    return count;
 | 
						|
}
 | 
						|
 | 
						|
String getTestCaseName(String filename)
 | 
						|
{
 | 
						|
    string temp(filename);
 | 
						|
    size_t pos = temp.find_first_of("\\/.");
 | 
						|
    while ( pos != string::npos ) {
 | 
						|
       temp.replace( pos, 1, "_" );
 | 
						|
       pos = temp.find_first_of("\\/.");
 | 
						|
    }
 | 
						|
    return String(temp);
 | 
						|
}
 | 
						|
 | 
						|
class BaseHoughLineTest
 | 
						|
{
 | 
						|
public:
 | 
						|
    enum {STANDART = 0, PROBABILISTIC};
 | 
						|
protected:
 | 
						|
    void run_test(int type);
 | 
						|
 | 
						|
    string picture_name;
 | 
						|
    double rhoStep;
 | 
						|
    double thetaStep;
 | 
						|
    int threshold;
 | 
						|
    int minLineLength;
 | 
						|
    int maxGap;
 | 
						|
};
 | 
						|
 | 
						|
typedef std::tr1::tuple<string, double, double, int> Image_RhoStep_ThetaStep_Threshold_t;
 | 
						|
class StandartHoughLinesTest : public BaseHoughLineTest, public testing::TestWithParam<Image_RhoStep_ThetaStep_Threshold_t>
 | 
						|
{
 | 
						|
public:
 | 
						|
    StandartHoughLinesTest()
 | 
						|
    {
 | 
						|
        picture_name = std::tr1::get<0>(GetParam());
 | 
						|
        rhoStep = std::tr1::get<1>(GetParam());
 | 
						|
        thetaStep = std::tr1::get<2>(GetParam());
 | 
						|
        threshold = std::tr1::get<3>(GetParam());
 | 
						|
        minLineLength = 0;
 | 
						|
        maxGap = 0;
 | 
						|
    }
 | 
						|
};
 | 
						|
 | 
						|
typedef std::tr1::tuple<string, double, double, int, int, int> Image_RhoStep_ThetaStep_Threshold_MinLine_MaxGap_t;
 | 
						|
class ProbabilisticHoughLinesTest : public BaseHoughLineTest, public testing::TestWithParam<Image_RhoStep_ThetaStep_Threshold_MinLine_MaxGap_t>
 | 
						|
{
 | 
						|
public:
 | 
						|
    ProbabilisticHoughLinesTest()
 | 
						|
    {
 | 
						|
        picture_name = std::tr1::get<0>(GetParam());
 | 
						|
        rhoStep = std::tr1::get<1>(GetParam());
 | 
						|
        thetaStep = std::tr1::get<2>(GetParam());
 | 
						|
        threshold = std::tr1::get<3>(GetParam());
 | 
						|
        minLineLength = std::tr1::get<4>(GetParam());
 | 
						|
        maxGap = std::tr1::get<5>(GetParam());
 | 
						|
    }
 | 
						|
};
 | 
						|
 | 
						|
void BaseHoughLineTest::run_test(int type)
 | 
						|
{
 | 
						|
    string filename = cvtest::TS::ptr()->get_data_path() + picture_name;
 | 
						|
    Mat src = imread(filename, IMREAD_GRAYSCALE);
 | 
						|
    EXPECT_FALSE(src.empty()) << "Invalid test image: " << filename;
 | 
						|
 | 
						|
    string xml;
 | 
						|
    if (type == STANDART)
 | 
						|
        xml = string(cvtest::TS::ptr()->get_data_path()) + "imgproc/HoughLines.xml";
 | 
						|
    else if (type == PROBABILISTIC)
 | 
						|
        xml = string(cvtest::TS::ptr()->get_data_path()) + "imgproc/HoughLinesP.xml";
 | 
						|
 | 
						|
    Mat dst;
 | 
						|
    Canny(src, dst, 100, 150, 3);
 | 
						|
    EXPECT_FALSE(dst.empty()) << "Failed Canny edge detector";
 | 
						|
 | 
						|
    Mat lines;
 | 
						|
    if (type == STANDART)
 | 
						|
        HoughLines(dst, lines, rhoStep, thetaStep, threshold, 0, 0);
 | 
						|
    else if (type == PROBABILISTIC)
 | 
						|
        HoughLinesP(dst, lines, rhoStep, thetaStep, threshold, minLineLength, maxGap);
