opencv/modules/objdetect/src/latentsvmdetector.cpp
2011-10-04 12:10:57 +00:00

265 lines
8.1 KiB
C++

#include "precomp.hpp"
#include "_lsvmparser.h"
#include "_lsvm_matching.h"
/*
// load trained detector from a file
//
// API
// CvLatentSvmDetector* cvLoadLatentSvmDetector(const char* filename);
// INPUT
// filename - path to the file containing the parameters of
// - trained Latent SVM detector
// OUTPUT
// trained Latent SVM detector in internal representation
*/
CvLatentSvmDetector* cvLoadLatentSvmDetector(const char* filename)
{
CvLatentSvmDetector* detector = 0;
CvLSVMFilterObject** filters = 0;
int kFilters = 0;
int kComponents = 0;
int* kPartFilters = 0;
float* b = 0;
float scoreThreshold = 0.f;
int err_code = 0;
err_code = loadModel(filename, &filters, &kFilters, &kComponents, &kPartFilters, &b, &scoreThreshold);
if (err_code != LATENT_SVM_OK) return 0;
detector = (CvLatentSvmDetector*)malloc(sizeof(CvLatentSvmDetector));
detector->filters = filters;
detector->b = b;
detector->num_components = kComponents;
detector->num_filters = kFilters;
detector->num_part_filters = kPartFilters;
detector->score_threshold = scoreThreshold;
return detector;
}
/*
// release memory allocated for CvLatentSvmDetector structure
//
// API
// void cvReleaseLatentSvmDetector(CvLatentSvmDetector** detector);
// INPUT
// detector - CvLatentSvmDetector structure to be released
// OUTPUT
*/
void cvReleaseLatentSvmDetector(CvLatentSvmDetector** detector)
{
free((*detector)->b);
free((*detector)->num_part_filters);
for (int i = 0; i < (*detector)->num_filters; i++)
{
free((*detector)->filters[i]->H);
free((*detector)->filters[i]);
}
free((*detector)->filters);
free((*detector));
*detector = 0;
}
/*
// find rectangular regions in the given image that are likely
// to contain objects and corresponding confidence levels
//
// API
// CvSeq* cvLatentSvmDetectObjects(const IplImage* image,
// CvLatentSvmDetector* detector,
// CvMemStorage* storage,
// float overlap_threshold = 0.5f,
int numThreads = -1);
// INPUT
// image - image to detect objects in
// detector - Latent SVM detector in internal representation
// storage - memory storage to store the resultant sequence
// of the object candidate rectangles
// overlap_threshold - threshold for the non-maximum suppression algorithm [here will be the reference to original paper]
// OUTPUT
// sequence of detected objects (bounding boxes and confidence levels stored in CvObjectDetection structures)
*/
CvSeq* cvLatentSvmDetectObjects(IplImage* image,
CvLatentSvmDetector* detector,
CvMemStorage* storage,
float overlap_threshold, int numThreads)
{
CvLSVMFeaturePyramid *H = 0;
CvPoint *points = 0, *oppPoints = 0;
int kPoints = 0;
float *score = 0;
unsigned int maxXBorder = 0, maxYBorder = 0;
int numBoxesOut = 0;
CvPoint *pointsOut = 0;
CvPoint *oppPointsOut = 0;
float *scoreOut = 0;
CvSeq* result_seq = 0;
int error = 0;
cvConvertImage(image, image, CV_CVTIMG_SWAP_RB);
// Getting maximum filter dimensions
getMaxFilterDims((const CvLSVMFilterObject**)(detector->filters), detector->num_components,
detector->num_part_filters, &maxXBorder, &maxYBorder);
// Create feature pyramid with nullable border
H = createFeaturePyramidWithBorder(image, maxXBorder, maxYBorder);
// Search object
error = searchObjectThresholdSomeComponents(H, (const CvLSVMFilterObject**)(detector->filters),
detector->num_components, detector->num_part_filters, detector->b, detector->score_threshold,
&points, &oppPoints, &score, &kPoints, numThreads);
if (error != LATENT_SVM_OK)
{
return NULL;
}
// Clipping boxes
clippingBoxes(image->width, image->height, points, kPoints);
