opencv/modules/calib3d/src/quadsubpix.cpp
Andrey Kamaev 2a6fb2867e Remove all using directives for STL namespace and members
Made all STL usages explicit to be able automatically find all usages of
particular class or function.
2013-02-25 15:04:17 +04:00

367 lines
12 KiB
C++

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// Intel License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
#include <limits>
#include <utility>
#include <algorithm>
#include <math.h>
//#define _SUBPIX_VERBOSE
#undef max
namespace cv {
// static void drawCircles(Mat& img, const std::vector<Point2f>& corners, const std::vector<float>& radius)
// {
// for(size_t i = 0; i < corners.size(); i++)
// {
// circle(img, corners[i], cvRound(radius[i]), CV_RGB(255, 0, 0));
// }
// }
// static int histQuantile(const Mat& hist, float quantile)
// {
// if(hist.dims > 1) return -1; // works for 1D histograms only
// float cur_sum = 0;
// float total_sum = (float)sum(hist).val[0];
// float quantile_sum = total_sum*quantile;
// for(int j = 0; j < hist.size[0]; j++)
// {
// cur_sum += (float)hist.at<float>(j);
// if(cur_sum > quantile_sum)
// {
// return j;
// }
// }
// return hist.size[0] - 1;
// }
inline bool is_smaller(const std::pair<int, float>& p1, const std::pair<int, float>& p2)
{
return p1.second < p2.second;
}
static void orderContours(const std::vector<std::vector<Point> >& contours, Point2f point, std::vector<std::pair<int, float> >& order)
{
order.clear();
size_t i, j, n = contours.size();
for(i = 0; i < n; i++)
{
size_t ni = contours[i].size();
double min_dist = std::numeric_limits<double>::max();
for(j = 0; j < ni; j++)
{
double dist = norm(Point2f((float)contours[i][j].x, (float)contours[i][j].y) - point);
min_dist = MIN(min_dist, dist);
}
order.push_back(std::pair<int, float>((int)i, (float)min_dist));
}
std::sort(order.begin(), order.end(), is_smaller);
}
// fit second order curve to a set of 2D points
inline void fitCurve2Order(const std::vector<Point2f>& /*points*/, std::vector<float>& /*curve*/)
{
// TBD
}
inline void findCurvesCross(const std::vector<float>& /*curve1*/, const std::vector<float>& /*curve2*/, Point2f& /*cross_point*/)
{
}
static void findLinesCrossPoint(Point2f origin1, Point2f dir1, Point2f origin2, Point2f dir2, Point2f& cross_point)
{
float det = dir2.x*dir1.y - dir2.y*dir1.x;
Point2f offset = origin2 - origin1;
float alpha = (dir2.x*offset.y - dir2.y*offset.x)/det;
cross_point = origin1 + dir1*alpha;
}
// static void findCorner(const std::vector<Point>& contour, Point2f point, Point2f& corner)
// {
// // find the nearest point
// double min_dist = std::numeric_limits<double>::max();
// int min_idx = -1;
// // find corner idx
// for(size_t i = 0; i < contour.size(); i++)
// {
// double dist = norm(Point2f((float)contour[i].x, (float)contour[i].y) - point);
// if(dist < min_dist)
// {
// min_dist = dist;
// min_idx = (int)i;
// }
// }
// assert(min_idx >= 0);
// // temporary solution, have to make something more precise
// corner = contour[min_idx];
// return;
// }
static void findCorner(const std::vector<Point2f>& contour, Point2f point, Point2f& corner)
{
// find the nearest point
double min_dist = std::numeric_limits<double>::max();
int min_idx = -1;
// find corner idx
for(size_t i = 0; i < contour.size(); i++)
{
double dist = norm(contour[i] - point);
if(dist < min_dist)
{
min_dist = dist;
min_idx = (int)i;
}
}
assert(min_idx >= 0);
// temporary solution, have to make something more precise
corner = contour[min_idx];
return;
}
static int segment_hist_max(const Mat& hist, int& low_thresh, int& high_thresh)
{
Mat bw;
//const double max_bell_width = 20; // we expect two bells with width bounded above
//const double min_bell_width = 5; // and below
double total_sum = sum(hist).val[0];
//double thresh = total_sum/(2*max_bell_width)*0.25f; // quarter of a bar inside a bell
// threshold(hist, bw, thresh, 255.0, CV_THRESH_BINARY);
double quantile_sum = 0.0;
//double min_quantile = 0.2;
double low_sum = 0;
double max_segment_length = 0;
int max_start_x = -1;
int max_end_x = -1;
int start_x = 0;
const double out_of_bells_fraction = 0.1;
for(int x = 0; x < hist.size[0]; x++)
{
quantile_sum += hist.at<float>(x);
if(quantile_sum < 0.2*total_sum) continue;
if(quantile_sum - low_sum > out_of_bells_fraction*total_sum)
{
if(max_segment_length < x - start_x)
{
max_segment_length = x - start_x;
max_start_x = start_x;
max_end_x = x;
}
low_sum = quantile_sum;
start_x = x;
}
}
if(start_x == -1)
{
return 0;
}
else
{
low_thresh = cvRound(max_start_x + 0.25*(max_end_x - max_start_x));
high_thresh = cvRound(max_start_x + 0.75*(max_end_x - max_start_x));
return 1;
}
}
}
