265 lines
		
	
	
		
			7.9 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			265 lines
		
	
	
		
			7.9 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*M///////////////////////////////////////////////////////////////////////////////////////
 | |
| //
 | |
| //  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
 | |
| //
 | |
| //  By downloading, copying, installing or using the software you agree to this license.
 | |
| //  If you do not agree to this license, do not download, install,
 | |
| //  copy or use the software.
 | |
| //
 | |
| //
 | |
| //                           License Agreement
 | |
| //                For Open Source Computer Vision Library
 | |
| //
 | |
| // Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
 | |
| // Copyright (C) 2009, Willow Garage Inc., all rights reserved.
 | |
| // Third party copyrights are property of their respective owners.
 | |
| //
 | |
| // Redistribution and use in source and binary forms, with or without modification,
 | |
| // are permitted provided that the following conditions are met:
 | |
| //
 | |
| //   * Redistribution's of source code must retain the above copyright notice,
 | |
| //     this list of conditions and the following disclaimer.
 | |
| //
 | |
| //   * Redistribution's in binary form must reproduce the above copyright notice,
 | |
| //     this list of conditions and the following disclaimer in the documentation
 | |
| //     and/or other materials provided with the distribution.
 | |
| //
 | |
| //   * The name of the copyright holders may not be used to endorse or promote products
 | |
| //     derived from this software without specific prior written permission.
 | |
| //
 | |
| // This software is provided by the copyright holders and contributors "as is" and
 | |
| // any express or implied warranties, including, but not limited to, the implied
 | |
| // warranties of merchantability and fitness for a particular purpose are disclaimed.
 | |
| // In no event shall the Intel Corporation or contributors be liable for any direct,
 | |
| // indirect, incidental, special, exemplary, or consequential damages
 | |
| // (including, but not limited to, procurement of substitute goods or services;
 | |
| // loss of use, data, or profits; or business interruption) however caused
 | |
| // and on any theory of liability, whether in contract, strict liability,
 | |
| // or tort (including negligence or otherwise) arising in any way out of
 | |
| // the use of this software, even if advised of the possibility of such damage.
 | |
| //
 | |
| //M*/
 | |
| 
 | |
| #include "test_precomp.hpp"
 | |
| 
 | |
| #include <algorithm>
 | |
| #include <vector>
 | |
| #include <iostream>
 | |
| 
 | |
| using namespace cv;
 | |
| using namespace cv::flann;
 | |
| 
 | |
| //--------------------------------------------------------------------------------
 | |
| class NearestNeighborTest : public cvtest::BaseTest
 | |
| {
 | |
| public:
 | |
|     NearestNeighborTest() {}
 | |
| protected:
 | |
|     static const int minValue = 0;
 | |
|     static const int maxValue = 1;
 | |
|     static const int dims = 30;
 | |
|     static const int featuresCount = 2000;
 | |
|     static const int K = 1; // * should also test 2nd nn etc.?
