1087 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1087 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
///////////////////////////////////////////////////////////////////////////
 | 
						|
//
 | 
						|
// Copyright (c) 2002, Industrial Light & Magic, a division of Lucas
 | 
						|
// Digital Ltd. LLC
 | 
						|
//
 | 
						|
// All rights reserved.
 | 
						|
//
 | 
						|
// Redistribution and use in source and binary forms, with or without
 | 
						|
// modification, are permitted provided that the following conditions are
 | 
						|
// met:
 | 
						|
// *       Redistributions of source code must retain the above copyright
 | 
						|
// notice, this list of conditions and the following disclaimer.
 | 
						|
// *       Redistributions in binary form must reproduce the above
 | 
						|
// copyright notice, this list of conditions and the following disclaimer
 | 
						|
// in the documentation and/or other materials provided with the
 | 
						|
// distribution.
 | 
						|
// *       Neither the name of Industrial Light & Magic nor the names of
 | 
						|
// its contributors may be used to endorse or promote products derived
 | 
						|
// from this software without specific prior written permission.
 | 
						|
//
 | 
						|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 | 
						|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 | 
						|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 | 
						|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 | 
						|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 | 
						|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 | 
						|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 | 
						|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 | 
						|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 | 
						|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 | 
						|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 | 
						|
//
 | 
						|
///////////////////////////////////////////////////////////////////////////
 | 
						|
 | 
						|
 | 
						|
 | 
						|
 | 
						|
//-----------------------------------------------------------------------------
 | 
						|
//
 | 
						|
//	16-bit Huffman compression and decompression.
 | 
						|
//
 | 
						|
//	The source code in this file is derived from the 8-bit
 | 
						|
//	Huffman compression and decompression routines written
 | 
						|
//	by Christian Rouet for his PIZ image file format.
 | 
						|
//
 | 
						|
//-----------------------------------------------------------------------------
 | 
						|
 | 
						|
#include <ImfHuf.h>
 | 
						|
#include <ImfInt64.h>
 | 
						|
#include <ImfAutoArray.h>
 | 
						|
#include "Iex.h"
 | 
						|
#include <string.h>
 | 
						|
#include <assert.h>
 | 
						|
#include <algorithm>
 | 
						|
 | 
						|
 | 
						|
using namespace std;
 | 
						|
using namespace Iex;
 | 
						|
 | 
						|
namespace Imf {
 | 
						|
namespace {
 | 
						|
 | 
						|
 | 
						|
const int HUF_ENCBITS = 16;			// literal (value) bit length
 | 
						|
const int HUF_DECBITS = 14;			// decoding bit size (>= 8)
 | 
						|
 | 
						|
const int HUF_ENCSIZE = (1 << HUF_ENCBITS) + 1;	// encoding table size
 | 
						|
const int HUF_DECSIZE =  1 << HUF_DECBITS;	// decoding table size
 | 
						|
const int HUF_DECMASK = HUF_DECSIZE - 1;
 | 
						|
 | 
						|
 | 
						|
struct HufDec
 | 
						|
{				// short code		long code
 | 
						|
                //-------------------------------
 | 
						|
    int		len:8;		// code length		0
 | 
						|
    int		lit:24;		// lit			p size
 | 
						|
    int	*	p;		// 0			lits
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
void
 | 
						|
invalidNBits ()
 | 
						|
{
 | 
						|
    throw InputExc ("Error in header for Huffman-encoded data "
 | 
						|
            "(invalid number of bits).");
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void
 | 
						|
tooMuchData ()
 | 
						|
{
 | 
						|
    throw InputExc ("Error in Huffman-encoded data "
 | 
						|
            "(decoded data are longer than expected).");
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void
 | 
						|
notEnoughData ()
 | 
						|
{
 | 
						|
    throw InputExc ("Error in Huffman-encoded data "
 | 
						|
            "(decoded data are shorter than expected).");
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void
 | 
						|
invalidCode ()
 | 
						|
{
 | 
						|
    throw InputExc ("Error in Huffman-encoded data "
 | 
						|
            "(invalid code).");
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void
 | 
						|
invalidTableSize ()
 | 
						|
{
 | 
						|
    throw InputExc ("Error in Huffman-encoded data "
 | 
						|
            "(invalid code table size).");
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void
 | 
						|
unexpectedEndOfTable ()
 | 
						|
{
 | 
						|
    throw InputExc ("Error in Huffman-encoded data "
 | 
						|
            "(unexpected end of code table data).");
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void
 | 
						|
tableTooLong ()
 | 
						|
{
 | 
						|
    throw InputExc ("Error in Huffman-encoded data "
 | 
						|
            "(code table is longer than expected).");
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void
 | 
						|
invalidTableEntry ()
 | 