 | 
						|
 | 
						|
    String test_case_name = format("lines_%s_%.0f_%.2f_%d_%d_%d", picture_name.c_str(), rhoStep, thetaStep,
 | 
						|
                                    threshold, minLineLength, maxGap);
 | 
						|
    test_case_name = getTestCaseName(test_case_name);
 | 
						|
 | 
						|
    FileStorage fs(xml, FileStorage::READ);
 | 
						|
    FileNode node = fs[test_case_name];
 | 
						|
    if (node.empty())
 | 
						|
    {
 | 
						|
        fs.release();
 | 
						|
        fs.open(xml, FileStorage::APPEND);
 | 
						|
        EXPECT_TRUE(fs.isOpened()) << "Cannot open sanity data file: " << xml;
 | 
						|
        fs << test_case_name << lines;
 | 
						|
        fs.release();
 | 
						|
        fs.open(xml, FileStorage::READ);
 | 
						|
        EXPECT_TRUE(fs.isOpened()) << "Cannot open sanity data file: " << xml;
 | 
						|
    }
 | 
						|
 | 
						|
    Mat exp_lines;
 | 
						|
    read( fs[test_case_name], exp_lines, Mat() );
 | 
						|
    fs.release();
 | 
						|
 | 
						|
    int count = -1;
 | 
						|
    if (type == STANDART)
 | 
						|
        count = countMatIntersection<Vec2f>(exp_lines, lines, (float) thetaStep + FLT_EPSILON, (float) rhoStep + FLT_EPSILON);
 | 
						|
    else if (type == PROBABILISTIC)
 | 
						|
        count = countMatIntersection<Vec4i>(exp_lines, lines, 1e-4f, 0.f);
 | 
						|
 | 
						|
#if (0 && defined(HAVE_IPP) && !defined(HAVE_IPP_ICV_ONLY) && IPP_VERSION_X100 >= 801)
 | 
						|
    EXPECT_GE( count, (int) (exp_lines.total() * 0.8) );
 | 
						|
#else
 | 
						|
    EXPECT_EQ( count, (int) exp_lines.total());
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
TEST_P(StandartHoughLinesTest, regression)
 | 
						|
{
 | 
						|
    run_test(STANDART);
 | 
						|
}
 | 
						|
 | 
						|
TEST_P(ProbabilisticHoughLinesTest, regression)
 | 
						|
{
 | 
						|
    run_test(PROBABILISTIC);
 | 
						|
}
 | 
						|
 | 
						|
INSTANTIATE_TEST_CASE_P( ImgProc, StandartHoughLinesTest, testing::Combine(testing::Values( "shared/pic5.png", "../stitching/a1.png" ),
 | 
						|
                                                                           testing::Values( 1, 10 ),
 | 
						|
                                                                           testing::Values( 0.05, 0.1 ),
 | 
						|
                                                                           testing::Values( 80, 150 )
 | 
						|
                                                                           ));
 | 
						|
 | 
						|
INSTANTIATE_TEST_CASE_P( ImgProc, ProbabilisticHoughLinesTest, testing::Combine(testing::Values( "shared/pic5.png", "shared/pic1.png" ),
 | 
						|
                                                                                testing::Values( 5, 10 ),
 | 
						|
                                                                                testing::Values( 0.05, 0.1 ),
 | 
						|
                                                                                testing::Values( 75, 150 ),
 | 
						|
                                                                                testing::Values( 0, 10 ),
 | 
						|
                                                                                testing::Values( 0, 4 )
 | 
						|
                                                                                ));
 |