clippingBoxes(image->width, image->height, oppPoints, kPoints);
// NMS procedure
nonMaximumSuppression(kPoints, points, oppPoints, score, overlap_threshold,
&numBoxesOut, &pointsOut, &oppPointsOut, &scoreOut);
result_seq = cvCreateSeq( 0, sizeof(CvSeq), sizeof(CvObjectDetection), storage );
for (int i = 0; i < numBoxesOut; i++)
{
CvObjectDetection detection = {{0, 0, 0, 0}, 0};
detection.score = scoreOut[i];
CvRect bounding_box = {0, 0, 0, 0};
bounding_box.x = pointsOut[i].x;
bounding_box.y = pointsOut[i].y;
bounding_box.width = oppPointsOut[i].x - pointsOut[i].x;
bounding_box.height = oppPointsOut[i].y - pointsOut[i].y;
detection.rect = bounding_box;
cvSeqPush(result_seq, &detection);
}
cvConvertImage(image, image, CV_CVTIMG_SWAP_RB);
freeFeaturePyramidObject(&H);
free(points);
free(oppPoints);
free(score);
return result_seq;
}
namespace cv
{
LatentSvmDetector::ObjectDetection::ObjectDetection() : score(0.f), classID(-1)
{}
LatentSvmDetector::ObjectDetection::ObjectDetection( const Rect& _rect, float _score, int _classID ) :
rect(_rect), score(_score), classID(_classID)
{}
LatentSvmDetector::LatentSvmDetector()
{}
LatentSvmDetector::LatentSvmDetector( const vector<string>& filenames, const vector<string>& _classNames )
{
load( filenames, _classNames );
}
LatentSvmDetector::~LatentSvmDetector()
{
clear();
}
void LatentSvmDetector::clear()
{
for( size_t i = 0; i < detectors.size(); i++ )
cvReleaseLatentSvmDetector( &detectors[i] );
detectors.clear();
classNames.clear();
}
bool LatentSvmDetector::empty() const
{
return detectors.empty();
}
const vector<string>& LatentSvmDetector::getClassNames() const
{
return classNames;
}
size_t LatentSvmDetector::getClassCount() const
{
return classNames.size();
}
string extractModelName( const string& filename )
{
size_t startPos = filename.rfind('/');
if( startPos == string::npos )
startPos = filename.rfind('\\');
if( startPos == string::npos )
startPos = 0;
else
startPos++;
const int extentionSize = 4; //.xml
int substrLength = filename.size() - startPos - extentionSize;
return filename.substr(startPos, substrLength);
}
bool LatentSvmDetector::load( const vector<string>& filenames, const vector<string>& _classNames )
{
clear();
CV_Assert( _classNames.empty() || _classNames.size() == filenames.size() );
for( size_t i = 0; i < filenames.size(); i++ )
{
const string filename = filenames[i];
if( filename.length() < 5 || filename.substr(filename.length()-4, 4) != ".xml" )
continue;
CvLatentSvmDetector* detector = cvLoadLatentSvmDetector( filename.c_str() );
if( detector )
{
detectors.push_back( detector );
if( _classNames.empty() )
{
classNames.push_back( extractModelName(filenames[i]) );
}
else
classNames.push_back( _classNames[i] );
}
}
return !empty();
}
void LatentSvmDetector::detect( const Mat& image,
vector<ObjectDetection>& objectDetections,
float overlapThreshold,
int numThreads )
{
objectDetections.clear();
if( numThreads <= 0 )
numThreads = 1;
for( size_t classID = 0; classID < detectors.size(); classID++ )
{
IplImage image_ipl = image;
CvMemStorage* storage = cvCreateMemStorage(0);
CvSeq* detections = cvLatentSvmDetectObjects( &image_ipl, detectors[classID], storage, overlapThreshold, numThreads );
// convert results
objectDetections.reserve( objectDetections.size() + detections->total );
for( int detectionIdx = 0; detectionIdx < detections->total; detectionIdx++ )
{
CvObjectDetection detection = *(CvObjectDetection*)cvGetSeqElem( detections, detectionIdx );
objectDetections.push_back( ObjectDetection(Rect(detection.rect), detection.score, (int)classID) );
}
cvReleaseMemStorage( &storage );
}
}
} // namespace cv