						|
{
 | 
						|
    throw InputExc ("Error in Huffman-encoded data "
 | 
						|
            "(invalid code table entry).");
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
inline Int64
 | 
						|
hufLength (Int64 code)
 | 
						|
{
 | 
						|
    return code & 63;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
inline Int64
 | 
						|
hufCode (Int64 code)
 | 
						|
{
 | 
						|
    return code >> 6;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
inline void
 | 
						|
outputBits (int nBits, Int64 bits, Int64 &c, int &lc, char *&out)
 | 
						|
{
 | 
						|
    c <<= nBits;
 | 
						|
    lc += nBits;
 | 
						|
 | 
						|
    c |= bits;
 | 
						|
 | 
						|
    while (lc >= 8)
 | 
						|
    *out++ = (c >> (lc -= 8));
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
inline Int64
 | 
						|
getBits (int nBits, Int64 &c, int &lc, const char *&in)
 | 
						|
{
 | 
						|
    while (lc < nBits)
 | 
						|
    {
 | 
						|
    c = (c << 8) | *(unsigned char *)(in++);
 | 
						|
    lc += 8;
 | 
						|
    }
 | 
						|
 | 
						|
    lc -= nBits;
 | 
						|
    return (c >> lc) & ((1 << nBits) - 1);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
//
 | 
						|
// ENCODING TABLE BUILDING & (UN)PACKING
 | 
						|
//
 | 
						|
 | 
						|
//
 | 
						|
// Build a "canonical" Huffman code table:
 | 
						|
//	- for each (uncompressed) symbol, hcode contains the length
 | 
						|
//	  of the corresponding code (in the compressed data)
 | 
						|
//	- canonical codes are computed and stored in hcode
 | 
						|
//	- the rules for constructing canonical codes are as follows:
 | 
						|
//	  * shorter codes (if filled with zeroes to the right)
 | 
						|
//	    have a numerically higher value than longer codes
 | 
						|
//	  * for codes with the same length, numerical values
 | 
						|
//	    increase with numerical symbol values
 | 
						|
//	- because the canonical code table can be constructed from
 | 
						|
//	  symbol lengths alone, the code table can be transmitted
 | 
						|
//	  without sending the actual code values
 | 
						|
//	- see http://www.compressconsult.com/huffman/
 | 
						|
//
 | 
						|
 | 
						|
void
 | 
						|
hufCanonicalCodeTable (Int64 hcode[HUF_ENCSIZE])
 | 
						|
{
 | 
						|
    Int64 n[59];
 | 
						|
 | 
						|
    //
 | 
						|
    // For each i from 0 through 58, count the
 | 
						|
    // number of different codes of length i, and
 | 
						|
    // store the count in n[i].
 | 
						|
    //
 | 
						|
 | 
						|
    for (int i = 0; i <= 58; ++i)
 | 
						|
    n[i] = 0;
 | 
						|
 | 
						|
    for (int i = 0; i < HUF_ENCSIZE; ++i)
 | 
						|
    n[hcode[i]] += 1;
 | 
						|
 | 
						|
    //
 | 
						|
    // For each i from 58 through 1, compute the
 | 
						|
    // numerically lowest code with length i, and
 | 
						|
    // store that code in n[i].
 | 
						|
    //
 | 
						|
 | 
						|
    Int64 c = 0;
 | 
						|
 | 
						|
    for (int i = 58; i > 0; --i)
 | 
						|
    {
 | 
						|
    Int64 nc = ((c + n[i]) >> 1);
 | 
						|
    n[i] = c;
 | 
						|
    c = nc;
 | 
						|
    }
 | 
						|
 | 
						|
    //
 | 
						|
    // hcode[i] contains the length, l, of the
 | 
						|
    // code for symbol i.  Assign the next available
 | 
						|
    // code of length l to the symbol and store both
 | 
						|
    // l and the code in hcode[i].
 | 
						|
    //
 | 
						|
 | 
						|
    for (int i = 0; i < HUF_ENCSIZE; ++i)
 | 
						|
    {
 | 
						|
    int l = hcode[i];
 | 
						|
 | 
						|
    if (l > 0)
 | 
						|
        hcode[i] = l | (n[l]++ << 6);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
//
 | 
						|
// Compute Huffman codes (based on frq input) and store them in frq:
 | 
						|
//	- code structure is : [63:lsb - 6:msb] | [5-0: bit length];
 | 
						|
//	- max code length is 58 bits;
 | 
						|
//	- codes outside the range [im-iM] have a null length (unused values);
 | 
						|
//	- original frequencies are destroyed;
 | 
						|
//	- encoding tables are used by hufEncode() and hufBuildDecTable();
 | 
						|
//
 | 
						|
 | 
						|
 | 
						|
struct FHeapCompare
 | 
						|
{
 | 
						|
    bool operator () (Int64 *a, Int64 *b) {return *a > *b;}
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
void
 | 
						|
hufBuildEncTable
 | 
						|
    (Int64*	frq,	// io: input frequencies [HUF_ENCSIZE], output table
 | 
						|
     int*	im,	//  o: min frq index
 | 
						|
     int*	iM)	//  o: max frq index
 | 
						|
{
 | 
						|
    //
 | 
						|
    // This function assumes that when it is called, array frq
 | 
						|
    // indicates the frequency of all possible symbols in the data
 | 
						|
    // that are to be Huffman-encoded.  (frq[i] contains the number
 | 
						|
    // of occurrences of symbol i in the data.)
 | 
						|
    //
 | 
						|
    // The loop below does three things:
 | 
						|
    //
 | 
						|
    // 1) Finds the minimum and maximum indices that point
 | 
						|
    //    to non-zero entries in frq:
 | 
						|
    //
 | 
						|
    //     frq[im] != 0, and frq[i] == 0 for all i < im
 | 
						|
    //     frq[iM] != 0, and frq[i] == 0 for all i > iM
 | 
						|
    //
 | 
						|
    // 2) Fills array fHeap with pointers to all non-zero
 | 
						|
    //    entries in frq.