 | |
| 
 | |
| 
 | |
|     virtual void run( int start_from );
 | |
|     virtual void createModel( const Mat& data ) = 0;
 | |
|     virtual int findNeighbors( Mat& points, Mat& neighbors ) = 0;
 | |
|     virtual int checkGetPoins( const Mat& data );
 | |
|     virtual int checkFindBoxed();
 | |
|     virtual int checkFind( const Mat& data );
 | |
|     virtual void releaseModel() = 0;
 | |
| };
 | |
| 
 | |
| int NearestNeighborTest::checkGetPoins( const Mat& )
 | |
| {
 | |
|    return cvtest::TS::OK;
 | |
| }
 | |
| 
 | |
| int NearestNeighborTest::checkFindBoxed()
 | |
| {
 | |
|     return cvtest::TS::OK;
 | |
| }
 | |
| 
 | |
| int NearestNeighborTest::checkFind( const Mat& data )
 | |
| {
 | |
|     int code = cvtest::TS::OK;
 | |
|     int pointsCount = 1000;
 | |
|     float noise = 0.2f;
 | |
| 
 | |
|     RNG rng;
 | |
|     Mat points( pointsCount, dims, CV_32FC1 );
 | |
|     Mat results( pointsCount, K, CV_32SC1 );
 | |
| 
 | |
|     std::vector<int> fmap( pointsCount );
 | |
|     for( int pi = 0; pi < pointsCount; pi++ )
 | |
|     {
 | |
|         int fi = rng.next() % featuresCount;
 | |
|         fmap[pi] = fi;
 | |
|         for( int d = 0; d < dims; d++ )
 | |
|             points.at<float>(pi, d) = data.at<float>(fi, d) + rng.uniform(0.0f, 1.0f) * noise;
 | |
|     }
 | |
| 
 | |
|     code = findNeighbors( points, results );
 | |
| 
 | |
|     if( code == cvtest::TS::OK )
 | |
|     {
 | |
|         int correctMatches = 0;
 | |
|         for( int pi = 0; pi < pointsCount; pi++ )
 | |
|         {
 | |
|             if( fmap[pi] == results.at<int>(pi, 0) )
 | |
|                 correctMatches++;
 | |
|         }
 | |
| 
 | |
|         double correctPerc = correctMatches / (double)pointsCount;
 | |
|         if (correctPerc < .75)
 | |
|         {
 | |
|             ts->printf( cvtest::TS::LOG, "correct_perc = %d\n", correctPerc );
 | |
|             code = cvtest::TS::FAIL_BAD_ACCURACY;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return code;
 | |
| }
 | |
| 
 | |
| void NearestNeighborTest::run( int /*start_from*/ ) {
 | |
|     int code = cvtest::TS::OK, tempCode;
 | |
|     Mat desc( featuresCount, dims, CV_32FC1 );
 | |
|     randu( desc, Scalar(minValue), Scalar(maxValue) );
 | |
| 
 | |
|     createModel( desc );
 | |
| 
 | |
|     tempCode = checkGetPoins( desc );
 | |
|     if( tempCode != cvtest::TS::OK )
 | |
|     {
 | |
|         ts->printf( cvtest::TS::LOG, "bad accuracy of GetPoints \n" );
 | |
|         code = tempCode;
 | |
|     }
 | |
| 
 | |
|     tempCode = checkFindBoxed();
 | |
|     if( tempCode != cvtest::TS::OK )
 | |
|     {
 | |
|         ts->printf( cvtest::TS::LOG, "bad accuracy of FindBoxed \n" );
 | |
|         code = tempCode;
 | |
|     }
 | |
| 
 | |
|     tempCode = checkFind( desc );
 | |
|     if( tempCode != cvtest::TS::OK )
 | |
|     {
 | |
|         ts->printf( cvtest::TS::LOG, "bad accuracy of Find \n" );
 | |
|         code = tempCode;
 | |
|     }
 | |
| 
 | |
|     releaseModel();
 | |
| 
 | |
|     ts->set_failed_test_info( code );
 | |
| }
 | |
| 
 | |
| //--------------------------------------------------------------------------------
 | |
| class CV_LSHTest : public NearestNeighborTest
 | |
| {
 | |
| public:
 | |
|     CV_LSHTest() {}
 | |
| protected:
 | |
|     virtual void createModel( const Mat& data );
 | |
|     virtual int findNeighbors( Mat& points, Mat& neighbors );
