453 lines
13 KiB
C

/* slasr.f -- translated by f2c (version 20061008).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#include "clapack.h"
/* Subroutine */ int slasr_(char *side, char *pivot, char *direct, integer *m,
integer *n, real *c__, real *s, real *a, integer *lda)
{
/* System generated locals */
integer a_dim1, a_offset, i__1, i__2;
/* Local variables */
integer i__, j, info;
real temp;
extern logical lsame_(char *, char *);
real ctemp, stemp;
extern /* Subroutine */ int xerbla_(char *, integer *);
/* -- LAPACK auxiliary routine (version 3.2) -- */
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/* November 2006 */
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* Purpose */
/* ======= */
/* SLASR applies a sequence of plane rotations to a real matrix A, */
/* from either the left or the right. */
/* When SIDE = 'L', the transformation takes the form */
/* A := P*A */
/* and when SIDE = 'R', the transformation takes the form */
/* A := A*P**T */
/* where P is an orthogonal matrix consisting of a sequence of z plane */
/* rotations, with z = M when SIDE = 'L' and z = N when SIDE = 'R', */
/* and P**T is the transpose of P. */
/* When DIRECT = 'F' (Forward sequence), then */
/* P = P(z-1) * ... * P(2) * P(1) */
/* and when DIRECT = 'B' (Backward sequence), then */
/* P = P(1) * P(2) * ... * P(z-1) */
/* where P(k) is a plane rotation matrix defined by the 2-by-2 rotation */
/* R(k) = ( c(k) s(k) ) */
/* = ( -s(k) c(k) ). */
/* When PIVOT = 'V' (Variable pivot), the rotation is performed */
/* for the plane (k,k+1), i.e., P(k) has the form */
/* P(k) = ( 1 ) */
/* ( ... ) */
/* ( 1 ) */
/* ( c(k) s(k) ) */
/* ( -s(k) c(k) ) */
/* ( 1 ) */
/* ( ... ) */
/* ( 1 ) */
/* where R(k) appears as a rank-2 modification to the identity matrix in */
/* rows and columns k and k+1. */
/* When PIVOT = 'T' (Top pivot), the rotation is performed for the */
/* plane (1,k+1), so P(k) has the form */
/* P(k) = ( c(k) s(k) ) */
/* ( 1 ) */
/* ( ... ) */
/* ( 1 ) */
/* ( -s(k) c(k) ) */
/* ( 1 ) */
/* ( ... ) */
/* ( 1 ) */
/* where R(k) appears in rows and columns 1 and k+1. */
/* Similarly, when PIVOT = 'B' (Bottom pivot), the rotation is */
/* performed for the plane (k,z), giving P(k) the form */
/* P(k) = ( 1 ) */
/* ( ... ) */
/* ( 1 ) */
/* ( c(k) s(k) ) */
/* ( 1 ) */
/* ( ... ) */
/* ( 1 ) */
/* ( -s(k) c(k) ) */
/* where R(k) appears in rows and columns k and z. The rotations are */
/* performed without ever forming P(k) explicitly. */
/* Arguments */
/* ========= */
/* SIDE (input) CHARACTER*1 */
/* Specifies whether the plane rotation matrix P is applied to */
/* A on the left or the right. */
/* = 'L': Left, compute A := P*A */
/* = 'R': Right, compute A:= A*P**T */
/* PIVOT (input) CHARACTER*1 */
/* Specifies the plane for which P(k) is a plane rotation */
/* matrix. */
/* = 'V': Variable pivot, the plane (k,k+1) */
/* = 'T': Top pivot, the plane (1,k+1) */
/* = 'B': Bottom pivot, the plane (k,z) */
/* DIRECT (input) CHARACTER*1 */
/* Specifies whether P is a forward or backward sequence of */
/* plane rotations. */
/* = 'F': Forward, P = P(z-1)*...*P(2)*P(1) */
/* = 'B': Backward, P = P(1)*P(2)*...*P(z-1) */
/* M (input) INTEGER */
/* The number of rows of the matrix A. If m <= 1, an immediate */