 | 
						|
    //
 | 
						|
    // 3) Initializes array hlink such that hlink[i] == i
 | 
						|
    //    for all array entries.
 | 
						|
    //
 | 
						|
 | 
						|
    AutoArray <int, HUF_ENCSIZE> hlink;
 | 
						|
    AutoArray <Int64 *, HUF_ENCSIZE> fHeap;
 | 
						|
 | 
						|
    *im = 0;
 | 
						|
 | 
						|
    while (!frq[*im])
 | 
						|
    (*im)++;
 | 
						|
 | 
						|
    int nf = 0;
 | 
						|
 | 
						|
    for (int i = *im; i < HUF_ENCSIZE; i++)
 | 
						|
    {
 | 
						|
    hlink[i] = i;
 | 
						|
 | 
						|
    if (frq[i])
 | 
						|
    {
 | 
						|
        fHeap[nf] = &frq[i];
 | 
						|
        nf++;
 | 
						|
        *iM = i;
 | 
						|
    }
 | 
						|
    }
 | 
						|
 | 
						|
    //
 | 
						|
    // Add a pseudo-symbol, with a frequency count of 1, to frq;
 | 
						|
    // adjust the fHeap and hlink array accordingly.  Function
 | 
						|
    // hufEncode() uses the pseudo-symbol for run-length encoding.
 | 
						|
    //
 | 
						|
 | 
						|
    (*iM)++;
 | 
						|
    frq[*iM] = 1;
 | 
						|
    fHeap[nf] = &frq[*iM];
 | 
						|
    nf++;
 | 
						|
 | 
						|
    //
 | 
						|
    // Build an array, scode, such that scode[i] contains the number
 | 
						|
    // of bits assigned to symbol i.  Conceptually this is done by
 | 
						|
    // constructing a tree whose leaves are the symbols with non-zero
 | 
						|
    // frequency:
 | 
						|
    //
 | 
						|
    //     Make a heap that contains all symbols with a non-zero frequency,
 | 
						|
    //     with the least frequent symbol on top.
 | 
						|
    //
 | 
						|
    //     Repeat until only one symbol is left on the heap:
 | 
						|
    //
 | 
						|
    //         Take the two least frequent symbols off the top of the heap.
 | 
						|
    //         Create a new node that has first two nodes as children, and
 | 
						|
    //         whose frequency is the sum of the frequencies of the first
 | 
						|
    //         two nodes.  Put the new node back into the heap.
 | 
						|
    //
 | 
						|
    // The last node left on the heap is the root of the tree.  For each
 | 
						|
    // leaf node, the distance between the root and the leaf is the length
 | 
						|
    // of the code for the corresponding symbol.
 | 
						|
    //
 | 
						|
    // The loop below doesn't actually build the tree; instead we compute
 | 
						|
    // the distances of the leaves from the root on the fly.  When a new
 | 
						|
    // node is added to the heap, then that node's descendants are linked
 | 
						|
    // into a single linear list that starts at the new node, and the code
 | 
						|
    // lengths of the descendants (that is, their distance from the root
 | 
						|
    // of the tree) are incremented by one.
 | 
						|
    //
 | 
						|
 | 
						|
    make_heap (&fHeap[0], &fHeap[nf], FHeapCompare());
 | 
						|
 | 
						|
    AutoArray <Int64, HUF_ENCSIZE> scode;
 | 
						|
    memset (scode, 0, sizeof (Int64) * HUF_ENCSIZE);
 | 
						|
 | 
						|
    while (nf > 1)
 | 
						|
    {
 | 
						|
    //
 | 
						|
    // Find the indices, mm and m, of the two smallest non-zero frq
 | 
						|
    // values in fHeap, add the smallest frq to the second-smallest
 | 
						|
    // frq, and remove the smallest frq value from fHeap.
 | 
						|
    //
 | 
						|
 | 
						|
    int mm = fHeap[0] - frq;
 | 
						|
    pop_heap (&fHeap[0], &fHeap[nf], FHeapCompare());
 | 
						|
    --nf;
 | 
						|
 | 
						|
    int m = fHeap[0] - frq;
 | 
						|
    pop_heap (&fHeap[0], &fHeap[nf], FHeapCompare());
 | 
						|
 | 
						|
    frq[m ] += frq[mm];
 | 
						|
    push_heap (&fHeap[0], &fHeap[nf], FHeapCompare());
 | 
						|
 | 
						|
    //
 | 
						|
    // The entries in scode are linked into lists with the
 | 
						|
    // entries in hlink serving as "next" pointers and with
 | 
						|
    // the end of a list marked by hlink[j] == j.
 | 
						|
    //
 | 
						|
    // Traverse the lists that start at scode[m] and scode[mm].
 | 
						|
    // For each element visited, increment the length of the
 | 
						|
    // corresponding code by one bit. (If we visit scode[j]
 | 
						|
    // during the traversal, then the code for symbol j becomes
 | 
						|
    // one bit longer.)
 | 
						|
    //
 | 
						|
    // Merge the lists that start at scode[m] and scode[mm]
 | 
						|
    // into a single list that starts at scode[m].
