192 lines
5.3 KiB
C

/* slarf.f -- translated by f2c (version 20061008).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#include "clapack.h"
/* Table of constant values */
static real c_b4 = 1.f;
static real c_b5 = 0.f;
static integer c__1 = 1;
/* Subroutine */ int slarf_(char *side, integer *m, integer *n, real *v,
integer *incv, real *tau, real *c__, integer *ldc, real *work)
{
/* System generated locals */
integer c_dim1, c_offset;
real r__1;
/* Local variables */
integer i__;
logical applyleft;
extern /* Subroutine */ int sger_(integer *, integer *, real *, real *,
integer *, real *, integer *, real *, integer *);
extern logical lsame_(char *, char *);
integer lastc;
extern /* Subroutine */ int sgemv_(char *, integer *, integer *, real *,
real *, integer *, real *, integer *, real *, real *, integer *);
integer lastv;
extern integer ilaslc_(integer *, integer *, real *, integer *), ilaslr_(
integer *, integer *, real *, integer *);
/* -- LAPACK auxiliary routine (version 3.2) -- */
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/* November 2006 */
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* Purpose */
/* ======= */
/* SLARF applies a real elementary reflector H to a real m by n matrix */
/* C, from either the left or the right. H is represented in the form */
/* H = I - tau * v * v' */
/* where tau is a real scalar and v is a real vector. */
/* If tau = 0, then H is taken to be the unit matrix. */
/* Arguments */
/* ========= */
/* SIDE (input) CHARACTER*1 */
/* = 'L': form H * C */
/* = 'R': form C * H */
/* M (input) INTEGER */
/* The number of rows of the matrix C. */
/* N (input) INTEGER */
/* The number of columns of the matrix C. */
/* V (input) REAL array, dimension */
/* (1 + (M-1)*abs(INCV)) if SIDE = 'L' */
/* or (1 + (N-1)*abs(INCV)) if SIDE = 'R' */
/* The vector v in the representation of H. V is not used if */
/* TAU = 0. */
/* INCV (input) INTEGER */
/* The increment between elements of v. INCV <> 0. */
/* TAU (input) REAL */
/* The value tau in the representation of H. */
/* C (input/output) REAL array, dimension (LDC,N) */
/* On entry, the m by n matrix C. */
/* On exit, C is overwritten by the matrix H * C if SIDE = 'L', */
/* or C * H if SIDE = 'R'. */
/* LDC (input) INTEGER */
/* The leading dimension of the array C. LDC >= max(1,M). */
/* WORK (workspace) REAL array, dimension */
/* (N) if SIDE = 'L' */
/* or (M) if SIDE = 'R' */
/* ===================================================================== */
/* .. Parameters .. */
/* .. */
/* .. Local Scalars .. */
/* .. */
/* .. External Subroutines .. */
/* .. */
/* .. External Functions .. */
/* .. */
/* .. Executable Statements .. */
/* Parameter adjustments */
--v;
c_dim1 = *ldc;
c_offset = 1 + c_dim1;
c__ -= c_offset;
--work;
/* Function Body */
applyleft = lsame_(side, "L");
lastv = 0;
lastc = 0;
if (*tau != 0.f) {
/* Set up variables for scanning V. LASTV begins pointing to the end */
/* of V. */
if (applyleft) {
lastv = *m;
} else {
lastv = *n;
}
if (*incv > 0) {
i__ = (lastv - 1) * *incv + 1;
} else {
i__ = 1;
}
/* Look for the last non-zero row in V. */
while(lastv > 0 && v[i__] == 0.f) {
--lastv;
i__ -= *incv;
}
if (applyleft) {
/* Scan for the last non-zero column in C(1:lastv,:). */
lastc = ilaslc_(&lastv, n, &c__[c_offset], ldc);
} else {
/* Scan for the last non-zero row in C(:,1:lastv). */
lastc = ilaslr_(m, &lastv, &c__[c_offset], ldc);
}
}
/* Note that lastc.eq.0 renders the BLAS operations null; no special */
/* case is needed at this level. */
if (applyleft) {
/* Form H * C */
if (lastv > 0) {
/* w(1:lastc,1) := C(1:lastv,1:lastc)' * v(1:lastv,1) */
sgemv_("Transpose", &lastv, &lastc, &c_b4, &c__[c_offset], ldc, &
v[1], incv, &c_b5, &work[1], &c__1);
/* C(1:lastv,1:lastc) := C(...) - v(1:lastv,1) * w(1:lastc,1)' */
r__1 = -(*tau);
sger_(&lastv, &lastc, &r__1, &v[1], incv, &work[1], &c__1, &c__[
c_offset], ldc);
}
} else {
/* Form C * H */
if (lastv > 0) {
/* w(1:lastc,1) := C(1:lastc,1:lastv) * v(1:lastv,1) */
sgemv_("No transpose", &lastc, &lastv, &c_b4, &c__[c_offset], ldc,
&v[1], incv, &c_b5, &work[1], &c__1);
/* C(1:lastc,1:lastv) := C(...) - w(1:lastc,1) * v(1:lastv,1)' */
r__1 = -(*tau);
sger_(&lastc, &lastv, &r__1, &work[1], &c__1, &v[1], incv, &c__[
c_offset], ldc);
}
}
return 0;
/* End of SLARF */
} /* slarf_ */