bool cv::find4QuadCornerSubpix(InputArray _img, InputOutputArray _corners, Size region_size)
{
Mat img = _img.getMat(), cornersM = _corners.getMat();
int ncorners = cornersM.checkVector(2, CV_32F);
CV_Assert( ncorners >= 0 );
Point2f* corners = cornersM.ptr<Point2f>();
const int nbins = 256;
float ranges[] = {0, 256};
const float* _ranges = ranges;
Mat hist;
#if defined(_SUBPIX_VERBOSE)
std::vector<float> radius;
radius.assign(corners.size(), 0.0f);
#endif //_SUBPIX_VERBOSE
Mat black_comp, white_comp;
for(int i = 0; i < ncorners; i++)
{
int channels = 0;
Rect roi(cvRound(corners[i].x - region_size.width), cvRound(corners[i].y - region_size.height),
region_size.width*2 + 1, region_size.height*2 + 1);
Mat img_roi = img(roi);
calcHist(&img_roi, 1, &channels, Mat(), hist, 1, &nbins, &_ranges);
#if 0
int black_thresh = histQuantile(hist, 0.45f);
int white_thresh = histQuantile(hist, 0.55f);
#else
int black_thresh = 0, white_thresh = 0;
segment_hist_max(hist, black_thresh, white_thresh);
#endif
threshold(img, black_comp, black_thresh, 255.0, CV_THRESH_BINARY_INV);
threshold(img, white_comp, white_thresh, 255.0, CV_THRESH_BINARY);
const int erode_count = 1;
erode(black_comp, black_comp, Mat(), Point(-1, -1), erode_count);
erode(white_comp, white_comp, Mat(), Point(-1, -1), erode_count);
#if defined(_SUBPIX_VERBOSE)
namedWindow("roi", 1);
imshow("roi", img_roi);
imwrite("test.jpg", img);
namedWindow("black", 1);
imshow("black", black_comp);
namedWindow("white", 1);
imshow("white", white_comp);
cvWaitKey(0);
imwrite("black.jpg", black_comp);
imwrite("white.jpg", white_comp);
#endif
std::vector<std::vector<Point> > white_contours, black_contours;
std::vector<Vec4i> white_hierarchy, black_hierarchy;
findContours(black_comp, black_contours, black_hierarchy, CV_RETR_LIST, CV_CHAIN_APPROX_SIMPLE);
findContours(white_comp, white_contours, white_hierarchy, CV_RETR_LIST, CV_CHAIN_APPROX_SIMPLE);
if(black_contours.size() < 5 || white_contours.size() < 5) continue;
// find two white and black blobs that are close to the input point
std::vector<std::pair<int, float> > white_order, black_order;
orderContours(black_contours, corners[i], black_order);
orderContours(white_contours, corners[i], white_order);
const float max_dist = 10.0f;
if(black_order[0].second > max_dist || black_order[1].second > max_dist ||
white_order[0].second > max_dist || white_order[1].second > max_dist)
{
continue; // there will be no improvement in this corner position
}
const std::vector<Point>* quads[4] = {&black_contours[black_order[0].first], &black_contours[black_order[1].first],
&white_contours[white_order[0].first], &white_contours[white_order[1].first]};
std::vector<Point2f> quads_approx[4];
Point2f quad_corners[4];
for(int k = 0; k < 4; k++)
{
#if 1
std::vector<Point2f> temp;
for(size_t j = 0; j < quads[k]->size(); j++) temp.push_back((*quads[k])[j]);
approxPolyDP(Mat(temp), quads_approx[k], 0.5, true);
findCorner(quads_approx[k], corners[i], quad_corners[k]);
#else
findCorner(*quads[k], corners[i], quad_corners[k]);
#endif
quad_corners[k] += Point2f(0.5f, 0.5f);
}
// cross two lines
Point2f origin1 = quad_corners[0];
Point2f dir1 = quad_corners[1] - quad_corners[0];
Point2f origin2 = quad_corners[2];
Point2f dir2 = quad_corners[3] - quad_corners[2];
double angle = acos(dir1.dot(dir2)/(norm(dir1)*norm(dir2)));
if(cvIsNaN(angle) || cvIsInf(angle) || angle < 0.5 || angle > CV_PI - 0.5) continue;
findLinesCrossPoint(origin1, dir1, origin2, dir2, corners[i]);
#if defined(_SUBPIX_VERBOSE)
radius[i] = norm(corners[i] - ground_truth_corners[ground_truth_idx])*6;
#if 1
Mat test(img.size(), CV_32FC3);
cvtColor(img, test, CV_GRAY2RGB);
// line(test, quad_corners[0] - corners[i] + Point2f(30, 30), quad_corners[1] - corners[i] + Point2f(30, 30), cvScalar(0, 255, 0));
// line(test, quad_corners[2] - corners[i] + Point2f(30, 30), quad_corners[3] - corners[i] + Point2f(30, 30), cvScalar(0, 255, 0));
std::vector<std::vector<Point> > contrs;
contrs.resize(1);
for(int k = 0; k < 4; k++)
{
//contrs[0] = quads_approx[k];
contrs[0].clear();
for(size_t j = 0; j < quads_approx[k].size(); j++) contrs[0].push_back(quads_approx[k][j]);
drawContours(test, contrs, 0, CV_RGB(0, 0, 255), 1, 1, std::vector<Vec4i>(), 2);
circle(test, quad_corners[k], 0.5, CV_RGB(255, 0, 0));
}
Mat test1 = test(Rect(corners[i].x - 30, corners[i].y - 30, 60, 60));
namedWindow("1", 1);
imshow("1", test1);
imwrite("test.jpg", test);
waitKey(0);
#endif
#endif //_SUBPIX_VERBOSE
}
#if defined(_SUBPIX_VERBOSE)
Mat test(img.size(), CV_32FC3);
cvtColor(img, test, CV_GRAY2RGB);
drawCircles(test, corners, radius);
namedWindow("corners", 1);
imshow("corners", test);
waitKey();
#endif //_SUBPIX_VERBOSE
return true;
}