 | 
						|
    //
 | 
						|
 | 
						|
    //
 | 
						|
    // Add a bit to all codes in the first list.
 | 
						|
    //
 | 
						|
 | 
						|
    for (int j = m; true; j = hlink[j])
 | 
						|
    {
 | 
						|
        scode[j]++;
 | 
						|
 | 
						|
        assert (scode[j] <= 58);
 | 
						|
 | 
						|
        if (hlink[j] == j)
 | 
						|
        {
 | 
						|
        //
 | 
						|
        // Merge the two lists.
 | 
						|
        //
 | 
						|
 | 
						|
        hlink[j] = mm;
 | 
						|
        break;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    //
 | 
						|
    // Add a bit to all codes in the second list
 | 
						|
    //
 | 
						|
 | 
						|
    for (int j = mm; true; j = hlink[j])
 | 
						|
    {
 | 
						|
        scode[j]++;
 | 
						|
 | 
						|
        assert (scode[j] <= 58);
 | 
						|
 | 
						|
        if (hlink[j] == j)
 | 
						|
        break;
 | 
						|
    }
 | 
						|
    }
 | 
						|
 | 
						|
    //
 | 
						|
    // Build a canonical Huffman code table, replacing the code
 | 
						|
    // lengths in scode with (code, code length) pairs.  Copy the
 | 
						|
    // code table from scode into frq.
 | 
						|
    //
 | 
						|
 | 
						|
    hufCanonicalCodeTable (scode);
 | 
						|
    memcpy (frq, scode, sizeof (Int64) * HUF_ENCSIZE);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
//
 | 
						|
// Pack an encoding table:
 | 
						|
//	- only code lengths, not actual codes, are stored
 | 
						|
//	- runs of zeroes are compressed as follows:
 | 
						|
//
 | 
						|
//	  unpacked		packed
 | 
						|
//	  --------------------------------
 | 
						|
//	  1 zero		0	(6 bits)
 | 
						|
//	  2 zeroes		59
 | 
						|
//	  3 zeroes		60
 | 
						|
//	  4 zeroes		61
 | 
						|
//	  5 zeroes		62
 | 
						|
//	  n zeroes (6 or more)	63 n-6	(6 + 8 bits)
 | 
						|
//
 | 
						|
 | 
						|
const int SHORT_ZEROCODE_RUN = 59;
 | 
						|
const int LONG_ZEROCODE_RUN  = 63;
 | 
						|
const int SHORTEST_LONG_RUN  = 2 + LONG_ZEROCODE_RUN - SHORT_ZEROCODE_RUN;
 | 
						|
const int LONGEST_LONG_RUN   = 255 + SHORTEST_LONG_RUN;
 | 
						|
 | 
						|
 | 
						|
void
 | 
						|
hufPackEncTable
 | 
						|
    (const Int64*	hcode,		// i : encoding table [HUF_ENCSIZE]
 | 
						|
     int		im,		// i : min hcode index
 | 
						|
     int		iM,		// i : max hcode index
 | 
						|
     char**		pcode)		//  o: ptr to packed table (updated)
 | 
						|
{
 | 
						|
    char *p = *pcode;
 | 
						|
    Int64 c = 0;
 | 
						|
    int lc = 0;
 | 
						|
 | 
						|
    for (; im <= iM; im++)
 | 
						|
    {
 | 
						|
    int l = hufLength (hcode[im]);
 | 
						|
 | 
						|
    if (l == 0)
 | 
						|
    {
 | 
						|
        int zerun = 1;
 | 
						|
 | 
						|
        while ((im < iM) && (zerun < LONGEST_LONG_RUN))
 | 
						|
        {
 | 
						|
        if (hufLength (hcode[im+1]) > 0 )
 | 
						|
            break;
 | 
						|
        im++;
 | 
						|
        zerun++;
 | 
						|
        }
 | 
						|
 | 
						|
        if (zerun >= 2)
 | 
						|
        {
 | 
						|
        if (zerun >= SHORTEST_LONG_RUN)
 | 
						|
        {
 | 
						|
            outputBits (6, LONG_ZEROCODE_RUN, c, lc, p);
 | 
						|
            outputBits (8, zerun - SHORTEST_LONG_RUN, c, lc, p);
 | 
						|
        }
 | 
						|
        else
 | 
						|
        {
 | 
						|
            outputBits (6, SHORT_ZEROCODE_RUN + zerun - 2, c, lc, p);
 | 
						|
        }
 | 
						|
        continue;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    outputBits (6, l, c, lc, p);
 | 
						|
    }
 | 
						|
 | 
						|
    if (lc > 0)
 | 
						|
    *p++ = (unsigned char) (c << (8 - lc));
 | 
						|
 | 
						|
    *pcode = p;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
//
 | 
						|
// Unpack an encoding table packed by hufPackEncTable():
 | 
						|
//
 | 
						|
 | 
						|
void
 | 
						|
hufUnpackEncTable
 | 
						|
    (const char**	pcode,		// io: ptr to packed table (updated)
 | 
						|