/* return is effected. */
/* N (input) INTEGER */
/* The number of columns of the matrix A. If n <= 1, an */
/* immediate return is effected. */
/* C (input) REAL array, dimension */
/* (M-1) if SIDE = 'L' */
/* (N-1) if SIDE = 'R' */
/* The cosines c(k) of the plane rotations. */
/* S (input) REAL array, dimension */
/* (M-1) if SIDE = 'L' */
/* (N-1) if SIDE = 'R' */
/* The sines s(k) of the plane rotations. The 2-by-2 plane */
/* rotation part of the matrix P(k), R(k), has the form */
/* R(k) = ( c(k) s(k) ) */
/* ( -s(k) c(k) ). */
/* A (input/output) REAL array, dimension (LDA,N) */
/* The M-by-N matrix A. On exit, A is overwritten by P*A if */
/* SIDE = 'R' or by A*P**T if SIDE = 'L'. */
/* LDA (input) INTEGER */
/* The leading dimension of the array A. LDA >= max(1,M). */
/* ===================================================================== */
/* .. Parameters .. */
/* .. */
/* .. Local Scalars .. */
/* .. */
/* .. External Functions .. */
/* .. */
/* .. External Subroutines .. */
/* .. */
/* .. Intrinsic Functions .. */
/* .. */
/* .. Executable Statements .. */
/* Test the input parameters */
/* Parameter adjustments */
--c__;
--s;
a_dim1 = *lda;
a_offset = 1 + a_dim1;
a -= a_offset;
/* Function Body */
info = 0;
if (! (lsame_(side, "L") || lsame_(side, "R"))) {
info = 1;
} else if (! (lsame_(pivot, "V") || lsame_(pivot,
"T") || lsame_(pivot, "B"))) {
info = 2;
} else if (! (lsame_(direct, "F") || lsame_(direct,
"B"))) {
info = 3;
} else if (*m < 0) {
info = 4;
} else if (*n < 0) {
info = 5;
} else if (*lda < max(1,*m)) {
info = 9;
}
if (info != 0) {
xerbla_("SLASR ", &info);
return 0;
}
/* Quick return if possible */
if (*m == 0 || *n == 0) {
return 0;
}
if (lsame_(side, "L")) {
/* Form P * A */
if (lsame_(pivot, "V")) {
if (lsame_(direct, "F")) {
i__1 = *m - 1;
for (j = 1; j <= i__1; ++j) {
ctemp = c__[j];
stemp = s[j];
if (ctemp != 1.f || stemp != 0.f) {
i__2 = *n;
for (i__ = 1; i__ <= i__2; ++i__) {
temp = a[j + 1 + i__ * a_dim1];
a[j + 1 + i__ * a_dim1] = ctemp * temp - stemp *
a[j + i__ * a_dim1];
a[j + i__ * a_dim1] = stemp * temp + ctemp * a[j
+ i__ * a_dim1];
/* L10: */
}
}
/* L20: */
}
} else if (lsame_(direct, "B")) {
for (j = *m - 1; j >= 1; --j) {
ctemp = c__[j];
stemp = s[j];
if (ctemp != 1.f || stemp != 0.f) {
i__1 = *n;
for (i__ = 1; i__ <= i__1; ++i__) {
temp = a[j + 1 + i__ * a_dim1];
a[j + 1 + i__ * a_dim1] = ctemp * temp - stemp *
a[j + i__ * a_dim1];
a[j + i__ * a_dim1] = stemp * temp + ctemp * a[j
+ i__ * a_dim1];
/* L30: */
}
}
/* L40: */
}
}
} else if (lsame_(pivot, "T")) {
if (lsame_(direct, "F")) {
i__1 = *m;
for (j = 2; j <= i__1; ++j) {
ctemp = c__[j - 1];
stemp = s[j - 1];
if (ctemp != 1.f || stemp != 0.f) {
i__2 = *n;
for (i__ = 1; i__ <= i__2; ++i__) {
temp = a[j + i__ * a_dim1];
a[j + i__ * a_dim1] = ctemp * temp - stemp * a[
i__ * a_dim1 + 1];
a[i__ * a_dim1 + 1] = stemp * temp + ctemp * a[
i__ * a_dim1 + 1];
/* L50: */
}
}
/* L60: */
}
} else if (lsame_(direct, "B")) {
for (j = *m; j >= 2; --j) {
ctemp = c__[j - 1];
stemp = s[j - 1];
if (ctemp != 1.f || stemp != 0.f) {
i__1 = *n;
for (i__ = 1; i__ <= i__1; ++i__) {
temp = a[j + i__ * a_dim1];
a[j + i__ * a_dim1] = ctemp * temp - stemp * a[
i__ * a_dim1 + 1];
a[i__ * a_dim1 + 1] = stemp * temp + ctemp * a[
i__ * a_dim1 + 1];