 | |
|     virtual void releaseModel();
 | |
|     struct CvLSH* lsh;
 | |
|     CvMat desc;
 | |
| };
 | |
| 
 | |
| void CV_LSHTest::createModel( const Mat& data )
 | |
| {
 | |
|     desc = data;
 | |
|     lsh = cvCreateMemoryLSH( data.cols, data.rows, 70, 20, CV_32FC1 );
 | |
|     cvLSHAdd( lsh, &desc );
 | |
| }
 | |
| 
 | |
| int CV_LSHTest::findNeighbors( Mat& points, Mat& neighbors )
 | |
| {
 | |
|     const int emax = 20;
 | |
|     Mat dist( points.rows, neighbors.cols, CV_64FC1);
 | |
|     CvMat _dist = dist, _points = points, _neighbors = neighbors;
 | |
|     cvLSHQuery( lsh, &_points, &_neighbors, &_dist, neighbors.cols, emax );
 | |
|     return cvtest::TS::OK;
 | |
| }
 | |
| 
 | |
| void CV_LSHTest::releaseModel()
 | |
| {
 | |
|     cvReleaseLSH( &lsh );
 | |
| }
 | |
| 
 | |
| //--------------------------------------------------------------------------------
 | |
| class CV_FeatureTreeTest_C : public NearestNeighborTest
 | |
| {
 | |
| public:
 | |
|     CV_FeatureTreeTest_C() {}
 | |
| protected:
 | |
|     virtual int findNeighbors( Mat& points, Mat& neighbors );
 | |
|     virtual void releaseModel();
 | |
|     CvFeatureTree* tr;
 | |
|     CvMat desc;
 | |
| };
 | |
| 
 | |
| int CV_FeatureTreeTest_C::findNeighbors( Mat& points, Mat& neighbors )
 | |
| {
 | |
|     const int emax = 20;
 | |
|     Mat dist( points.rows, neighbors.cols, CV_64FC1);
 | |
|     CvMat _dist = dist, _points = points, _neighbors = neighbors;
 | |
|     cvFindFeatures( tr, &_points, &_neighbors, &_dist, neighbors.cols, emax );
 | |
|     return cvtest::TS::OK;
 | |
| }
 | |
| 
 | |
| void CV_FeatureTreeTest_C::releaseModel()
 | |
| {
 | |
|     cvReleaseFeatureTree( tr );
 | |
| }
 | |
| 
 | |
| //--------------------------------------
 | |
| class CV_SpillTreeTest_C : public CV_FeatureTreeTest_C
 | |
| {
 | |
| public:
 | |
|     CV_SpillTreeTest_C() {}
 | |
| protected:
 | |
|     virtual void createModel( const Mat& data );
 | |
| };
 | |
| 
 | |
| void CV_SpillTreeTest_C::createModel( const Mat& data )
 | |
| {
 | |
|     desc = data;
 | |
|     tr = cvCreateSpillTree( &desc );
 | |
| }
 | |
| 
 | |
| //--------------------------------------
 | |
| class CV_KDTreeTest_C : public CV_FeatureTreeTest_C
 | |
| {
 | |
| public:
 | |
|     CV_KDTreeTest_C() {}
 | |
| protected:
 | |
|     virtual void createModel( const Mat& data );
 | |
|     virtual int checkFindBoxed();
 | |
| };
 | |
| 
 | |
| void CV_KDTreeTest_C::createModel( const Mat& data )
 | |
| {
 | |
|     desc = data;
 | |
|     tr = cvCreateKDTree( &desc );
 | |
| }
 | |
| 
 | |
| int CV_KDTreeTest_C::checkFindBoxed()
 | |
| {
 | |
|     Mat min(1, dims, CV_32FC1 ), max(1, dims, CV_32FC1 ), indices( 1, 1, CV_32SC1 );
 | |
|     float l = minValue, r = maxValue;
 | |
|     min.setTo(Scalar(l)), max.setTo(Scalar(r));
 | |
|     CvMat _min = min, _max = max, _indices = indices;
 | |
|     // TODO check indices
 | |
|     if( cvFindFeaturesBoxed( tr, &_min, &_max, &_indices ) != featuresCount )
 | |
|         return cvtest::TS::FAIL_BAD_ACCURACY;
 | |
|     return cvtest::TS::OK;
 | |
| }
 | |
| 
 | |
| 
 | |
| TEST(Legacy_LSH, regression) { CV_LSHTest test; test.safe_run(); }
 | |
| TEST(Legacy_SpillTree, regression) { CV_SpillTreeTest_C test; test.safe_run(); }
 | |
| TEST(Legacy_KDTree_C, regression) { CV_KDTreeTest_C test; test.safe_run(); }
 | 