     int		ni,		// i : input size (in bytes)
 | 
						|
     int		im,		// i : min hcode index
 | 
						|
     int		iM,		// i : max hcode index
 | 
						|
     Int64*		hcode)		//  o: encoding table [HUF_ENCSIZE]
 | 
						|
{
 | 
						|
    memset (hcode, 0, sizeof (Int64) * HUF_ENCSIZE);
 | 
						|
 | 
						|
    const char *p = *pcode;
 | 
						|
    Int64 c = 0;
 | 
						|
    int lc = 0;
 | 
						|
 | 
						|
    for (; im <= iM; im++)
 | 
						|
    {
 | 
						|
    if (p - *pcode > ni)
 | 
						|
        unexpectedEndOfTable();
 | 
						|
 | 
						|
    Int64 l = hcode[im] = getBits (6, c, lc, p); // code length
 | 
						|
 | 
						|
    if (l == (Int64) LONG_ZEROCODE_RUN)
 | 
						|
    {
 | 
						|
        if (p - *pcode > ni)
 | 
						|
        unexpectedEndOfTable();
 | 
						|
 | 
						|
        int zerun = getBits (8, c, lc, p) + SHORTEST_LONG_RUN;
 | 
						|
 | 
						|
        if (im + zerun > iM + 1)
 | 
						|
        tableTooLong();
 | 
						|
 | 
						|
        while (zerun--)
 | 
						|
        hcode[im++] = 0;
 | 
						|
 | 
						|
        im--;
 | 
						|
    }
 | 
						|
    else if (l >= (Int64) SHORT_ZEROCODE_RUN)
 | 
						|
    {
 | 
						|
        int zerun = l - SHORT_ZEROCODE_RUN + 2;
 | 
						|
 | 
						|
        if (im + zerun > iM + 1)
 | 
						|
        tableTooLong();
 | 
						|
 | 
						|
        while (zerun--)
 | 
						|
        hcode[im++] = 0;
 | 
						|
 | 
						|
        im--;
 | 
						|
    }
 | 
						|
    }
 | 
						|
 | 
						|
    *pcode = (char *) p;
 | 
						|
 | 
						|
    hufCanonicalCodeTable (hcode);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
//
 | 
						|
// DECODING TABLE BUILDING
 | 
						|
//
 | 
						|
 | 
						|
//
 | 
						|
// Clear a newly allocated decoding table so that it contains only zeroes.
 | 
						|
//
 | 
						|
 | 
						|
void
 | 
						|
hufClearDecTable
 | 
						|
    (HufDec *		hdecod)		// io: (allocated by caller)
 | 
						|
                        //     decoding table [HUF_DECSIZE]
 | 
						|
{
 | 
						|
    memset (hdecod, 0, sizeof (HufDec) * HUF_DECSIZE);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
//
 | 
						|
// Build a decoding hash table based on the encoding table hcode:
 | 
						|
//	- short codes (<= HUF_DECBITS) are resolved with a single table access;
 | 
						|
//	- long code entry allocations are not optimized, because long codes are
 | 
						|
//	  unfrequent;
 | 
						|
//	- decoding tables are used by hufDecode();
 | 
						|
//
 | 
						|
 | 
						|
void
 | 
						|
hufBuildDecTable
 | 
						|
    (const Int64*	hcode,		// i : encoding table
 | 
						|
     int		im,		// i : min index in hcode
 | 
						|
     int		iM,		// i : max index in hcode
 | 
						|
     HufDec *		hdecod)		//  o: (allocated by caller)
 | 
						|
                        //     decoding table [HUF_DECSIZE]
 | 
						|
{
 | 
						|
    //
 | 
						|
    // Init hashtable & loop on all codes.
 | 
						|
    // Assumes that hufClearDecTable(hdecod) has already been called.
 | 
						|
    //
 | 
						|
 | 
						|
    for (; im <= iM; im++)
 | 
						|
    {
 | 
						|
    Int64 c = hufCode (hcode[im]);
 | 
						|
    int l = hufLength (hcode[im]);
 | 
						|
 | 
						|
    if (c >> l)
 | 
						|
    {
 | 
						|
        //
 | 
						|
        // Error: c is supposed to be an l-bit code,
 | 
						|
        // but c contains a value that is greater
 | 
						|
        // than the largest l-bit number.
 | 
						|
        //
 | 
						|
 | 
						|
        invalidTableEntry();
 | 
						|
    }
 | 
						|
 | 
						|
    if (l > HUF_DECBITS)
 | 
						|
    {
 | 
						|
        //
 | 
						|
        // Long code: add a secondary entry
 | 
						|
        //
 | 
						|
 | 
						|
        HufDec *pl = hdecod + (c >> (l - HUF_DECBITS));
 | 
						|
 | 
						|
        if (pl->len)
 | 
						|
        {
 | 
						|
        //
 | 
						|
        // Error: a short code has already
 | 
						|
        // been stored in table entry *pl.