/* L70: */
}
}
/* L80: */
}
}
} else if (lsame_(pivot, "B")) {
if (lsame_(direct, "F")) {
i__1 = *m - 1;
for (j = 1; j <= i__1; ++j) {
ctemp = c__[j];
stemp = s[j];
if (ctemp != 1.f || stemp != 0.f) {
i__2 = *n;
for (i__ = 1; i__ <= i__2; ++i__) {
temp = a[j + i__ * a_dim1];
a[j + i__ * a_dim1] = stemp * a[*m + i__ * a_dim1]
+ ctemp * temp;
a[*m + i__ * a_dim1] = ctemp * a[*m + i__ *
a_dim1] - stemp * temp;
/* L90: */
}
}
/* L100: */
}
} else if (lsame_(direct, "B")) {
for (j = *m - 1; j >= 1; --j) {
ctemp = c__[j];
stemp = s[j];
if (ctemp != 1.f || stemp != 0.f) {
i__1 = *n;
for (i__ = 1; i__ <= i__1; ++i__) {
temp = a[j + i__ * a_dim1];
a[j + i__ * a_dim1] = stemp * a[*m + i__ * a_dim1]
+ ctemp * temp;
a[*m + i__ * a_dim1] = ctemp * a[*m + i__ *
a_dim1] - stemp * temp;
/* L110: */
}
}
/* L120: */
}
}
}
} else if (lsame_(side, "R")) {
/* Form A * P' */
if (lsame_(pivot, "V")) {
if (lsame_(direct, "F")) {
i__1 = *n - 1;
for (j = 1; j <= i__1; ++j) {
ctemp = c__[j];
stemp = s[j];
if (ctemp != 1.f || stemp != 0.f) {
i__2 = *m;
for (i__ = 1; i__ <= i__2; ++i__) {
temp = a[i__ + (j + 1) * a_dim1];
a[i__ + (j + 1) * a_dim1] = ctemp * temp - stemp *
a[i__ + j * a_dim1];
a[i__ + j * a_dim1] = stemp * temp + ctemp * a[
i__ + j * a_dim1];
/* L130: */
}
}
/* L140: */
}
} else if (lsame_(direct, "B")) {
for (j = *n - 1; j >= 1; --j) {
ctemp = c__[j];
stemp = s[j];
if (ctemp != 1.f || stemp != 0.f) {
i__1 = *m;
for (i__ = 1; i__ <= i__1; ++i__) {
temp = a[i__ + (j + 1) * a_dim1];
a[i__ + (j + 1) * a_dim1] = ctemp * temp - stemp *
a[i__ + j * a_dim1];
a[i__ + j * a_dim1] = stemp * temp + ctemp * a[
i__ + j * a_dim1];
/* L150: */
}
}
/* L160: */
}
}
} else if (lsame_(pivot, "T")) {
if (lsame_(direct, "F")) {
i__1 = *n;
for (j = 2; j <= i__1; ++j) {
ctemp = c__[j - 1];
stemp = s[j - 1];
if (ctemp != 1.f || stemp != 0.f) {
i__2 = *m;
for (i__ = 1; i__ <= i__2; ++i__) {
temp = a[i__ + j * a_dim1];
a[i__ + j * a_dim1] = ctemp * temp - stemp * a[
i__ + a_dim1];
a[i__ + a_dim1] = stemp * temp + ctemp * a[i__ +
a_dim1];
/* L170: */
}
}
/* L180: */
}
} else if (lsame_(direct, "B")) {
for (j = *n; j >= 2; --j) {
ctemp = c__[j - 1];
stemp = s[j - 1];
if (ctemp != 1.f || stemp != 0.f) {
i__1 = *m;
for (i__ = 1; i__ <= i__1; ++i__) {
temp = a[i__ + j * a_dim1];
a[i__ + j * a_dim1] = ctemp * temp - stemp * a[
i__ + a_dim1];
a[i__ + a_dim1] = stemp * temp + ctemp * a[i__ +
a_dim1];
/* L190: */
}
}
/* L200: */
}
}
} else if (lsame_(pivot, "B")) {
if (lsame_(direct, "F")) {
i__1 = *n - 1;
for (j = 1; j <= i__1; ++j) {
ctemp = c__[j];
stemp = s[j];
if (ctemp != 1.f || stemp != 0.f) {
i__2 = *m;
for (i__ = 1; i__ <= i__2; ++i__) {
temp = a[i__ + j * a_dim1];
a[i__ + j * a_dim1] = stemp * a[i__ + *n * a_dim1]
+ ctemp * temp;
a[i__ + *n * a_dim1] = ctemp * a[i__ + *n *
a_dim1] - stemp * temp;
/* L210: */
}
}
/* L220: */
}
} else if (lsame_(direct, "B")) {
for (j = *n - 1; j >= 1; --j) {
ctemp = c__[j];
stemp = s[j];
if (ctemp != 1.f || stemp != 0.f) {
i__1 = *m;
for (i__ = 1; i__ <= i__1; ++i__) {
temp = a[i__ + j * a_dim1];
a[i__ + j * a_dim1] = stemp * a[i__ + *n * a_dim1]
+ ctemp * temp;
a[i__ + *n * a_dim1] = ctemp * a[i__ + *n *
a_dim1] - stemp * temp;
/* L230: */
}
}
/* L240: */
}
}
}
}
return 0;
/* End of SLASR */
} /* slasr_ */