 | 
						|
        //
 | 
						|
 | 
						|
        invalidTableEntry();
 | 
						|
        }
 | 
						|
 | 
						|
        pl->lit++;
 | 
						|
 | 
						|
        if (pl->p)
 | 
						|
        {
 | 
						|
        int *p = pl->p;
 | 
						|
        pl->p = new int [pl->lit];
 | 
						|
 | 
						|
        for (int i = 0; i < pl->lit - 1; ++i)
 | 
						|
            pl->p[i] = p[i];
 | 
						|
 | 
						|
        delete [] p;
 | 
						|
        }
 | 
						|
        else
 | 
						|
        {
 | 
						|
        pl->p = new int [1];
 | 
						|
        }
 | 
						|
 | 
						|
        pl->p[pl->lit - 1]= im;
 | 
						|
    }
 | 
						|
    else if (l)
 | 
						|
    {
 | 
						|
        //
 | 
						|
        // Short code: init all primary entries
 | 
						|
        //
 | 
						|
 | 
						|
        HufDec *pl = hdecod + (c << (HUF_DECBITS - l));
 | 
						|
 | 
						|
        for (Int64 i = 1 << (HUF_DECBITS - l); i > 0; i--, pl++)
 | 
						|
        {
 | 
						|
        if (pl->len || pl->p)
 | 
						|
        {
 | 
						|
            //
 | 
						|
            // Error: a short code or a long code has
 | 
						|
            // already been stored in table entry *pl.
 | 
						|
            //
 | 
						|
 | 
						|
            invalidTableEntry();
 | 
						|
        }
 | 
						|
 | 
						|
        pl->len = l;
 | 
						|
        pl->lit = im;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
//
 | 
						|
// Free the long code entries of a decoding table built by hufBuildDecTable()
 | 
						|
//
 | 
						|
 | 
						|
void
 | 
						|
hufFreeDecTable (HufDec *hdecod)	// io: Decoding table
 | 
						|
{
 | 
						|
    for (int i = 0; i < HUF_DECSIZE; i++)
 | 
						|
    {
 | 
						|
    if (hdecod[i].p)
 | 
						|
    {
 | 
						|
        delete [] hdecod[i].p;
 | 
						|
        hdecod[i].p = 0;
 | 
						|
    }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
//
 | 
						|
// ENCODING
 | 
						|
//
 | 
						|
 | 
						|
inline void
 | 
						|
outputCode (Int64 code, Int64 &c, int &lc, char *&out)
 | 
						|
{
 | 
						|
    outputBits (hufLength (code), hufCode (code), c, lc, out);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
inline void
 | 
						|
sendCode (Int64 sCode, int runCount, Int64 runCode,
 | 
						|
      Int64 &c, int &lc, char *&out)
 | 
						|
{
 | 
						|
    static const int RLMIN = 32; // min count to activate run-length coding
 | 
						|
 | 
						|
    if (runCount > RLMIN)
 | 
						|
    {
 | 
						|
    outputCode (sCode, c, lc, out);
 | 
						|
    outputCode (runCode, c, lc, out);
 | 
						|
    outputBits (8, runCount, c, lc, out);
 | 
						|
    }
 | 
						|
    else
 | 
						|
    {
 | 
						|
    while (runCount-- >= 0)
 | 
						|
        outputCode (sCode, c, lc, out);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
//
 | 
						|
// Encode (compress) ni values based on the Huffman encoding table hcode:
 | 
						|
//
 | 
						|
 | 
						|
int
 | 
						|
hufEncode				// return: output size (in bits)
 | 
						|
    (const Int64*  	    hcode,	// i : encoding table
 | 
						|
     const unsigned short*  in,		// i : uncompressed input buffer
 | 
						|
     const int     	    ni,		// i : input buffer size (in bytes)
 | 
						|
     int           	    rlc,	// i : rl code
 | 
						|
     char*         	    out)	//  o: compressed output buffer
 | 
						|
{
 | 
						|
    char *outStart = out;
 | 
						|
    Int64 c = 0;	// bits not yet written to out
 | 
						|
    int lc = 0;		// number of valid bits in c (LSB)
 | 
						|
    int s = in[0];
 | 
						|
    int cs = 0;
 | 
						|
 | 
						|
    //
 | 
						|
    // Loop on input values
 | 
						|
    //
 | 
						|
 | 
						|
    for (int i = 1; i < ni; i++)
 | 
						|
    {
 | 
						|
    //
 | 
						|
    // Count same values or send code
 | 
						|
    //
 | 
						|
 | 
						|
    if (s == in[i] && cs < 255)
 | 
						|
    {
 | 
						|
        cs++;
 | 
						|
    }
 | 
						|
    else
 | 
						|
    {
 | 
						|
        sendCode (hcode[s], cs, hcode[rlc], c, lc, out);
 | 
						|
        cs=0;
 | 
						|
    }
 | 
						|
 | 
						|
    s = in[i];
 | 
						|
    }
 | 
						|
 | 
						|
    //
 | 
						|
    // Send remaining code
 | 
						|
    //
 | 
						|
 | 
						|
    sendCode (hcode[s], cs, hcode[rlc], c, lc, out);
 | 
						|
 | 
						|
    if (lc)
 | 
						|
    *out = (c << (8 - lc)) & 0xff;
 | 
						|
 | 
						|
    return (out - outStart) * 8 + lc;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
//
 | 
						|
// DECODING
 | 
						|
//
 | 
						|
 | 
						|
//
 | 
						|
// In order to force the compiler to inline them,
 | 
						|
// getChar() and getCode() are implemented as macros
 | 
						|
// instead of "inline" functions.
 | 
						|
//
 | 
						|
 | 
						|
#define getChar(c, lc, in)			\
 | 
						|
{						\
 | 
						|
    c = (c << 8) | *(unsigned char *)(in++);	\
 | 
						|
    lc += 8;					\
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
#define getCode(po, rlc, c, lc, in, out, oe)	\
 | 
						|
{						\
 | 
						|
    if (po == rlc)				\
 | 
						|
    {						\
 | 
						|
    if (lc < 8)				\
 | 
						|
        getChar(c, lc, in);			\
 | 
						|
                        \
 | 
						|
    lc -= 8;				\
 | 
						|
                        \
 | 
						|
    unsigned char cs = (c >> lc);		\
 | 
						|
                        \
 | 
						|
    if (out + cs > oe)			\
 | 
						|
        tooMuchData();			\
 | 
						|
                        \
 | 
						|
    unsigned short s = out[-1];		\
 | 
						|
                        \
 | 
						|
    while (cs-- > 0)			\
 | 
						|
        *out++ = s;				\
 | 
						|
    }						\
 | 
						|
    else if (out < oe)				\
 | 
						|
    {						\
 | 
						|
    *out++ = po;				\
 | 
						|
    }						\
 | 
						|
    else					\
 | 
						|
    {						\
 | 
						|
    tooMuchData();				\
 | 
						|
    }						\
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
//
 | 
						|
// Decode (uncompress) ni bits based on encoding & decoding tables:
 | 
						|
//
 | 
						|
 | 
						|
void
 | 
						|
hufDecode
 | 
						|
    (const Int64 * 	hcode,	// i : encoding table
 | 
						|
     const HufDec * 	hdecod,	// i : decoding table
 | 
						|
     const char* 	in,	// i : compressed input buffer
 | 
						|
     int		ni,	// i : input size (in bits)
 | 
						|
     int		rlc,	// i : run-length code
 | 
						|
     int		no,	// i : expected output size (in bytes)
 | 
						|
     unsigned short*	out)	//  o: uncompressed output buffer
 | 
						|
{
 | 
						|
    Int64 c = 0;
 | 
						|
    int lc = 0;
 | 
						|
    unsigned short * outb = out;
 | 
						|
    unsigned short * oe = out + no;
 | 
						|
    const char * ie = in + (ni + 7) / 8; // input byte size
 | 
						|
 | 
						|
    //
 | 
						|
    // Loop on input bytes
 | 
						|
    //
 | 
						|
 | 
						|
    while (in < ie)
 | 
						|
    {
 | 
						|
    getChar (c, lc, in);
 | 
						|
 | 
						|
    //
 | 
						|
    // Access decoding table
 | 
						|
    //
 | 
						|
 | 
						|
    while (lc >= HUF_DECBITS)
 | 
						|
    {
 | 
						|
        const HufDec pl = hdecod[(c >> (lc-HUF_DECBITS)) & HUF_DECMASK];
 | 
						|
 | 
						|
        if (pl.len)
 | 
						|
        {
 | 
						|
        //
 | 
						|
        // Get short code
 | 
						|
        //
 | 
						|
 | 
						|
        lc -= pl.len;
 | 
						|
        getCode (pl.lit, rlc, c, lc, in, out, oe);
 | 
						|
        }
 | 
						|
        else
 | 
						|
        {
 | 
						|
        if (!pl.p)
 | 
						|
            invalidCode(); // wrong code
 | 
						|
 | 
						|
        //
 | 
						|
        // Search long code
 | 
						|
        //
 | 
						|
 | 
						|
        int j;
 | 
						|
 | 
						|
        for (j = 0; j < pl.lit; j++)
 | 
						|
        {
 | 
						|
            int	l = hufLength (hcode[pl.p[j]]);
 | 
						|
 | 
						|
            while (lc < l && in < ie)	// get more bits
 | 
						|
            getChar (c, lc, in);
 | 
						|
 | 
						|
            if (lc >= l)
 | 
						|
            {
 | 
						|
            if (hufCode (hcode[pl.p[j]]) ==
 | 
						|
                ((c >> (lc - l)) & ((Int64(1) << l) - 1)))
 | 
						|
            {
 | 
						|
                //
 | 
						|
                // Found : get long code
 | 
						|
                //
 | 
						|
 | 
						|
                lc -= l;
 | 
						|
                getCode (pl.p[j], rlc, c, lc, in, out, oe);
 | 
						|
                break;
 | 
						|
            }
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        if (j == pl.lit)
 | 
						|
            invalidCode(); // Not found
 | 
						|
        }
 | 
						|
    }
 | 
						|
    }
 | 
						|
 | 
						|
    //
 | 
						|
    // Get remaining (short) codes
 | 
						|
    //
 | 
						|
 | 
						|
    int i = (8 - ni) & 7;
 | 
						|
    c >>= i;
 | 
						|
    lc -= i;
 | 
						|
 | 
						|
    while (lc > 0)
 | 
						|
    {
 | 
						|
    const HufDec pl = hdecod[(c << (HUF_DECBITS - lc)) & HUF_DECMASK];
 | 
						|
 | 
						|
    if (pl.len)
 | 
						|
    {
 | 
						|
        lc -= pl.len;
 | 
						|
        getCode (pl.lit, rlc, c, lc, in, out, oe);
 | 
						|
    }
 | 
						|
    else
 | 
						|
    {
 | 
						|
        invalidCode(); // wrong (long) code
 | 
						|
    }
 | 
						|
    }
 | 
						|
 | 
						|
    if (out - outb != no)
 | 
						|
    notEnoughData ();
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void
 | 
						|
countFrequencies (Int64 freq[HUF_ENCSIZE],
 | 
						|
          const unsigned short data[/*n*/],
 | 
						|
          int n)
 | 
						|
{
 | 
						|
    for (int i = 0; i < HUF_ENCSIZE; ++i)
 | 
						|
    freq[i] = 0;
 | 
						|
 | 
						|
    for (int i = 0; i < n; ++i)
 | 
						|
    ++freq[data[i]];
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void
 | 
						|
writeUInt (char buf[4], unsigned int i)
 | 
						|
{
 | 
						|
    unsigned char *b = (unsigned char *) buf;
 | 
						|
 | 
						|
    b[0] = i;
 | 
						|
    b[1] = i >> 8;
 | 
						|
    b[2] = i >> 16;
 | 
						|
    b[3] = i >> 24;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
unsigned int
 | 
						|
readUInt (const char buf[4])
 | 
						|
{
 | 
						|
    const unsigned char *b = (const unsigned char *) buf;
 | 
						|
 | 
						|
    return ( b[0]        & 0x000000ff) |
 | 
						|
       ((b[1] <<  8) & 0x0000ff00) |
 | 
						|
       ((b[2] << 16) & 0x00ff0000) |
 | 
						|
       ((b[3] << 24) & 0xff000000);
 | 
						|
}
 | 
						|
 | 
						|
} // namespace
 | 
						|
 | 
						|
 | 
						|
//
 | 
						|
// EXTERNAL INTERFACE
 | 
						|
//
 | 
						|
 | 
						|
 | 
						|
int
 | 
						|
hufCompress (const unsigned short raw[],
 | 
						|
         int nRaw,
 | 
						|
         char compressed[])
 | 
						|
{
 | 
						|
    if (nRaw == 0)
 | 
						|
    return 0;
 | 
						|
 | 
						|
    AutoArray <Int64, HUF_ENCSIZE> freq;
 | 
						|
 | 
						|
    countFrequencies (freq, raw, nRaw);
 | 
						|
 | 
						|
    int im, iM;
 | 
						|
    hufBuildEncTable (freq, &im, &iM);
 | 
						|
 | 
						|
    char *tableStart = compressed + 20;
 | 
						|
    char *tableEnd   = tableStart;
 | 
						|
    hufPackEncTable (freq, im, iM, &tableEnd);
 | 
						|
    int tableLength = tableEnd - tableStart;
 | 
						|
 | 
						|
    char *dataStart = tableEnd;
 | 
						|
    int nBits = hufEncode (freq, raw, nRaw, iM, dataStart);
 | 
						|
    int dataLength = (nBits + 7) / 8;
 | 
						|
 | 
						|
    writeUInt (compressed,      im);
 | 
						|
    writeUInt (compressed +  4, iM);
 | 
						|
    writeUInt (compressed +  8, tableLength);
 | 
						|
    writeUInt (compressed + 12, nBits);
 | 
						|
    writeUInt (compressed + 16, 0);	// room for future extensions
 | 
						|
 | 
						|
    return dataStart + dataLength - compressed;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void
 | 
						|
hufUncompress (const char compressed[],
 | 
						|
           int nCompressed,
 | 
						|
           unsigned short raw[],
 | 
						|
           int nRaw)
 | 
						|
{
 | 
						|
    if (nCompressed == 0)
 | 
						|
    {
 | 
						|
    if (nRaw != 0)
 | 
						|
        notEnoughData();
 | 
						|
 | 
						|
    return;
 | 
						|
    }
 | 
						|
 | 
						|
    int im = readUInt (compressed);
 | 
						|
    int iM = readUInt (compressed + 4);
 | 
						|
    // int tableLength = readUInt (compressed + 8);
 | 
						|
    int nBits = readUInt (compressed + 12);
 | 
						|
 | 
						|
    if (im < 0 || im >= HUF_ENCSIZE || iM < 0 || iM >= HUF_ENCSIZE)
 | 
						|
    invalidTableSize();
 | 
						|
 | 
						|
    const char *ptr = compressed + 20;
 | 
						|
 | 
						|
    AutoArray <Int64, HUF_ENCSIZE> freq;
 | 
						|
    AutoArray <HufDec, HUF_DECSIZE> hdec;
 | 
						|
 | 
						|
    hufClearDecTable (hdec);
 | 
						|
 | 
						|
    hufUnpackEncTable (&ptr, nCompressed - (ptr - compressed), im, iM, freq);
 | 
						|
 | 
						|
    try
 | 
						|
    {
 | 
						|
    if (nBits > 8 * (nCompressed - (ptr - compressed)))
 | 
						|
        invalidNBits();
 | 
						|
 | 
						|
    hufBuildDecTable (freq, im, iM, hdec);
 | 
						|
    hufDecode (freq, hdec, ptr, nBits, iM, nRaw, raw);
 | 
						|
    }
 | 
						|
    catch (...)
 | 
						|
    {
 | 
						|
    hufFreeDecTable (hdec);
 | 
						|
    throw;
 | 
						|
    }
 | 
						|
 | 
						|
    hufFreeDecTable (hdec);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
} // namespace Imf
 |